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5./ Basic concepts

5 HYDRODYNAMICS OF SOIL WATER

We introduced the concept of soil water potential in Chapter 4 where the
system was studied at the equilibrium state. It was characterized by a driving
force equal to zero and the value of the total potential being equal at all
locations in the soil. Under such conditions, the water flux density is zero and
both the soil water content 6 and the soil water pressure head h are invariant
with time. Here we derive equations describing the water flux when the soil
system, not in equilibrium, manifests a total potential <P not being constant in
space.

5.1 BASIC CONCEPTS -

The flow of water in soil can be described microscopically and macroscopically.
On the microscopic scale, the flow in each individual pore is considered and for
each defined continuous pore, the Navier-Stokes equations apply. For their
solution we lack detailed knowledge of the geometrical characteristics of
individual pores to obtain a solution for the REV. Even with this knowledge, a
tremendous effort would be required necessitating voluminous calculations for
even a relatively small soil domain. Nevertheless, this type of procedure is
often applied in some theoretical investigations where the basic laws of fluid
mechanics are invoked. In such studies the real porous system is usually
defined by a model assuming great simplification of reality.

The macroscopic or phenomenological approach of water transport
relates to the entire cross-section of the soil with the condition of an REV being
satisfied. The rate of water transport through the cross section of the REV (the
representative elementary area REA) is the flux. In order to emphasize the fact
that water does not flow through the entire macroscopic areal cross section, the
term flux density (or flux ratio, macroscopic flow rate et al.) is used to describe
the flow realized through only that portion of the area not occupied by the solid
phase and, by the air phase eventually when we deal later on with unsaturated
soil. Moreover, we use the term flux density understanding that we actually
mean the volumetric water flux density having the dimensions of velocity

1

Inasmuch as the principal equation derived for this macroscopic
approach is Darcy's equation, the scale for which this approach is valid is often
denoted as the Darcian scale. For soils, the area of this scale is usually in the
range of cm2 to m2. Beyond this scale in either direction, larger or smaller,
Darcian scale equations may not be realistic. Unless we state otherwise,
equations will be derived and solved mainly for the Darcian scale related to a
particular REV.

On the Darcian scale, water flow in soils is comparable to other transport
processes such as heat flow, molecular diffusion etc. when the appropriate
driving force is defined. For example, when the distant ends of a metal rod are
kept at different temperatures, heat flow exists. Similarly, molecular diffusion
depends upon a difference of concentration in two mutually interconnected



4.3 Soil water retention curve

\h\ = aAm{w-2wmy (4.41)

where a and b are physically based constants defined in a model where the soil
is represented by individual particles, Am the specific surface of the particles, w
the mass water content and wm the mass water content when a monomolecular
layer of water exists on the particles. The advantage of (4.41) is its physical
interpretation of the coefficients in (4.40) that applies in the region -<» < h < -0.3
MPa.

After an exhaustive study of experimentally determined SWRC on many
soils, Brooks and Corey (1964) rewrote (4.40) to be

where the effective water content BE = (8- 8r)/(9s - 8r) and X, the pore size
distribution index, is a characteristic of the soil with values approximately equal
to 2 to 5. The value of A is large for soils having a uniform pore size distribution
and small for soils with a wide range of pore sizes.

Among the less frequently used expressions of OQt) are hyperbolic, error
function or exponential equations of other authors. For the convenience of
analytic or approximate solutions of some elementary hydrologic processes, the
SWRC can be formulated by still another equation which is well suited to the
mathematical development of the solution (Broadbridge and White, 1988),
however its practical applicability for experimental data has not yet been
proved.

Inasmuch as (4.42) does not offer a satisfactory description of the SWRC
in the wet region, especially for soils not exhibiting a distinct value of hA or hw,
van Genuchten (1980) proposed the equation

(4.43)

where a, n and m are fitting parameters with their limitations being a > 0, n > 1,
\h\ > 0 and 0 < m < 1. Values of n occur between 1.2 and 4 and those of a
between 10'3 and 10"2 cm"1. Because of computational expediency, values m
have arbitrarily been taken equal to (1 - 1/w). van Genuchten and Nielsen (1985)
have proposed for pragmatic reasons to merely consider 6r and 9s as empirical
fitting parameters. Note that the physically real residual water content on the
SWRC in Fig. 4.15 was denoted by 6wr- Equation (4.43) can be adopted to describe
each of the branches of the hysteretic loop. The detailed procedure for
expressing MDC, MWC and the scanning curves by a modified (4.43) is described
by Luckner et al. (1989). Usually, (Xw » 2aa where w denotes wetting and d is for
drainage. Equation (4.43) does not allow the existence of HA and (4.42) is not
suitable if an inflection point exists on the SWRC. Hence, a compromise
description of the SWRC is achieved when 0£ is replaced by 8e, especially if the
SWRC is further used for the determination of the unsaturated hydraulic
conductivity (Sir et al., 1985). The definition of 6e requires that dbe replaced by 6e
= (6 - %)/{ea - 9b), and hence, (4.43) becomes

9e = [ l + ( a l / t l ) " p (4.44)



Soil Hydrology

pools. Soil water flow is conditioned by the existence of a driving force
stemming from a difference of total potentials between two points in the soil.
Laymen mistakenly suppose that the driving force of water flow in an
unsaturated soil is related to differences in soil water content. This supposition,
valid only for a few specified conditions, generally leads to erroneous
conclusions.

Here, we first formulate basic flow equations for the simplest case of flow
in a saturated, inert rigid soil. Afterwards, we deal with water flow in a soil not
fully saturated with water. This latter type of flow is commonly called
unsaturated flow while the former is called saturated flow. To be more precise,
we should distinguish the former from the latter flows as those occurring at
positive and negative soil water pressures, respectively. If the flow of both air
and water in the soil system is simultaneously considered, we speak of two
phase flow. Initially, we assume that the concentration of the soil solution does
not affect the soil water flow. Subsequently, our discussion is extended to
swelling and shrinking soils. Finally, we examine linked or coupled flows
together with some specific phenomena of transport at temperatures below 0°C.

All equations that we derive are supposed to be applicable to not only
analytical and approximate mathematical solutions of the components of the
soil hydrological system but to all deterministic models of soil hydrology.

5.2 SATURATED FLOW

We assume that water is flowing in all pores of the soil under a positive
pressure head h. In field situations the soil rarely reaches complete water
saturation. Usually it is quasi-saturated with the soil water content #w = m P
where m has values of 0.85 to 0.95 at h > 0, and P is the porosity. Entrapped air
occupies the volume P(l - m). And for this discussion of saturated flow, the
impact of entrapped air is not considered.

5.2.1 Darcy's Equation

For the derivation of Darcy's equation we shall discuss a simple experiment
demonstrated in Fig. 5.1. The soil is placed in a horizontal cylinder connected on
both sides with vessels containing water maintained at a constant level in each
vessel by an overflow valve. If the water level on the left side is higher than
that on the right side, water flows to the right. The rate of discharge Q = V/t is
simply measured by the volumetric overflow V in time t. The flux density q
[LT1] (macroscopic flow rate) is

I'Tt . «">
where A is the cross-sectional area of the soil column perpendicular to the
direction of flow. Sometimes, the term c\ is also called the Darcian flow rate. The
mean water flow rate (velocity) in the soil pores vp is

vp=q/P. (5.2)



5.2 Saturated flow
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Figure 5.1. Simple steady flow experiments on saturated soil columns. On the
right, the soil placed in a cylinder is provided with piezometers for
measuring pressure heads hi and hi at depths zj and zi, respectively. The
total potential head H = h + z.

In 1856, Darcy experimentally demonstrated for columns of sand a linear
relationship between the flux density a and the hydraulic gradient //,. In our
experiment shown on the right side of Fig. 5.1

(5.3)

where Ah/L or Ah'/L' is the hydraulic gradient h, Ah the difference between
water levels on both ends of the soil column of length L and Ah' the difference
between water levels in the piezometers separated by the distance L' in the
direction of flow. Both Ah and Ah' are considered the hydraulic head drop along
the soil. Inasmuch as Ah/L is dimensionless^Ks has the dimension of q [LT*1].

