
united nations
educational, scientific

and cultural
organization

the

international centre for theoretical physics

international atomic
energy agency

H4.SMR/1304-6

"COLLEGE ON SOIL PHYSICS"

12 March - 6 April 2001

Soil Porous Systems: Models and Reality

M. Kutilek and D. R. Nielsen

Elsevier
Soil and Tillage Research (Journal)

Prague
Czech Republic

These notes are for internal distribution only

strada costiera, I I - 34014 trieste italy - tel. +39 04022401 I I fax +39 040224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it





College on Soil Physics
ICTP, TRIESTE, 12-29 March, 2001

LECTURE NOTES

Soil Porous Systems: Models and Reality

Extended text of the textbook
Soil Hydrology, 1994 by M. Kutilek and D.R. Nielsen

Miroslav Kutilek

Professor Emeritus
Nad Patankou 34, 160 00 Prague 6, Czech Republic

Fax/Tel. +420 2 311 6338
E-mail: kutilek@ecn.cz



16 Soil Hydrology

2 SOIL POROUS SYSTEM

The term pore denotes that part of the soil space which is not filled by the soil
solid phase The shape, size and origin of pores play a role only in a detailed
classification of the soil porous system. Inasmuch as all transport processes and
the storage of water occur in the soil porous system, we must study it in detail

2.1 SOIL POROSITY

The relative volume of pores is denoted as soil porosity
P = V P / V r (21)

where Vp is the volume of pores and Vj the total bulk volume of soil When
(21) is multiplied by 100, we obtain P in percent The volume of pores Vp is
related to the volume of soil solid phase Vs by the void ratio

e=Vp/Vs (2 2)
with mutual relations between P and e being

and - £ (23>
Void ratio is more appropriate than porosity if the reference term V> is not
constant as for example in clays when they swell or shrink

Estimating the proper size of Vj is crucial It may be obtained by the
following theoretical treatment, see Fig 2.1 Let us assume that when Vj is
small enough (Vj < Vp) and centered in a pore, P = 1 When Vj is centered in
the solid phase and small enough (Vj < Vs), P = 0 When Vj increases, we reach
the situation when either Vj = (Vp + SVs) or Vj « (Vs + SVp) and porosity is
neither 1 nor 0 Centering Vj in the solid phase, P is slightly above zero With a
gradual increase in Vj we obtain first a gradual decrease of P (center in the pore)
or a gradual increase of P (center in the solid phase), until both values comcide
Before coincidence occurs, a damping oscillation of P may exist At this stage of
increasing Vjwhen porosity is independent upon the initial centering of Vj, we
have reached the representative elementary volume REV (Bear, 1969 and 1972)
This final volume Vj is called by Corey (1977) the minimum volume oFT
reference element If Vj = REV, translating the center of V? does not change the
value of P The concept of REV is important in methods of practical
determination of porosity as well as the application of the theory of potential
flow to the description of water flow in soils Soils without structural
development have an REV of about 100 cm3 or less Because the REV of
aggregated soils depends upon the size and shape of their peds, its value may be
one or more orders of magnitude greater

Soil porosity manifests a broad range of values from less than 0 3 to more
than 0 9 However, in the majority of mineral soils, P lies between 0 4 and 0 6
Some organic soils have values of P that exceed 0.9. Porosity depends upon the
composition, texture and structure of soil Soil structure is influenced by the
content of organic matter, the quantity of inorganic cementing agents, the
genesis of the soil and its horizons and more recently, by human activity
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Theoretically, in the most dense arrangement of spherical particles of identical
size, P = 0.26. Although this value is sometimes taken as the theoretical
minimum porosity of sands, even sandy soils are mixtures of particles of
various sizes and shapes. Hartge (1978) reviewed binary and ternary mixtures of
particles having different sizes and shapes. Even in the case of sands, neither
simple nor sophisticated geometric models of the arrangement of particles are
applicable for use of porosity.