, • . / When we read piezometer levels hj and hi at elevations Zj and zi, respectively,
•£7 ncb^.&-~h.\/t r*/we have in terms of the total potential H

(5.4)

where the total potential head H (= h + z) is related to a unit weight of water. In
a more general way (5.4) becomes

q = -KsgradH. (5.5)
Equation (5.5) states that the flux density is proportional to the driving force of
the water flow which is the gradient of the potential. Inasmuch as Ks is a
constant for a given soil, we write <p* = K$H, and hence,

q = - grad(p' (5.6)
where <p* is KsH. The negative sign in the above equations means that water
flows in the direction of decreasing potential or against the positive direction of
z in Fig. 5.1. The value of K$ depends upon the nature of the soil and is
numerically equal to the flow rate when the hydraulic gradient is unity. Values
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of Ks commonly range from less than 0.1 cm-day'1 (10*8 m-s-1) to more than 102

cm-day1 (10'5 m-s"1).
In layered soils we have to specify the direction of the flow relative to that

of the layering. When the flow is parallel to the layers, the total flux is the sum
of the fluxes for each of the individual layers, see Fig. 5.2. Hence, Q = Qi + Q2 +

b2 + b3 )d = (q-fa + q2b2 + foh )d. (5.7)
For a column of width d = 1, length L and thickness b composed of three layers
each of thickness bu the total flux density for a hydraulic head drop Ah is

or
(5.8)

Here, the apparent hydraulic conductivity K$ is the arithmetic mean of the
individual values for each layer.

Figure 5.2. Flux density q in layered soils: a. Direction of flow is parallel to
layering, b. Direction of flow is perpendicular to layering.

When water flows perpendicular to the layering, we introduce, analogous
to an electrical resistance, the hydraulic resistance of each layer R,= Li/K
having units of time. In Fig. 5.2 the flow combined from the three layers is
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Ah
(5.9)

With the total resistance of the system R = 1R{ we obtain the harmonic mean or
the apparent hydraulic conductivity Xs" = L/R.

When the flow is at an angle < 90° to the layers, the difference of Ks in
each of the layers causes a change of the direction of streamlines (Zaslavskv and
Sinai, 1981, and Miyazaki, 1990), see Fig. 5.3.

Figure 5.3. Change of the direction of flow in a soil with inclined direction of
layers.

5.2.2 Saturated Hydraulic Conductivity

Inasmuch as the soil water potential H can be expressed in three modes, the
dimension of the hydraulic conductivity is not necessarily [LT1]. From (5.5) we
obtain for the three dimensions of H three different dimensions of Ks.
Although expressing Ks in units of velocity is usually more convenient, any
one of the following sets of units is occasionally preferred.

H vrad H &
J-kg"1

Pa
[L2T2]

m-s^-pw'V
[T]J-kg-W1 [UT2]

Pa-m"1 [ML"2r2]
m [L] dimensionless m-s'1 [LT1]
The empirical, intuitive derivation of Darcy's equation (5.5) can be

theoretically justified from Navier-Stokes equations applied to an REV of a
model of a porous medium and scaled with a characteristic length. In order to
obtain (5.5), inertial effects were neglected and the density and viscosity of water
were assumed invariant (Bear, 1972; Whitaker, 1986). Scheidegger (1957) showed
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that Ks should be considered a scalar quantity for isotropic soils, and a tensor of
rank 2 for anisotropic soils with the value of Ks dependent upon the direction
of flow. When the tensor Ks is assumed to be symmetric, its principal axes,
defined by six values, are identical to those of an ellipsoid of conductivity. If the
gradient of the potential is not in the direction of a principal axis, the direction
of flow is different from that of the gradient.

Figure 5.4. In Kozeny's model, the complicated soil porous system (right) is
represented by a bundle of parallel capillary tubes of uniform radius (left).
The flux density a, saturated hydraulic conductivity Ks, porosity P and
surface area of pores Am are the same in both the model and the soil.

From a theoretical treatment we can obtain a physical interpretation of
the hydraulic conductivity. We develop here a modified and simplified model
of Kozeny (cf. Scheidegger, 1957) consisting of a bundle of parallel capillary tubes
of uniform radius. We assume that the soil and the model are identical with
respect to porosity P, specific surface Am [L'1] and water flux density a [LT1], see
Fig. 5.4. The mean flow rate vp in a capillary of radius r is described by Hagen-
Poiseuille's equation

8 ^ (5.10)
where g is the acceleration of gravity [LT2], pw the density of water [ML'3], /i the
dynamic viscosity [ML'1!""1] and 4 the hydraulic gradient [dimensionless]. With
n being the number of capillaries of unit length x, the porosity of the model is

P = nnr1x/Vu (5.11)
where Vu is the unit volume and the specific surface is

Am=2nnrx/Vu. (5.12)
From (5.11) and (5.12) we obtain

IP
T — • (5.13)
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And, from (5.2) and (5.10) we obtain

Because soil pores are irregularly shaped and mutually interconnected, a shape
factor c replaces 1/2 in (5.14). Letting

K , = ^ (5.15)

we obtain

q=Kp^llk (5.16)

which is identical to (5.3). Because the term K» relates to the flow of any fluid
through a soil, it is called the permeability [I/]. The unusual dimension of Kp

represents the cross-sectional area of an equivalent pore. Although now almost
obsolete, the historical unit of 1 Darcy = 1 |im2 was used for describing
permeability.

Inasmuch as flow channels in the soil are curved compared with those of
a capillary model, a tortuosity factor x introduced in (5.15) yields the Kozeny
equation

* , . $ , . (5.17,

The tortuosity x is the ratio between the real flow path length Le and the straight
distance L between the two points of the soil. Because Le > L, x > 1. In a
monodispersed sand manifesting a value of T - 2, the flow path forms
approximately a sinusoidal curve (Corey, 1977).

Equations identical or of similar type to (5.17) have been derived by many
authors. If a model of parallel plates is used instead of capillary tubes and the
slits are oriented in the direction of the laminar flow, we obtain the mean flow
rate

where Id is the distance between the plates. When B is the width of the plates, P
= 2ndBx/Vu and Am = 2nx(2d + B)/Vu. Taking x = 1 and B = 1, we obtain d = P(Am
- IP) and hence,

B (519)
Looking at (5.17) and (5.19), we are reminded of the Kozeny-Carman equation

Its derivation was shown in detail by ScheidegRer (1957).
From (5.3) and (5.16) the relationship between Ks and any formulation of

Kp is

( f
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Kozeny's equation shows that Ks is sensitive to porosity. However, in his
model the pore radii are considered uniform while those in real soils have
broad distributions. For real soils, we subdivide the pores according to their radii
into; categories each having an equivalent radius ry For r;- > r/+j the flux in each
category qy( r*,nj) where »/ is the percentage of the/-th category in the whole soil,
qj » qj+i .Total flux q = Zqj as shown for parallel layering. Thus, let us assume
for ;' = 1, the percentage of the category of largest pores is eliminated by
compaction. Although the porosity may be only marginally reduced, the value
of Ks may be reduced by orders of magnitude. It is logical, therefore, that
aggregation of a soil may increase Ks by orders of magnitude, yet the porosity
may remain nearly the same. And, vice versa, soil dispersion or disaggregation
substantially decreases Ks. For example, in a loess soil, the saturated hydraulic
conductivity of its surface after a heavy rain decreases 3 to 4 orders of magnitude
compared with its original value owing mainly to two processes -
disaggregation and the blockage of pores fey the released clay particles (Mclntyre,
1958). Compaction of soil in the A-horizon and in the bottom of the plowed sub
horizon causes a much greater decrease of Ks than that predicted from a
decrease of porosity in the simple Kozeny equation because compaction reduces
primarily the content of large soil pores associated with values of pressure head
h = 0 to -100 cm.

Although the textural class of a soil may have a large influence on the
value of Ks, any attempt to establish a correlation between the two attributes
usually fails. Only for those soils and soil horizons of the same genetic
development occurring in the same region and being similarly managed will a
correlation between texture and Ks be manifested. On the other hand, a few
generalities may exist. For example, the smallest values of Ks in each of the
main textural classes can be approximated. In sandy soils, the minimum value
of Ks is about 100 cm-day'1, in silty loams about 10 cm-day'1 and in clays about 0.1
cm-day'1. In peats, K$ decreases with an increasing degree of decomposition of
the original organic substances. When the degree of decomposition of a peat is
about 40 to 50%, the value of Ks diminishes to values of Ks typical of
unconsolidated clays. Extreme drainage and concomitant drying of peat soils
causing compaction and an increase of soil bulk density also reduce the
magnitude of Ks. Moreover, because this drying increases hydrophobism,
entrapment of air during wetting is enhanced and contributes even further to
the decrease of Ks-

In loams and clays, the nature of the prevalent exchangeable cation plays
an important role relative to the value of K$, see Fig. 5.5. In vertisols, an
increase of the percentage of exchangeable sodium (ESP) is accompanied by a
decrease in Ks when the ESP reaches 15 to 20%, provided that the soluble salt
content of the soil water is small. For example, with the electrical conductivity
of the soil paste EC being 1 mScm'1 or less, the value of Ks can decrease two or
three orders of magnitude. On the other hand, even for the same soil having a
large ESP, if the concentration of soluble salts is increased substantially to an EC
value of about 8 mS-cm'1 or more, the Ks value is not significantly affected. The
value of ESP is closely related to the sodium adsorption ratio SAR of percolating
water [SAR = Na/(Ca + Mg)1/2]. If Ca is completely absent (i.e. only Mg appears

10
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MEASURED
CALCULATED

800

i i i i i I i i i i i i r

HAWAIIAN SOILS (SAR-»°°)

SALT CONCENTRATION (meq-1'1)

Figure 5.5. The influence of sodium adsorption ratio SAR and salt concentration
upon the value of the saturated hydraulic conductivity is very strong in
aridisols, ustolls and vertisols (see top), while in oxisols with a large
accumulation of free iron oxides the influence of SAR and salt
concentration is weak (see bottom) (McNeal et al., 1968).

in the denominator), the value of Ks is more greatly reduced than when Mg is
absent (McNeal et al., 1968). When monovalent cations are considered in
addition to Na, we find that potassium leads to a decrease of Ks but its influence
is not as strong as that of exchangeable Na. It has been shown that large organic
cations such as pyridinium cause the value of K$ to increase by several orders of
magnitude in montmorillonitic clay while their impact on the value of Ks of
kaolinitic clays is less significant (Kutflek and Salingerovl, 1966). These
variations are closely related to the degree of flocculation or peptization of the
soil colloidal particles that can be quantified with the value of the ^-potential
derived from double layer theory. Applying this theory, the decrease in Ks
owing to the action of rain water (very small EC) is easily predicted for soils
having large SAR values. These predictions are not necessarily successful for

11
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soils that differ pedologically. For example, a solution of high SAR value
percolating through an Oxisol does not decrease the value of Ks even after
reducing the solute concentration because the abundant free iron oxides prevent
peptization and disaggregation of the soil particles. The value of Ks also depends
upon the composition of the clay fraction. It decreases in the order kaolinite,
illite and montmorillonite. And, soil organic matter has a profound impact
upon the magnitude of Ks, owing to its cementing action that promotes
aggregate stability. Bacteria and algae may reduce the value of hydraulic
conductivity in long term laboratory tests and in some field conditions when
sewage treatment effluents are either used for irrigation or disposed on special
lands. These same effects can also exist in an irrigated soil well supplied with
plant nutrients and sunshine. The process is not necessarily restricted to only
anaerobic conditions inasmuch as some aerobic bacteria may cause a reduction
in the value of Ks- The reduction is partly attributed to cells of bacteria and algae
mechanically clogging the soil pores and to slimy, less pervious products of
microbial activity being deposited on the walls and necks of the soil pores. For
long term laboratory experiments, bactericides are commonly used to prevent
the value of Ks from decreasing. In general, there are many factors influencing
the value of Ks that are usually not considered in simplified models.

Soils classified according to their values of Ks are
very low permeability
low permeability
medium permeability
high permeability
excessive permeability

Geological materials are similarly classified as
compacted clays
gravel

All such classification schemes above are problematical. For soils in a certain
region, a more appropriate classification would be based upon the frequency
distribution of K$. Based upon that frequency distribution, we can identify sub
regions where a particular range of Ks is expected.

When values of Ks are considered relative to their position within a soil
profile, soils are grouped into these seven classes.

1. Ks does not change substantially in the profile.
2. Ks of the A-horizon is substantially greater than that of the remaining
soil profile and no horizon of extremely low Ks exists.
3. Ks gradually decreases with soil depth without distinct minima or
maxima.
4. Ks manifests a distinct minimum value in the illuvial horizon or in
the compacted layer just below the plow layer.
5. Soil of high permeability with its development belonging to one of the
first four classes covering the underlying soil of very low permeability.
6. Soil of very low permeability with its development belonging to one of
the first four classes covering the underlying soil of very high
permeability.

Ks < 10"7 m-s"1

io-7

10-6

io-5<
Ks:

10"11 <
10"1

<Ks
<KS

Ks<
>10'4

Ks <

<KS

< 10"6 m

< 10"5 m

•s"1

•S"1

10"4 m-s-1

m-s'1

: 10"9 m-s

< IO1 nv
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7. Ks changes erratically within the profile owing to extreme
heterogeneity in the soil substrata.
The influence of the temperature upon the value of Ks can be examined

with (5.21). Inasmuch as pw is negligibly influenced by temperature, changes of
Ks(T) depend primarily upon the viscosity /i(T).

5.2.3 Darcian and Non-Darcian Flow

We have already mentioned that Darcy's equation is valid only for small rates
when the inertial terms of the Navier-Stokes equations are negligible. For
engineering purposes the upper limit of the validity of Darcy's equation given
by (5.3) through (5.6) is indicated by the critical value of Reynolds' number for
porous media

Re = ^f- (5.22)

where d denotes length. In sands, d is the effective diameter of the particles, or
with some corrections, the effective pore diameter. Sometimes d is related to the
permeability of the sand, e.g. d = K],n. However, in all soils other than sands, d
is not at all definable and hence, (5.22) is not applicable. The difficulty in
defining d is manifested by controversy in the literature regarding the
assignment of critical values of Re. Most frequently, critical values of Re have
been reported to range from 1 to 100. In this post linear region, the flow is often
described by the Forchheimer equation (Bear, 1972)

= aq + bq (5.23)
dx

where a is the material constant analogous to Ks and b is functionally
dependent upon the water flux density. This non linearity is caused primarily by
inertia and by turbulence starting only at very large values of flux density, see
Fig. 5.6. A more detailed theoretical discussion is given by CvetkoviC (1986).

CLAY SAND AND GRAVEL
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Figure 5.6. Deviations from the linearity of Darcy's equation.
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Deviations from Darcy's equation have also been observed in laboratory
experiments for very small flux density values. We define, therefore, the pre
linear region of flow where c\ increases more than proportionally with //,, see
Fig. 5.6. This deviation from Darcy's equation, most often observed within pure
clay having very large specific surfaces (e.g. 102 m^g'1), has been explained by the
action of three factors: a) Clay particles shift and the clay paste consolidates
owing to the imposed hydraulic gradient and the flow of water, b) It is
theoretically assumed that the viscosity of water close to the clay surfaces is
different than that of bulk water or that in the center of the larger soil pores.
According to Eyring's molecular model where the viscosity depends upon the
activated Gibbs' free energy, the first two to five molecular layers have a distinct
increased viscosity. Owing to the great value of the specific surface in clays, the
contribution of the first molecular layers to the alteration of averaged viscosity
may not be negligible, c) The couplingof the transfer of water, heat, solutes et al.
may also contribute to the existence of the pre linear region (Swartzendruber,
1962; Kutflek, 1964 and 1972; Nerpin and Chudnovskij, 1967).

Deviations from Darcian flow are not frequently described or observed,
and the post linear region is only rarely reached in sands and gravelly sands.
There is not yet any field experimental evidence of the existence of a pre linear
region. Darcy's equation is, therefore, either exact or at least a very good
approximation entirely adequate for soil hydrology.

5.2.4 Measuring Ks

Saturated hydraulic conductivity is one of the principal soil characteristics and
for its determination, only direct measurement is appropriate. Indirect methods,
derived from soil textural characteristics which are sometimes combined with
aggregate analyses, generally do not lead to reliable values. Considering soil
texture as an example, soil water flow is totally independent from the laboratory
procedure of dispersing, separating and measuring the percentage of
"individual" soil particles which do not even exist "individually" in natural
field soils. It has been shown in section 5.2.2 that the value of Ks is closely
related physically to the porous system within a soil. Inasmuch as a quantitative
description of this porous system is much more difficult than the measurement
of Ks, direct measurement of Ks is preferred. When Ks is ascertained by water
flux density and potential gradient measurements, we will speak about the
determination of Ks. In order to avoid misunderstanding, when additional
assumptions are used to evaluate these two quantities somewhat less directly,
we will speak about the estimation of Ks.