With an increase of clay content the porosity of soils rises, owing mainly
to a greater opportunity for soil aggregation. For soils not intensively cultivated,
the mean values of porosity in the A-horizon and sub soil are plotted versus
texture in Fig. 2.2. The porosity of the A-horizon reaches its maximum value in
loamy soils owing to the optimum conditions for aggregation. In clays, the
tendency to slushiness leads to a slight decrease of P. The data for the graph stem
from research performed 70 years ago by Janota (1924) and were summarized by
Kutilek (1978). The use of heavy machinery, the application of fertilizers in high
quantities and the decrease of organic matter in soils - all specific features of
modern-day intensive agriculture - decrease aggregation and enhance soil
compaction. Hence, the porosity of most agricultural soils no longer depends
upon soil texture.

The range of values of porosity found in four major textural categories of
mineral soils according to Schachtschabel et al. (1984) is given in Table 2.1.
Except for clay soils, texture does not Significantly influence porosity. In clay
soils originating from volcanic ash which are classified as Andosols, porosity
reaches extreme values of 0.7 to 0.8.

20 40 60

PARTICLES <10|im (%)

Figure 2.2. Dependence of porosity P upon the texture of the topsoil and subsoil
of central European soils at the start of this century (Janota, 1924, and
Kutilek, 1978).
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Table 2.1. Range of the porosity and bulk density in mineral soils with Cox

(Schachtschabel et al, 1984).

Type of soil Porosity P Bulk density pj

sandy soils
silty soils
loamy soils
clayey soils

56-36
56-39
55-30
70-35

g-cm'3

1.16 -1.70
1.26 -1.61
1.20-1.85
0.88-1.72
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Figure 2.3. Dependence of porosity P upon soil water content 0 in swelling soils.
Four domains are defined (Haines, 1923, and modified by Yule and_
Ritchie, 1980). ~~

In some clays and loams, P depends upon the soil water content 6
inasmuch as soil swells when wetted and shrinks when dried. In such soils P
increases with 6 as shown in Fig. 2.3. This relationship is linear for large values
of 6. At smaller values of 0, P changes non-linearly with 6. A detailed discussion
is in section 3.1.

In the soil profile, the maximum porosity usually occurs in the top of the
Ao horizon. The porosity distribution with soil depth depends upon the
development of each soil profile. For example, in the illuvial Bt horizon
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accumulated material causes a decrease in porosity. Or, the reduction of iron
oxides and the destruction of the structure in hydromorphic gley G horizons
lead to an abrupt decrease in porosity.

The porosity of organic soils is greater than that of mineral soils and
reaches maximal values in highly decomposed low moor. As mineral
substances increase in organic soils the porosity decreases.

2.2 CLASSIFICATION OF PORES

2.2.1. Hydrologic Classification

According to Corey (1977), the classification of soil pores should follow the
laws of hydrostatics and hydrodynamics and leads to main three categories, which are
further subdivided (Kutilek and Nielsen, 1994):

MACROPORES

INTERPEDAL
(BY-PASS)

PORES

INTRAPEDAL
(MATRIC)

PORES

Ah HORIZON ON LOESS

10' 10' 102 103 10* 105

EQUIVALENT PORE RADIUS r

Figure 2.4. Schematic example of pore size distribution in parent rock and in
soils.



1. Submicroscopic pores, which are so small that they preclude clusters of water
molecules to form fluid particles or continuous flow paths. Inasmuch as convention
does not exist in these pores, the laws of fluid mechanics are not applicable. Pores
belonging to this category are oftentimes neglected.

2. Micropores or capillary pores. Transport processes in bodies with microporous
systems are described by Richards' eq. and by convective-diffusion eq. We
distinguish:

2.1 Matrix (intrapedal) pores within soil aggregates, their shape, size, coatings of
walls, cuttans and nodules depend upon the soil genesis and they are stable in long
term time span if no amendments are applied.

2.2 Interaggregate (interpedal) pores between the soil aggregates. They are stable in
soils which are not affected by intensive agriculture with heavy machinery and
high application of fertilizers, and their morphology depends upon the soil genesis.
In soils under intensive agriculture their volume and shape are negatively
influenced. The boundary between the two categories has to be defined from the
analysis of pore size distribution, the equivalent pore radius is with rough
approximation between 15 to 30 jam. Interaggregate pores are sometimes
misinterpreted as macropores.