Measuring is realized either in the laboratory on soil core samples
previously taken from the field, or directly in the field without removing a soil
sample. Field methods are preferred. They provide data that better represent the
reality of water flow in natural conditions. Their main disadvantage is the lack
of rigorous quantitative procedures for measuring soil attributes in the majority
of field tests. For laboratory measurements, the size of the REV should be
theoretically estimated in order that an appropriate soil core sampler be selected.
In practice, because the REV is rarely determined, a standard core or cylinder

14
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5.3 UNSATURATED FLOW IN RIGID SOILS

By the term rigid soil we designate soils that do not change their bulk volume
with a change of water content. We assume that unsaturated flow in soils is
governed by the same laws that apply to saturated flow. For unsaturated flow we
must consider the fact that a portion of the soil pores filled by air could indeed
resaturate or drain. In our discussion of unsaturated flow, capillarity will be
quoted as well as the term capillary rise frequently used in the literature.
However, general mathematical formulations of physical phenomena should
be independent of such simplifying ideas as soil capillaries and consequently,
when we mention capillarity, it is just for the sake of modeling approximately
some effects occurring in real soils.

5.3.1 Darcy-Buckingham Equation

A simple example of unsaturated flow demonstrated in Fig. 5.8 is analogous to
the examples of experiments with saturated flow. The cylinder containing the
soil has small openings within its walls leading to the atmosphere.
Semipermeable membranes, permeable to water but not to air, separate the soil
from free water on both sides of the cylinder. The pools of water are connected
to the cylinder with flexible tubes. Full saturation of the soil is first achieved
when both pools, lifted to the highest point of the soil, displace the soil air
through the openings on the top side of the cylinder. At this moment, there is

DIRECTION OF FLOW

Figure 5.8. A simple steady flow experiment on an unsaturated soil column. At
the right, an analogy of flow in a syphon with an installed resistance R.
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5.3 Unsaturated flow in rigid soils

no flow in the system and the soil is assumed, water saturated. With the pool on
the left side of the cylinder lowered to the position hi and the pool on the right
side to position /i2, air enters into the soil through the openings as the soil starts
to drain in a manner similar to a soil placed on a tension plate apparatus. The
soil on the left side of the cylinder will be drained to a lesser extent than that on
the right side with the soil water content distribution from left to right being
nonlinear. Although water flows from the left pool to the right pool, the rate of
flow is reduced significantly compared with that when the soil is water
saturated. If the water level in each of the pools is kept at a constant elevation
with time, steady flow will eventually be reached with the water content at each
point within the soil remaining invariant. At this time, the flux density q will
depend upon the hydraulic gradient and be governed by an equation similar to
(5.3)

q = - K ^ (5.30)

where K is the unsaturated hydraulic conductivity [LT1]. Inasmuch as the soil is
not saturated and flow occurs primarily in those pores filled with water, the
value of K will be smaller than that of K$ for the same soil. As for saturated flow
we commonly take the potential related to the weight of water, i.e. in units of
pressure head. For the majority of practical problems, all components of the
total potential except those of gravity and soil water are neglected. Hence, (5.30)
rewritten to allow the hydraulic conductivity to be a function of the soil water
potential head h is

^ (5.31)

and for two and three dimensional problems
q =-K(h)gradH. (5.32)

Equation (5.33) is equivalent to Darcy's equation, and because
Buckingham (1907) was the first to describe unsaturated flow dependent upon
the potential gradient, equations such as (5.31) and (5.32) are called Darcy-
Buckingham equations. The unsaturated hydraulic conductivity K is physically
dependent upon the soil water content 9 because water flow is realized
primarily in pores filled with water. Because the relationship 8(h) is strongly
influenced by hysteresis, K{h) is strongly hysteretic. On the other hand, it
follows from percolation theory that K{6) is only mildly hysteretic.

Examples of K(9) and K{h) demonstrated in Fig. 5.9, show that the more
permeable soil at saturation does not necessarily keep its greater permeability
throughout the entire unsaturated region. It is also evident in Fig. 5.9 that the
hysteretic behavior of K(h) demands that, for a given value of h, the value of K
is greater for drainage than for wetting.

The Darcy-Buckingham equation is adequate for describing unsaturated
flow only if the soil water content is not changing in time. Unfortunately, this is
seldom the case. When 9 and q alter in time, we must combine (5.31) with the
equation of continuity. The equation of continuity relates the time rate of
change of 9 to the spatial rate of change of q in a small elemental volume of soil.
The resulting differential equation is strongly non-linear and its solution even
for simple conditions is most difficult. Generally, (5.31) is in itself not
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satisfactory for the solution of such hydrologically important processes as
evaporation, infiltration, drainage, subsurface flow etc. Exceptional situations or
highly simplified flow conditions are usually the only problems described by the
sole use of (5.31).

Ksi

^S2

t
SAND (1)

t LOAM (2)

-h -h -h

Figure 5.9. Dependence of unsaturated hydraulic conductivity K upon negative
pressure head h (strongly hysteretic) and upon soil water content 8.

5.3.2 Unsaturated Hydraulic Conductivity

We distinguish two approaches for a physical interpretation of the measured
hydraulic conductivity K. The first is based on the direct application of the
Kozeny equation. The second uses the soil water retention curve to quantify the
pore size distribution. With this quantification the Kozeny equation is used for
sub-groups of pores. In addition to these two physical approaches, empirical
formulations of K(h) are used to merely express observed relationships.

Let us first apply the Kozeny equation. Inasmuch as only a portion of the
pores is filled with water in an unsaturated soil, we replace the porosity P by the
soil water content 6. We assume that the value of the tortuosity T is described by
Corey (1954, quoted by Corey, 1977) as

§M (533)
which is valid for sands where Ts is the tortuosity in the saturated soil, t(0) the
tortuosity in the soil having water content d and 6r a residual water content.
When it is assumed that the tortuosity owing to a change of soil water content is
ignored in (5.17), Leibenzon (1947) derived the following expression

K e-e,
p-e.

(5.34)
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5.3 Unsaturated flow in rigid soils

where the exponent n should have values ranging from 3.3 to 4. Averianov
(1949) proposed that n = 3.5 is a good robust estimate. The value of exponent n is
related to the pore size distribution and thus to the soil water retention curve
SWRC, see Brooks and Corey (1964) who recommended n = 2/A + 3 with X read
from (4.42) when P is replaced by 6S in (5.34). Later on, Russo and Bresler (1980)
found that values of 1 or 2 fit better than 3 in the exponent n. Childs and Collis-
George (1950) obtained the equation

K = aJT (5.35)

which is comparable to that of Deryaguin et al. (1956)

K-a^r (536)

provided that we assume smooth walls. At small soil water contents and in
soils having rough walls, the power function Kaff1 remains but the exponent n
* 3. A physical interpretation can be obtained using a fractal model of wall
roughness (Toledo et al., 1990) The identity of both equations (5.35) and (5.36) is
reached when the average thickness of the water film d is taken as functionally
dependent upon 6 for a given specific surface Am. In both equations a is an
empirical coefficient.

Inasmuch as 8{h) exists, the dependence of K upon h is also deducible
with many empirical formulae quoted in the literature.

Gardner (1958) modified Wind's (1955) empirical proposal
K = ah-m (5.37)

to the relationship

K = — — (5.38)
ltt-+b

applicable to h = 0 where a, b and m are empirical coefficients. Note that for h =
0,a/b = Ks.

Gardner's exponential relationship (1958)
K = K5exp(ch) (5.39)

is frequently used in analytical solutions. If K/Ks is plotted against h on semi-
log paper, a straight line is obtained. This relation usually fits the experimental
data well in the range from h = 0 (0 = &s) to a certain hum, see Fig. 5.9,>^ep^ightA
For soils manifesting a distinct air entry value HA, Gardner and Mayhugh (1958)
modified (5.39) to

K = Ksexp[c(h-hA)]. (5.40)
The value of the empirical coefficient c with dimension [I/1] is related to soil
texture, and most frequently, c = 0.1 to 0.01 cm'1. For 5-function soils in the
Green and Ampt approximation of infiltration the value of c is numerically
equivalent to the soil water pressure head l/i/l at the wetting front, see Chapter
6. Both (5.39) and (5.40) have been broadly used in analytic and semi-analytic
solutions , especially for steady flow problems as we show with some examples
in Chapter 6 and as was fully reviewed by Pullan (1990). The reciprocal of c (=

A71) is sometimes used as one of the soil hydraulic characteristics. In such cases,
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Ac is denoted as a microscopic capillary length (Bouwer, 1966; White, 1988).
Because (5.39) and (5.40) are valid in the wet range, (5.38) might be

preferred in the dry range. For h < hum, we must use ci different from c to extend
the applicability of the equation to the dry range. K(h) is often defined as a
composite functioa For example, the range of h^ > h > hum, (5.39) applies and
for h < hum, (5.37) or (5.38) applies in order to simulate the entire soil water
regime in some instances.

From studies of capillarity in sands, Brooks and Corey (1964) obtained the
frequently used relationship

t-m
where m depends upon the pore size distribution. Usually, m = 3 to 11.