3. Macropores, or non-capillary pores of such a size that capillary menisci are not
formed across the pore, the shape of air-water interface is planar. The boundary
between micropores and macropores is formed by the equivalent pore radius
approximately r - 1 to 2 mm. The flow of water inside of these pores is either in
the form of a film on the walls of the pore, or filling the whole crossectional area of
the pore, described either by a modified form of the Chezy eq., or by the kinematic
wave eq. Origin of macropores is closely correlated to their stability and persistence
in time:

3.1 Macropores formed by the activity of pedo-edaphon as decayed roots, earthworm
channels etc. They have tubular form and they are well persistent in time and
relatively independent upon variation of the soil water content. Some channels
originated from the hair-roots may belong to the category 2.2 of micropores.

3.2 Fissures and cracks occurring as the consequence of volumetric changes of
swelling-shrinking soils. They have planar forms and they are dependent upon the
soil water content, at their high values they gradually disappear.

3.3 Macropores originating due to the soil tillage. Their depth is limited, they are
dependent upon soil water content and disappear usually in less than one
vegetation season, the persistence depends upon meteorological situations and type
of plants.

Soil porous system with 2.1. plus 2.2. is sometimes denoted as system with dual
porosity. In some instance soils with micropores and macropores are denoted as soils
with dual porosity. The terminology is not unified. The same is for the quantitative
characteristic of macropores.

Although the relative volume of macropores, category 3, is very small, it may
have great impact relative to flows of water and its dissolved constituents within a soil
profile.



2.2.2. Agronomic Classification

In soil science applied to practical agronomy, drainage and irrigation, capillary
pores (in the second category) are frequently subdivided according to practical aspects
of agriculture. Pores containing water below the permanent wilting point of plants are
designed as fine pores, those with water between the wilting point and field capacity
are medium pores and those with water above field capacity are coarse pores. The
system is loose and without more specified definition of boundaries could result in
misunderstanding. I am not recommending its use.

In soil science, two terms are used to describe soil porosity - primary
porosity and secondary porosity. Primary porosity denotes the relative volume
of pores owing to the shape and size of primary particles. Secondary porosity
denotes the action of other factors, e.g. tubular pores form after the decay of
plant roots, or fissures develop as the result of drying of soils that swell and
shrink. Hence, Katchinski (1965) defines aggregate porosity PA and
interaggregate porosity FB in terms of the average porosity of the individual
aggregates P, as

and

PB=P -PA, (2.5)
respectively. The terms intrapedal pores and interpedal pores are sometimes
used for PA and PB, respectively.

2.2.3. Morphologic (or soil science) classification

The system was originally proposed by Brewer (1964) who was dealing mainly
with soil micromorphology. His pore size classification is frequently used and we find it
in Glossary of Soil Science Terms, 1996 (SSSA, 1997)

Class

Macropores

Mesopores
Micropores
Ultramicro-
pores
Cryptopores

Subclass

Coarse
Medium
Fine
Very
Fine

Class limits
Equivalent
diameter,
mm
>5
2-5
1-2
0.075-1

0.03-0.075
0.005-0.03
0.0001-
0.005
<0.1

Pressure
head
-cm

>0.6
0.6-1.5
1.5-3
3-40

40-100
100-600
600-
30000
<30000



2.3, MODELS OF SOIL POROUS SYSTEMS

The development of models is characteristic by the gradual transition from the
simplest concepts up to the sophisticated approaches which are assumed to represent
the complicated reality of soil pores. Thus, we can follow the process of successive
improvement of models.

2.3.1. Assembly of spheres

Soil is modeled as an assembly of spherical particles. The volume of space
between the spheres represents the porosity in unit volume of spheres. In the first
models, the spheres were arranged either in a cubic or in a hexagonal net, Fig. 2.5. If
the diameter of spheres is uniform we obtain porosity P = 47.64 % for the cubic
arrangement and P = 25.95 % for hexagonal arrangement. The first type of assembly
is the extremely loose one, the second one is the maximum dens one for uniform cubes.

Figure 2.5. Model consisting of spherical particles in a) cubical, b) hexagonal
arrangement.

This model is the oldest one in soil-water studies. The first authors using it for
the study of soil capillarity were Keen (1924), Fisher (1924) and Haines (1925). We
find it even in some of the recent studies (Iwata et al., 1988). The model of equal
diameter of spheres was further completed by the assumption on existence of spheres of
variable diameter. The particle-size distribution was considered as reference.