Physical interpretation of K(8\ot K(h) must include in addition to the
total porosity, the distribution of the pore sizes. Recognizing from (5.10) that the
flow rate in a cylindrical capillary is vp (r2), drainage of the largest pores
drastically reduces the value of K in spite of the relatively small volume of
those pores. Childs and Collis-George (1950) were the first to propose a method
relating K(9) to a pore size distribution function /(r). Using the soil water
retention curve to reflect /(r), they obtained (5.35) as a simplified result. Their
general approach attracted attention and was further developed and modified.
We show those developments here.

In its simplest form the porous system is composed of / categories of pores
with; = 1 for the category of smallest pores. In each category the pore radii are in
ranges ry.j to TJ. In each category the flux is q[r\, n) where r\ is the mean radius
and n is the percentage of the category and frequently fy-.j < qj even if n;-.j > n;.
Assuming VH = - 1 , the unsaturated hydraulic conductivity K = Efy- When the
soil is only partially saturated with water, contributions of fluxes qj, qj-i et al.
from the larger , empty pores of radii /, (/-I) et al. do not exist, see Fig. 5.10. In a
more exact derivation, we start with the mean flow rate vp in pores of radius r
according to the Hagen-Poiseuille equation

vp(r) = ar1lll (5.42)
where a = pwg/8/i, see (5.10). The flux density in a porous system with a
continuous distribution function of pores /(r) and a tortuosity Tis

( r ) / ( r ) d r - (5-43)

Or, with (5.42) for Ih = 1, q = K and

f{r)dr. (5.44)

When f(r)dr is approximated by d8^{h), i.e. by the derivative of the SWRC and
for the relation between the pore radius and the pressure head (r = c/h), we
obtain

For relative hydraulic conductivity Kr

Kr=K/Ks (5.46)
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EQUIVALENT RADIUS OF PORES r

Figure 5.10. Contributions of soil pore categories with r\<ri<
fluxes c\i,qi,--- q\ to the total flux q = qx + q2 + ••• + <?/• Ifgrad H = l,q = Kand
K K

ry and their

and with the tortuosity from (5.33) modified to
(5.47)

(5.48)

we have

K =Qb[6' d9zT~ EJO p ( ? E ) ;
Various authors have not found a unique interpretation for exponent b in the
above equation. Marshall (1958) and Millington and Quirk (1961) defined b as
the probability of occurrence of continuous pores. For isotropic and
homogeneous media b = 2P/with Pf denoting that portion of the porosity within
which water is flowing. Marshall assumed Pf = 1 and hence, b was 2. Millington
and Quirk used P/as 2/3 and hence, b was 4/3. Burdine (1953) interpreting the
tortuosity with (5.33) evaluated b as 2.

Inasmuch as the microscopic pore size distribution is used to characterize
the macroscopic flux in a soil, Mualem (1976) classified such models as
microscopic models. After evaluating about 50 soils on a macroscopic scale,
Mualem decided that b was 0.5 and (5.48) is modified to

dd> ]2 (5.49)

(5.50)

If the van Genuchten soil water retention curve (4.43)

9E = •

20



Soil Hydrology

and (5.48) are combined, we obtain

K(eE)=e>[i-{i-et)m}' (P-si)
with m = 1 - c/n, and n >1. These specific relations are suggested for simple
evaluation of the integrals in (5.49). For the model of Burdine, a - 1, b = 2 and c
= 2. For the model of Mualem, a = 2, b * 0.5 and c = 1. Let us note that Mualem's
database consisted mainly of repacked laboratory soils and b = 0.5 does not hold
for all field soils where the deviation may vary from less than -10 to more than
10 (van Genuchten et al, 1989).

Mualem's model of K(h) is

K{k) { [ ] }

Similarly, using the soil water retention curve 6E = (hj\/h)1 of Brooks and Corey
(4.42) the relative hydraulic conductivity is

= e*"" (5.53)

and

For the model of Childs and Collis-George, a = 2 and b = 2. For that of Burdine, a
= 2 and b = 3. For that of Mualem, a = 2 and fr = 2.5.

The exponent (a + b/X) in (5.54) is identical to the exponent m in (5.41).
Although the value of the exponent should theoretically be in a narrow range
between 2.5 and 4.5, experimental data yield values that extend to about 11. This
discrepancy can be explained by the over-simplification of the porous body in
the model. In the derivation of the above equations, several approximations
were made. First, the soil porous system was modeled by a bundle of cylindrical
capillary tubes. Second, the pore size distribution function was approximated
from the soil water retention curve. And third, the value of b was empirically
evaluated. However, in spite of these approximations for the derivation of K(9E)
and K(h), the most problematic is the proper interpretation of the soil water
retention curve close to 0s-

A formal sensitivity analysis of (5.52) by Wosten and van Genuchten
(1988) showed that differences in Kr increase with a decrease in h (i.e. with the
soil drying) as the parameter a is altered, see Fig. 5.11. On the other hand, the
influence of the exponent n also brings about a great potential error in the wet
region. In Fig. 5.11, &£ has been replaced by 9 with the soil water retention curve
(4.43) having the form

Additional sensitivity analyses made by Sir et al. (1985) and Vogel and Cislerova
(1988) show the role of an error 8h(Qz) in the experimental determination of
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Figure 5.11. Sensitivity analysis of (5.50) and (5.52) by Wosten and van
Genuchten (1988) shows the dependence ofh(6) and K(h) upon parameters
a and n.

h{6E). If 5h(6t) is a constant in the range 0 <, 0£ <. 1, the absolute error of K{9)
rises steeply with an increase of 0£.

These derived equations are valid for the laboratory Darcian scale
assuming microscopic homogeneity of the porous system. The assumption of
microscopic homogeneity does not hold if the soil is aggregated, penetrated by
plant roots and earthworms or dissected by fissures. In such cases the Darcian
scale must be adapted to the pedon scale, i.e. to the reality of a field soil. On the
pedon scale, microscopic homogeneity of the porous system may or may not
exist.

22



Soil Hydrology

The hydraulic conductivity function K(h) of soil aggregates is about two
orders of magnitude less than that of the bulk soil. The difference in K(h)
between aggregates of the soil and bulk soil decreases only slowly in the wet
interval for h > -800 cm for well developed aggregates (Gunzelmann et al., 1987).
In aggregated soils we deal with two different domains of velocity fields. One
domain is related to interpedal pores and characterized by an accelerated flux.
The second domain conducts water and solutes at relatively small flow rates
and is found in intrapedal pores.

When the soil porous system is characterized by a bi-modal pore size
distribution curve (Fig. 2.4), the relation K(h) shows two distinct regions. For 0 >
h > hi, only the by-pass pores belonging to the secondary peak are considered
with Mualem's model applied to the soil water retention curve of the inter-
pedal (by-pass) pores. For h < h\ we use the remaining portion of the SWRC
representing only the intrapedal (matric) pores, see Fig. 5.12 and Otruner et al.
(1991). Hence, two matching factors are needed. For the region 0 > h > hi the
matching factor is Ks- For the region h < hi it is a measured value of K(h < hi).
Although this mechanistic separation of the two porous systems uses the same
basic equations, the accelerated fluxes through the by-pass pores are
conveniently described.

Up to now we have discussed the problems related to K(8) in a wet soil. In
a dry soil, the probable errors in modeling K(6) are related to 6r. The residual soil
water content 6r in &E of (5.50) and further on in other K(8) models leads to K(8
< Qr) = 0. This zero value of hydraulic conductivity for 6 > 0 is in agreement with
our description of SWRC in Section 4.3 where we used 6wr to denote the
boundary between coherent and incoherent water phase distributions.
However, we have shown in the same Section 4.3 that 9r is obtained as a fitting
parameter which we are not allowed to interpret physically. Thus, the physically
observed 6y/r in K(9) may not coincide with 8T obtained by fitting (4.42) or (4.43)
to experimental SWRC data. A simple method for independently estimating
6wr for K(9) models has not yet been proposed and tested on a broad scale.

Attempts to physically interpret the unsaturated hydraulic conductivity
function lead to more realistic models of porous media than the parallel
capillary tube model considered up to now. From soil morphology and from
macroscopic measurements of the SWRC, the topological structures within a
porous system can be deduced by either percolation theory or procedures of
fractal geometry - or by a combination of both. The soil water flux is then
related to the flow within individual pores and their fractal dimensions.
Subsequently, the flow is formulated by the Hagen-Poiseuille equation with a
procedure formally analogous to that developed by Childs and Collis-George
(see e.g. Rieu and Sposito, 1991).