Arya and Paris (1981) assumed that the similarity between the shapes of the
particle size distribution curve and the soil water retention curve SWRC is closely
related to the value of the representative pore diameter in each of the defined particle
size classes. The main disadvantage of models based upon similarity of spheres and soil
particles is the negligence of the internal architecture of soil. The porous system of soil
is formed by a certain configuration of particles into aggregates and the aggregates
further being arranged in a definite way. However, when the particle-size distribution of
a soil is determined, the aggregates are destroyed and individual particles separated.
The particle-size distribution is a sort of an artefact. These models therefore
approximate roughly the relations in sands only.



2.3.2. Parallel Capillary Tubes

The simplest model is the arrangement of capillary tubes of equal diameter in
a parallel way. It was applied in soil and groundwater hydraulics by Kozeny in 1927
for the first time. The model is implicitly used even in some recent models of saturated
hydraulic conductivity Ks . In order to get the model closer to the reality of the soil
porous system with pores of various shapes and with curvature of the flow paths on
microscale, the tortuosity factor was introduced by Kozeny.

v
Figure 2.6

In Kozeny's model, the complicated soil porous system (right) is
represented by a bundle of parallel capillary tubes of uniform radius (left).
The flux density q, saturated hydraulic conductivity Ks, porosity P and
surface area of pores Am are the same in both the model and the soil

From those equalities we obtain the radii of capillaries and the number of
capillaries in the unit volume.

The Kozeny's model is not useful either for modeling of the soil water retention
curve SWRC, or for explanation of the unsaturated hydraulic conductivity function
K(h), see unsaturated flow.

A simple model of a bundle of parallel capillaries of non constant radii was
therefore applied for physical interpretation of SWRC (Figure 2.7.) and unsaturated
hydraulic conductivity function (Childs and Collis George, 1950). A refinement of this
model considers the capillaries as being rosary (ink-bottle) tubes. This allows hysteresis
of SWRC, existence of entrapped air when the dry system is wetted etc.
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SOIL WATER
CONTENT 0

Figure 2 7 Modei Qj SWRC consisting of parallel capillary tubes (left) and the
resulting SWRC (right).

When the scale of the soil water pressure head on the axis of the SWRC
is replaced by that of the radius of the capillaries according to (4.11), we obtain
the summation curve of the pore size distribution. The derivative of this
summation curve is the frequency curve of the pore size distribution, see Fig.
2.4. The frequency curve is advantageously expressed by equations of probability
density functions (Brutsaert, 1966). Among the more common functions are the
incomplete gamma distribution, the log-normal distribution and the first
asymptotic distribution. Criteria for optimal selection of the applied probability
density function are the same as those used in ordinary statistics, e.g. the X2 test
or Kolgomorov-Smirnov test. A frequency curve can be used to discuss the
quality of the soil pore space and the influence of society's activity upon its
alteration.
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Soil water retention curves SWRC plotted according to equation either of van
Genuchten, or of Brooks and Corey are in Fig. 2.8 with 9 soil water content and h the
pressure head. Equivalent pore radius r = 0.15 h is plotted on the horizontal axis below
pressure head h. The curves are thus summation curves of pore size distribution as well
provided that the parallel capillary tube model is applied. The derivation curves are
plotted in the figure, too. They represent pore size distribution curves.

e

10° 101 102 103 104 105 106 107

103 10 1 0 1

102 1 1 0 2

0

10° 101 102 103 104 105 106 107

h

Figure 2.8. Pore size distribution in SWRC models of van Genuchten and
Brooks and Corey



SWRC has frequently more than one inflection point. We find therefore more
than one peak in pore size distribution curve. In Fig. 2.9 is the example of a bi-modal
distribution curve as typical for soils which have two categories of capillary pores
according to hydrologic classification: Matrix (intrapedal) pores, Class 2.1 and
interaggregate (interpedal) pores. Class 2.2.
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Figure 2.9. Bi-modal pore size distribution (Durner, 1991, 1992)
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Bi-modal (or dual) system of capillary pores is usually well developped in A-
horizon, and less in B and C-horizons of soils. Generally, bi-modality is decreasing
with the depth (Othmer et al., 1991).
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Figure 2.10 a. SWRC of a bi-modal porous system in A andA/B horizon of a
Cambisol.
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Figure 2.10 b. SWRC of a bi-modal porous system in B and C horizons of a
Cambisol.
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2.3.3. Percolation models

Fatt (1956) was probably the first to realize that imperfections in parallel
capillary models required a new approach to model porous media. He proposed
an empirical, two-dimensional network of capillaries having randomly
distributed radii. This lattice type network of pores was extended to a 3-
dimensional network and for the solution of equilibria between the soil water
potential and 0, percolation theory was applied (Chatzis and Dullien, 1977;
Wardlaw et al., 1987; and Diaz et al., 1987). With the soil water potential being
identified with the capillary potential, the model was hypothetically placed into
the pressure apparatus. We shall first use the simplest type of percolation model
which is a 2-dimensional square network where the pores are represented by
mutually interconnected perpendicular cylindrical tubes of various radii. The
radii are scattered randomly in the network with a prescribed distribution
function p(r). Inasmuch as the number of segments n approaches infinity in
percolation theory, models of the theory usually contain segments n > 1000.
Here for the sake of clarity in Fig. 4.20, we use only 72 segments.
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2.11
Figure J£2^*. Pre-percolation (left) and percolation stage (right) in a 2-

dimensional model consisting of capillary tubes of randomly distributed
radii. Thick lines denote capillary tubes filled with air when the model is
placed in a pressure plate apparatus.

This 2-dimensional model is conceptually first completely saturated with
water and placed in a pressure plate apparatus. Stetltar to-the method described
in section O ; i / I h e air pressure is gradually and incrementally increased. When



4.3 Soil water retention curve

the pressure head h is below the percolation threshold \h\ < hp , water is
replaced only in a very small portion of pores of radii r defined by (4.11) as

r £ 2gcosy
* {1.7)

The great majority of pores having radii r £ r/, is surrounded by pores
having radii of r < r/,. At this small initial value of pressure head h, the cluster
of air^filled pores close to the top surface of the model is negligible and the
model is not effectively drained. When the air pressure in the apparatus reaches
the percolation threshold hp, water is replaced by air in a continuous cluster of
pores, all of radii r £ r^, see Fig. 4.20. Isolated groups of water-filled connections
of radii r > rnp remain undrained because they are surrounded by air-filled
connections leaving them isolated and without a continuous path to the
semipermeable membrane of the apparatus and to the free water pool. When
the air pressure is further increased in our model, no additional drainage is
realized and this is denoted as the post-percolation stage. A SWRC of such a
model is step-like.

When the model still consisting of perpendicular capillary tubes is
extended to a 3-dimensional net, drainage does not stop at one percolation stage
but proceeds further when the external pressure is increased. The SWRC of the
3-dimensional net does not yield a unique step-like form similar to that of the
2-dimensional model. Owing to the three dimensionality of the net, clusters of
undrained pores change and alter their configuration with a portion of
undrained water remaining. Similarly, when water enters into a dry, air-filled
model, clusters of pores remain filled with air in spite of the fact that they
should be filled with water at the given pressure if water had free access to all
pores. This procedure adequately explains the mechanistic part of hysteresis.
With the occurrence of the clustering of entrapped water or air, the restrictive
access of pore water or pore air to the outside pool of free water or free air is
demonstrated.

Another type of 3-dimensional model consists of spherical pores
interconnected by capillary tubes (throats). They are arranged in a cubical net,
see Fig. 4.21. The throats may or may not be correlated to the spherical pores.

5U11
Figure 4.21. A 3-dimensional model consisting of spherical pores interconnected

by capillary tubes (throats) whose radii are randomly distributed.
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If we define the pore size distribution p(r) in the cubic percolation lattice,
demonstrated in detail in Fig. 2.14 b, we obtain SWRC related to this p(r) pore size
distribution. Fig. 2.13 a, b. The dotted curve in h(Q) graph can be interpreted as SWRC
of a simple parallel capillary tube model i.e. without percolation principles.