In addition to capillary pores, soil contains macropores where water is not
influenced by meniscus forces. Such macropores originate owing to the growth
and decay of plant roots, activities of soil edaphon and shrinkage in loam and
clay soils.

Macropores play a special role in the flow of water especially during
infiltration. When the soil water pressure is positive or when an unsaturated
soil is ponded with water, water flows in the so-called "macropores". The
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Figure 5.12. Saturated hydraulic conductivity of a soil with macropores Ks and
saturated hydraulic conductivity with macropores excluded Ksat which
smoothly continues to K(h). Top graph is for Fluvaquent clay (BggltingjL
al.. 1991). Relative hydraulic conductivity Kr(h) of an unsaturated soil
frequently has two branches owing to a bi-modal porosity. The example
given in the bottom graphs is from the Bt horizon of a loamy soil (Othmer
et al. 1991).

mechanism of the flow in this case may be different from that of the capillary
porous system. Water may flow either along the walls of the pores like a thick
film, or through the entire cross-sectional area of the pore. When water
conduction in cracks is combined with absorption, the kinetic wave
approximation (German and Beven, 1985) can be used. The flux density is
restricted just to macropores and it is generally reduced by absorption. The
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theory describes the transformation of both flux density and front velocity when
water is transported in macropores as a pulse. It is applicable only under the
provision that the macropores do not change during the transport of water. The
theory cannot be used for modeling water flow in the fissures of shrinking-
swelling soils.

When the soil is fully water-saturated and the flux exists at positive
pressure, the saturated hydraulic conductivity comprises the flux in macropores
together with flow in the soil matrix. If the flux in macropores is hindered, or if
macropores are absent with the soil matrix not changed and remaining still
water-saturated, the resulting value of the hydraulic conductivity may be
decreased by two to four orders of magnitude (Booking et al., 1991; Liu et al.,
1994).

In this book, we use the term macropores only for pores without
capillarity. In some of the literature'a "confusion exists inasmuch as coarse
capillary pores and by-pass pores are also called macropores just to emphasize
the large flux in those pores. However, if capillarity is manifested with the flow
realized by the gradient of the negative soil water pressure, the Darcy-
Buckingham equation is still appropriate with no need to replace it.

Up to this point we have assumed that Darcy's equation is fully applicable
to unsaturated flow. However, when the validity of Darcy's equation is doubted
for saturated flow in clays, non-Darcian pre linear flow should be even more
pronounced for unsaturated flow in clays. Experiments indicating this
possibility (Swarzendruber, 1963) have been theoretically explained (Bolt and
Groenevelt, 1969).

The influence of the temperature upon K(0) is usually expressed by Hw(T)
in

K(d)=Kr(d)KpPwg/nw. (5.56)
However, Constanz (1982) provided experimental evidence that in some
instances (5.56) was only approximate.

The influence of the concentration of the soil solution and of the
exchangeable cations is similar to that already mentioned for Ks- Dane and
Klute (1977) reported that a decrease of the concentration in the soil solution
when the SAR was kept constant resulted in roughly the same decrease of K in
the whole range of 8, see Fig. 5.13. It is also expected that the function K(8)
would change with ESP (Kutflek, 1983).

Measuring techniques for determining K(8) are usually related to the
solution of specified unsteady flow processes, "" J — • \

5.3.3 Richards' Equation

Equation (5.32) is fully applicable to steady unsaturated flow when V-q = 0, dq/dt
= 0 and d8/dt = 0. In practical situations, unsteady flow frequently exists with
dd/dt *0. In these situations, two equations are needed to describe the flux
density and the rate of change of 8 in time. The flux density is described by the
Darcy-Buckingham equation and the rate of filling or emptying of the soil pores
is described by the equation of continuity. Consider the prism element having
edges of length Ax, Ay and Az given in Fig. 5.14. The difference between the
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Figure 5.14. Derivation of the equation of continuity (5.62).
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volume of water flowing into the element and that flowing out of the element
is equal to the difference of water content in the element in time At. The rate of
inflow (macroscopic) in the direction of the x axis is qx. If we assume the change
in cjx is continuous, the rate of outflow is [qx + ( dqx/ dx)Ax]. The inflow volume
is qx AyAzAt and the outflow volume is [qx + ( dqxl dx)Ax]AyAzAt. The difference
between inflow and outflow volumes is

[qxAyAzAt - [qx+(dqx / dx)Ax)AxAyAz) (5.57)
or

{^A (5.58)
V ox

Similarly in the direction of the y axis, the difference between the inflow and
the outflow volumes is

\AxAyAzAt (5.59)

and that in the direction of the z axis

-(^AxAyAzAt. (5.60)

The sum of the above differences equals the change of the water content of the
l i d d h 6) felement. Provided that 6(t) has a continuous derivative for t >0,

Ad (dqx dqv dq, ~\
—Ax AyAzAt = - —— + -£*- + -~- \Ax AyAzAt
At * [dx dy dz ) *

Taking the limit as t -> 0, we obtain the equation of continuity

dt \dx dy dz J
If we insert for qx, qy and qz from (5.32), we have

provided that the soil is isotropic. In one-dimensional form for H = h + z the
above equation becomes

Equations (5.63) and (5.64) are called Richards' equations in the name of the
author who first derived them (1931).

If the soil is either wetting or drying, 8 will be uniquely dependent upon
only h and

lidhdt
Hence, the capacitance form of Richards' equation is obtained as

[]
where soil water capacity Civ = d9/dh [I/1] is illustrated in Fig. 5.15. An
alternative development using
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dh _ dhd9_
dz dO dz

leads to the diffusivity form of Richards' equation
d0_ _ ,
dt "i

where the Darcy-Buckingham equation has the diffusivity form

(5.67)

(5.68)

(5.69)

and the soil water diffusivity D is the term derived from

D{6)=K{6)fQ. (5.69a)

The main reason for the derivation of either the capacitance equation (5.66) or
the diffusivity equation (5.68) is the reduction of the number of variables from 4
to 3.

Both equations (5.66) and (5.68), strongly non-linear owing to functions
Cw(h), K(h) and D(6), are sometimes called Fokker-Planck equations. The name
of (5.68) was derived from its resemblance (when its second term on the right
hand side is omitted) to that for molecular diffusion. The units of D in (5.68) are
identical to those of the diffusion coefficient. Many analytical and semi-
analytical solutions for the diffusivity equation for various boundary conditions
are known from the theories of diffusion (Crank, 1956) and heat flow (Carslaw
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and Jaeger, 1959). They have been profitably applied for the solution of many
processes of unsaturated flow in soils. Whenever there is a region of positive
pressure in the soil (5.68) is not applicable and (5.66) should be used.

Sometimes, Kirchhoff's transformation

U=j^K(h)dh (5.70)

is used with (5.64) to yield

CW(h) dU =dhj_ l_dK9U
K(h) dt dz2 K(h) dh dz V ' ;

or

f = IF " f • (572)

Because the last term of (5.64), (5.66) and (5.68) originated from the
gravitational component z of the total potential H, it is frequently referred to as
the gravitational term of the Richards' equations. The first term of the right
hand side of each of those equations expresses the flow of water in the soil
owing to the gradient of the soil water (matric) potential component h. In some
instances when the gravitational term is neglected, the solution of the resulting
non-linear diffusion equation with its non-constant diffusivity

d9_ _
dt ~ ~i

offers approximate results. If the flow is horizontal, solutions of (5.73) are exact.

5.3.4 Soil Water Diffusivity

The most common D(0) relationship is demonstrated in Fig. 5.16. With the
exception of the region of very small soil water contents less than 9n (h < -105

cm), the curve steeply rises with 6. Soil water diffusivity D(0) in the wet range
above % is typically less steep in its relation to 6 as compared with K(0). In this
wetter range of 9, D changes about five orders of magnitude compared with
seven orders of magnitude for K.

In the dry region of 0 ^ 9 < &H with a great portion of pores filled with air,
water vapor flow is enhanced while liquid water flow is limited to that of very
thin water films on the soil solid surfaces. The rate of liquid flow, strongly
dependent upon the thickness of the film, has already been demonstrated by
(5.36). Here, the vapor flux exceeds the liquid flux. A more detailed discussion
on water vapor flux will be given in Section 5.3.5. Now, we shall study in detail
the monotonically rising part of D(9), i.e. for 9 > 9u-

Among the well known and frequently used empirical equations is the
exponential form (Gardner and Mayhugh, 1958)

D = D0exp[p(9-90)] (5.74)
where Do corresponds to 90 and {5 ranges approximately between 1 and 30. Or,

(5.75)
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5.3 Unsaturated flow in rigid soils

0 0.2 0.4

SOIL WATER CONTENT
6 (cm3-cm'3)

Figure 5.16. Dependence of soil water diffusivity D upon the soil water content
9. For liquid flow the function is nearly exponential for the majority of
soils except for swelling clays. The secondary peak in the dry region near 9 =
0 is owing to the dominance of water vapor flow.

where 9r is replaced by 9H in 9'E and at 9H, D = a. A physically more exact
equation should be derived from the soil water retention curve and from K(9).
Using (4.43) and (5.51) in (5.69a), van Genuchten (1980) obtained

K s(l-m)0E
1 / 2-1 / m '

am (9s-9r )
If the simpler (4.42) is used instead of (4.43) we have

~ 2 l

D(6E) =
KchSnA{

(5.77)

with the values of a and b being those given earlier for (5.53) and (5.54).
In some clays, mainly alkali Vertisols, the value of D decreases with an

increase of 9, if the soil is confined and not allowed to swell, see Fig. 5.16
(Kutflek, 1983, 1984). For some undisturbed soils as well as for disturbed
repacked soil columns in the laboratory (Clothier and White, 1981), D does not
vary as strongly with 9 as discussed above. If (Dma - DmIM) is less than one-half an
order of magnitude, the linearized form of (5.73)
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Tr— — U j p./oj

serves as an excellent approximation where the mean-weighted diffusivity D
for the wetting process (Crank, 1956) is

(5.79)

and for the drainage process is

(5.80)

where 0,- is the initial soil water content and 80 is 0 at x = 0 for t > 0.
Soils manifesting values of D that are constant or nearly so are called

"linear soils" because (5.78) is a linear equation. If the Brooks and Corey soil
water retention curve (4.42) is used, Kr(0E) is described by (5.53) and D(9E) by
(5.77). The condition of a "linear soil" is satisfied if in these equations [X = - (a -
l)/{b -1)] or [a - b = 1]. If the first condition is applied to the Burdine equation,
we obtain /i = /x/j. Q\ and Kr = 8^. Neither of these equations describe physical
reality. Similarly, equations of Childs and Collis-George or those of Mualem
lead to unacceptable results. The second condition leads to (Kutflek et al., 1985)

L L Q —\/X /c O"l \

n = nA Vt {p.bl)
Kr = 0£

1/ ;U1 (5.82)
and

D = --rln
K's (5-83)

This discussion shows the restrictions in the definition of a strictly linear soil
when we require that D has a constant value and Kr is linearly dependent upon
0£. If the second condition is not satisfied, we speak of "linear" soils. In general,
there exists a family of "linear soils" described by the above equations. If X = 1,
the hydraulic conductivity function (5.82) is quadratic and meets the
requirements of the solutions of Burgers' equation (Clothier et al., 1981).

Concluding, we should keep in mind that the soil water diffusivity is
used in Richards' equation in order to reduce the number of variables. It has no
direct physical meaning and is only defined mathematically, see (5.69).
Moreover, inasmuch as D(6) is dependent upon the derivative of the soil water
retention curve, it has different values for wetting and drying processes. The
temperature dependence of D(6) is in accordance with changes of surface tension
and viscosity with T. However, its prediction is only approximate owing to
some not well understood phenomena that associates the temperature
dependence of h(6) and K(6).

5.3.5 Diffusion of Water Vapor

In section 5.3.4 we have already shown that the relative maximum in the D(6)
relationship in the dry region is caused by water vapor flow. Indeed, the soil
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5.3 Unsaturated flow in rigid soils

water diffusivity D contains two components: DL the diffusivity of liquid water,
and DG the diffusivity of water vapor, i.e. the gaseous phase. Hence, D = Di + DG
(Philip, 1957a). Jackson (1964) derived DG as analogous to the earlier introduced
soil water diffusivity

D° =Dplw~ (5-84)

where prG is the relative density (concentration) of water vapor and Dp the
diffusion coefficient of water vapor in soil which is approximated by

Dp=D.a(P-e)" (5.85)
where Da is the diffusion coefficient of water vapor in free air and a and \i are
factors that account for the tortuosity and complexity of the soil porous system.
Detailed information about (5.85) is provided by Currie (1960).The term dprc/d9
is actually the slope of the adsorption isotherm and its inflection point
corresponds to the relative maximum of DG(0). The water vapor diffusivity rises
to this maximum from 0 = 0 and reaches this value at a relative water vapor
pressure p/p0 = 0.3 to 0.4 in the majority of soil's. The maximum value of DG,
having a wide range between 10'4 to 10"3 cm^s*1, depends upon soil texture,
mineralogy of the clay fraction and organic matter content, see Fig. 5.17. At
greater soil water contents DG decreases as Di increases. Values of DL exceed
those of Dc at p/p0 - 0.5 to 0.8. In terms of the average thickness of the adsorbed
water films on the soil solid surface, DG reaches a maximum value after the first
molecular layer is completed and before or at least when the second molecular
layer is formed. Di exceeds DG when about 4 to 6 molecular layers of adsorbed
water exist.

LIGHT CLAY

MONTMORILLONrrE

I I I

Q 0 0.04 0.08 0.12

SOIL WATER CONTENT 9 (cm3cnr3)

Figure 5.17. Diffusivity of soil water vapor versus soil water content close to d ••
Ofor soils and clay minerals (Kutilek, 1966).
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For structured soils, (5.84) and (5.85) are far from reality. For more realistic
descriptions 2- or 3-modal porosity models should be considered (Currie and
Rose, 1985). The effect of such consideration is similar to that of a bi-modal
porosity model upon K(h) in the wet region.

It is worthwhile to repeat here at the end of this chapter the principal
theoretical gain of all discussions. Without a knowledge of the hydraulic
functions of soils - h(8), Ks, K(9) and D(0) - a quantitative description of water
flow in soils is not feasible.

5.4 TWO PHASE FLOW

Up to now we have assumed that the presence of air in soil pores offers no
resistance to water flow. Because the fluidity of the soil air is greater than that of
water by an order of magnitude, its motion relative to that of water is implicitly
neglected. The assumption of one phase flow - water only - is not appropriate
when the free entrance or escape of air is blocked by small passages owing to
either a layer of a greater water content or of lesser permeability. If the entrapped
air is continuous, it forms a "barrier" against the flow of liquid water and the
flux density of water is reduced. In such cases the flows of both air and water
should be solved as mutually influencing each other (Elrick, 1961). For the sake
of simpicity we are here neglecting water vapor flow. In wet soil where the flow
of air can play an important role, the contribution of water vapor flux to the
liquid water flux is negligibly small. In a dry soil at about h < -1(P cm where the
water vapor flux is important, the influence of air flow upon water flow is not
expected. We are still dealing with isothermal conditions. We discuss therefore
only the interactions of the flow of the liquid water phase and air as a complex
gaseous phase.

In the theory of two phase flow, the phases (air and water) are assumed to
behave like two immiscible liquids. The basic flow equations of Darcy-
Buckingham rewritten to fit both phases (air and water) express the pressure
gradient as the driving force are

and

( ^ } (5-87)
where the indices A and W denote air and water, respectively, p is pressure
[ML^T'2], p the density [ML/3] and g the acceleration of gravity [LT2]. The fluid
mobility X is

X-hh. (5.88)
A*

where Kr is the relative conductivity of the particular fluid, Kp the permeability
[L2] and ji the dynamic viscosity. The dependence of both KrA and Krw upon the
water content of a sand determined experimentally by Touma and Vauclin
(1986) is given in Fig. 5.18. The curve Kr/[(S) is not a mirror image of Krw(8). The
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5.4 Two phase flow

SOIL WATER CONTENTS

5.18. Relative conductivities of air KTA and Krw as related to the soil
water content 6 (Touma and Vauclin, 1986).

decrease of Krw with a decrease in 6 is more rapid than the decrease of Kr^ with
an increase in 6. At 6wr, the value of Krw is zero. Similarly, at OAT < P, the value
of KTA is zero. The continuity equation for air is

. 0 {589)
dt dz

with 9A (= P - 9) the volumetric air content. The continuity equation for water is

"\Pw®) . "[Pwtfw) n /com
——— + — = o . (o.yu;

dt dz
The difference between the pressure of the two fluids is the capillary

pressure pc = PA - pw> a nd f°r water taken as the incompressible fluid
Pw = Pw.>

we have
P^ = IA. (5.91)

P A . PA.
where the index o denotes the value at the reference atmospheric pressure.
Inasmuch as the pressure head h was more convenient for one-phase flow, we
use here

, PA ~PA.

and
PwS

PW-PA.