2 4 6 8 10

Figure 2.13 a. SWRC of a cubic percolation lattice with pore size distribution

defined by p( r).
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Figure 2.13 b. SWRC of a cubic percolation lattice with pore size distribution
defined by p( r), the parameters on the axis are the same as in Fig. 2.13 a.

A detailed review on percolation theory and network modeling as applied to soil
physics is by Berkowitz and Ewing (1998). On next pages we reproduce their figures
showing how the pore size models have been developed and what are the Ifoactical
consequences of percolation modeling.



Figure 4. Evolution of pore space models, (a): parallel tubes, (b): tube network of Fatt (1956), (c):
ball-and-stick network of Chandler et al. (1982) and Koplik (1982), (d): 2D version of Toledo et al.'s
(1989) biconical pore network.

Figure 2.14
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Figure 2,15
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a

Figure 9. (a): Viscous fingering. Earlier times are shown with darker fluid, (b): Diffusion-limited
aggregation (DLA), with the seed being the left side. In both cases, the interface moves from left to
right.

Figure 2,16

Main disadvantage: If we want to use a percolation network model of a real soil
and on a real soil we have to know the pore size distribution, PSD. However, PSD from
image analysis is 2-dimensional and not fully reliable for 3-dimensional models. PSD
from mercury porosimetry is derived from bundle of parallel tubes. The same is for
SWRC.



2.3.4. Fractal and Fractal Fragmentation Models

The term fractal is derived from the Latin word fractus = fragmented, broken
smashed It was introduced by the Polish born mathematician B. B. Mandelbrot in 1975
(quotation in Mandelbrot, 1982). Fractals are distinct from the simple objects of
"classical" (Euclidean) geometry: The square, the circle, the sphere etc. They are
capable of description many irregularly shaped objects that cannot be accomodated by
Euclidean geometry. The concept of fractals deals with new system of geometry where
the complex geometric shapes exhibit the property of self-similarity. A self-similar
object is one whose components resemble the whole object. Reiteration of irregular
details or patterns occurs at progressively smaller scales and can, in the case of purely
abstract entities, continue indefinitely. Each part of each part, when magnified, will
look like the object as a whole, see Fig. 2.18 and 2.19. i.e. a self-similar object remains
invariant under changes of scale, it has a scaling symmetry, see later on the Miller-
Miller (1956) concept of scaling of soil physical properties. If the number of iteration i
has final value, the term prefractal is used, too.

Important characteristic of a fractal is the fractal dimension. It is generally
expressed by a noninteger and it reveals precisely the nuances of the shape of a studied
non-Euclidean figure. An example is in Fig. 2.17. The length of an irregular perimeter
O is measured repeatedly by fixed measurement units of step length L, i.e. by stick of
the length L. The shorter is this stick, the longer is the apparent perimeter (9. L and O
are related by the power law

OocL
Dc-l (2.8)

Where Dc is the fractal dimension. It is related to the area ,4 by
a = const. = 0 IA (2.9)

When this eq. (2.9) is rewritten in the logarithmic form, fractal dimension of the
outline is found from the slope of log (O) on log (A). Single pore outlines are
demonstrated in Fig. 2.17 (Pachepsky et al., 1996). A circle will have Dc = 1.

D=1.8 D=1.5 Dc=1.2

Figure 2.17. Single pore outlines with relevant fractal dimensions Dc

Simple deterministic fractals are constructed by repeating a pattern, named
generator onto a starting object, named initiator. The initiator determines the
dimensionality, while the generator defines the symmetry. The generator pattern is



repeated i-th times and can result either in accretion, or reduction of the initiator. In the
Cantor bar. Fig. 2.18, the initiator is the solid line and the generator is the broken line.
The number size relationship is

N(r) = kfD (2-10)
Where N(r) is the number of elements of length equal to r, k is the number initiator of
unit length, further on k = 1 and D is the fractal dimension. From (2.10) in log form
and after rearrangement is

D = \og[N(\lb' + l)/N(Vbi)]/log(b) (2.11)
For Cantor bar TV(1/A' + 1 ) / M 1 / * ' ) = 2, b = 3 and D = 0.63.
For Koch curve, Fig. 2.1SisN(l/bi + 1)/N(l/bi) = 4, 6 = 3 and D= 1.26.
For Sierpinski carpet, Fig. 2.18 is tf(W + 1)/JV(l/6') = 8, b = 3 and D = 1.89.
For Menger sponge. Fig. 2. 19 is N{\lbi + ')IN(Ylb') = 20, b = 3 and D = 2.73.
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Figure 2.18. Deterministic fractals: Cantor bar (top left), Koch curve (top
right) and Sierpinski carpet (bottom).
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unite de mesure constante 12 (carre de cote L =1 )

Figure 2.19. Reversed Sierpinski carpet (top). The area A(L) of the black
(solidphase) is proportional to LD. Menger sponge (bottom).
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Several fractal dimensions can be used to characterize the geometry of a porous
medium in relation to transport processes:

Fractal dimension of mass Dm describes space filling of the solid in a space of
radius r

M oc r°m with Dm <dT (2.12)
where dT = 2 for two-dimensional objects, dT = 3 for three-dimensional space. It follows
that there is a decrease of the density of fractal objects with increasing value of r. The
value of An in dT = 3 is usually between 2.75 to 2.95 in range of 10"1 to 10° mm
(Gimenez et al., 1997).

Fractal dimension of pore volume A is obtained after development of the
power law

Vpocrpv with A < dT (2.13)
where dT = 2 for a circle of radius r. The values of A are generally smaller and span a
larger range than Dm values. A were found between 1.22 and 1.85 in majority of
instances (Gimenez et al., 1997).

Fractal dimension of pore surface A is governed by equation analogical to
previous ones.. It is determined either by adsorption of water molecules, or from the
intrusion of the non-wetting liquid (mercury). Large values of A are associated with
increased percentage of clay minerals and with organic matter in soil, its small values
are mainly related to inorganic "smooth" surfaces of sands.

Fractal fragmentation leads to a better understanding of relationships between
aggregation, n-modal porosity and soil hydraulic properties. A scale invariant
fragmentation process leads to a distribution of fragment sizes that follow the
cumulative form of equation (2.10) where D is replaced by DF.

Fragmentation starts with a set of initial points in a square Po , Fig. 2.20, top.
Then a space partition is made in order to split Po into polygonal zones P(M), each
associated with point M (Voronoi tesselation, or Theissen polygon in hydrology), Fig.
2.20, bottom. Then a porous structure is created with P (G, k). G is the center of
gravity, k is chosen to generate the given porosity. This process can be repeated on
successive levels of fragmentation. What were earlier solid elements P(M) are now
aggregates that may be divided into smaller microaggregates or particles. The final
fractal structure is defined by fractal dimension DF. N polygons in 2-dimensions
correspond to n = Nm in 3-dimensions, r = k/N1/2 in isotropic material and the fractal
dimension is then DF = -log «/log r . SWRC equation of Rieu and Sposito (1991) is

O(h) = (h/hA)DY-3 + 0s - 1
Earlier expressions based on Brooks and Corey eq.

0(hy0s =(h/hA)DF-3

look as less appropriate, especially when we consider the empirical value of the
exponent in Brooks and Corey eq. If percolation theory is applied for the description of
the invading fluid into multi-level fragmented model, n-modal SWRC is obtained,
including the hysteretic loop.



n=l, Ni=10 ki=0.90
(a) surf(Aij)=ki2Surf(Pij)

Figure 2.20. Construction of a soil structure on several levels of fragmenation,
top: first level, bottom: second level (Perrier et aL, 1955).

When the fractal fragmented model is applied to hydraulic functions and fluxes
in soils, the percolation principles are applied for the interpretation of SWRC,
hydraulic conductivity and dispersion in real soils with n-modal porosity.

Fractal dimension D may have different physical interpretation. Soil water
retained in very small pores is likely to be a function of pore surface roughness and
water retained in large pores is a function mainly of pore size. Therefore scaling of
adsorption isotherms is mainly the function of pore roughness. Scaling of SWRC at low
pressure heads is a function of both, pore size distribution and pore roughness, each
characterized by its own value of fractal dimension. Scaling of SWRC at relatively high
pressure heads is mainly a function of pore size distribution.
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Figure 2.21. Fragments derived from a randomized Menger sponge (Perfect et
al., 2001).