PwS

(5.92)

(5.93)

where hc = hA-hw- Hence, (5.86) and (5.87) transcribe to the more familiar
forms
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dh,

and

*»-M')(^r-i)

(5.94)

(5.95)

with hA-hw = hc s h. The air conductivity KA (= pwg^A) and Kw [identical to
the earlier notation K(8)] each have the dimension [LT"1]. Analogous to
Richards' equations (Touma and Vauclin, 1986) we have for air

dt dz
(5.96)

When we substitute 9A = P - 9 with

PA ~PA (1 + fc/t/O
and Ciy = d9/dhc we obtain the capacitance equation

P/iQv

Similarly, for water

(5.97)

dt dz

dhw

and

-w dt dt

dz

_
dz

- 1

, , , dhui

(5.98)

(5.99)

When the air is continuously connected to and has the same pressure as that of
the external atmosphere (taken as the reference), hA = 0,hc-hyf and (5.97) is
identical to (5.66).

The above theory offers reliable results if the pressure (or potential) drop
of the water across the less permeable barrier is small, or if a barrier limiting the
air flow is not reached by a wetting front in the case of infiltration. If a
substantially less permeable layer exists for water, a steep water pressure
gradient develops across the less permeable layer. In this circumstance, (5.66)
suffices.

The solution or dissolution of air in soil water should follow the
behavior of the individual gases of the air mixture according to Henry's law

Ct=kiPi (5.100)
where Q is the concentration of the i-th gas, fc; a constant dependent upon the
temperature and the nature of the gas and p,- the partial pressure of the i-th gas.
Considering the numerical values of kt and p,- for gases composing the soil air,
the solubility of nitrogen and oxygen are important. When the pressure of the
soil water varies by an order of magnitude, the concentrations of dissolved N2
and O2 in the soil water vary substantially. For example, with an abrupt decrease
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5.5 Flow in non-rigid (swelling) soils

in soil water pressure as water passes through a less permeable layer, its
originally dissolved gases are released. Consequently, small air bubbles usually
accumulate on the bottom boundary of a less permeable soil layer. By this
mechanism the hydraulic resistance of the less permeable layer increases and is
time dependent. A detailed quantitative understanding based upon
experimental data is yet to be reported in the literature.

5.5 FLOW IN NON-RIGID (SWELLING) SOILS

When a soil swells or shrinks owing to a water content change, the previously
developed equations must be modified. A complete theory has not yet been
developed for flow accompanied by three-dimensional volume changes
resulting in an opening of cracks when a soil dries or their closing when a soil
wets. The theory developed up to the present time (Smiles and Rosenthal, 1968;
Philip, 19^g) deals only with one-dimensional deformation. It is not applicable
to three-dimensional volumetric changes associated with non steady flow of
water that lead to the formation and closing of cracks. The one-dimensional
theory describes wetting of artificially repacked soil columns in the laboratory.
For a draining or drying process even in laboratory conditions, it is not
applicable because the formation of cracks and transport in the cracked medium
are not described. Owing to restrictions and the artificial character of processes
described by the theory, we are not presenting it here except for the introduction
of the concept of Lagrangian coordinates.

When a soil swells during wetting, Darcy's equation should be modified
according to Gersevanov (1937) to relate the rate of water flow to the solid phase.
Instead of Euler's coordinate system, Lagrange's coordinates need to be
considered. For a one-dimensional treatment of swelling, the original proposal
of Gersevanov was redefined by Smiles and Rosenthal (1968) to yield

dx
Upon integration the above equation becomes

or

m=j*Jl-P)dx. (5.103)
Equation (5.101) states that the ratio of the material coordinate m to the Eulerian
coordinate equals the ratio of the volume of the solid phase to the total volume
of the soil. Fig. 5.19 demonstrates the material coordinate associated with the
experiment that follows. A dry soil originally packed into a tube to the height
denoted by x = 0, has its surface flooded with water. As water infiltrates into the
swelling soil, the soil surface rises. After a certain time of infiltration we denote
the depth of the wetting front Xf from the original position x = 0.
Simultaneously, we measure the soil water content and the soil bulk density.
From those measurements the porosity P is plotted against negative values of x
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LAGRANGE'S COORDINATE m

S
o

EULER'S COORDINATE x

Figure 5.19. Material coordinate m in the solution for one-dimensional
infiltration of water into: a. pre consolidated clay and b. the same clay
without pre consolidation. The wetting front position is at x/.

inasmuch as the soil surface rose compared to its original position at x = 0. The
material coordinate m expresses the volume of the solid phase wetted by the
water. Because we cannot predict the elevation to which the soil will swell, we
define the lower limit of integration as - » . Note that for P = 1, the integral
(5.103) yields a value of m = 0. If the soil is pre consolidated, we can assume that
the value of P = e(l + e) is constant for x > xj. If the soil is not pre consolidated,
the soil is compressed ahead of the wetting front by the swelling pressure. This
relative minimum PmiM moves at the same rate as the wetting front with the
value of Pmin decreasing, i.e. the value of (P,- - Pmin) increases with time and with
surface load (Kutflek, 1984a). All of these effects are especially distinct in
montmorillonitic clays of Vertisols and increase with an increase of ESP and a
decrease of EC.

Darcy's equation has to be modified for Lagrangian coordinates and the
hydraulic conductivity redefined, especially when we deal with non steady flow.
Owing to a lack of an appropriate theory and the extremely complicated
character of the system, we recommend simplified approaches related to
individual cases of elementary hydrologic processes.

5.6 NON-ISOTHERMAL FLOW

Up to now we have described unsaturated flow for only isothermal conditions.
Typically, such conditions are rare in soil hydrology. Nonetheless, most
modeling of soil hydrology utilizes equations formulated for isothermal
conditions as a good approximation for non-isothermal situations. However,
for non-isothermal situations the equations must account for thermally driven
processes.
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5.6 Non-isothermal flow

Under non-isothermal conditions differences in temperature across a
distance z produce a heat flux that alters water transport. More generally, each
flow process influences every other flow process and hence, these coupled
processes are studied with the theory of irreversible thermodynamics.

5.6.1 Coupled Processes

Coupled flow phenomena are described by phenomenological equations of
Onsager (1931). The first flux ]\ is described by

/, = Lu X, + Lu X2 + L13 X3 + • • • + Lu X, (5.104)
and similarly for the other flow processes,

/,. = jj>*X* (5.105)

where X,- is the conjugate driving force which produces the i-th flow and Lu is
the phenomenological "direct" coefficient which relates the flux to the driving
force. The above equation shows that the flux ]\ may also be driven by forces Xz,
X3, ••• Xn if the coupling or cross coefficients L\i, L\z, ••• L\n differ from zero. In
general, Lu shows the contribution of the fc-th flux /* to the first flux ]\ when a
driving force Xjt exists. On the other hand, if the i-th flow process is not related
to any of the other n flow processes, L^ = 0 for k * i and we obtain

h =LuXt (5.106)
which is the equation of heat flux, molecular diffusion or that of Darcy (5.5). The
linearity holds only for slow processes not too distant from an equilibrium state.
The coefficients £,,-* = /;/Xjt are flows per unit force (or conductances) and L,jt =
I*,-. In this chapter when we deal with simultaneous fluxes of water and heat Jj,
(5.105) becomes

Jw =LwwXw+LmXT (5.107)
and

Jr^LrrXr + ^Xy,. (5.108)
Note that the first term on the right hand side of (5.107) is the Darcy-
Buckingham equation and the following term accounts for the additional
contribution of water flow owing to the heat flow.

Equation (5.105) has validity for all coupled phenomena in soils when n
flow processes occur simultaneously. The physical interpretation of L& and Xk
in soils have been discussed in detail in the literature (e.g. Bolt and Groenevelt,
1972, and Groenevelt an Bolt, 1972).

5.6.2 Flow in Non-isothermal Conditions

Because the mechanisms of the influence of a temperature gradient upon the
liquid and vapor water phases are not identical, separate terms are required to
describe the flux of liquid and that of vapor. Here we follow a slightly modified
procedure of Philip and de Vries (1957) to describe these coupled flows.
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For the flux density of water vapor qG we have
1c =-DG ?V0 -DGT7T. (5.109)

The dimension of DGT is [Z^T^grad'1], usually in units [cm^s^K"1]. For the flux
density of liquid water qi is

qL=- DlB V6 -DLTVT -K. (5.110)
The dimension of DLT is identical to that of DGT-

The flux density of all of the pore water, both liquid and vapor, is
q = -DeV9 -DGTVT -DLTVT -K (5.111)

where Dg = (D^e + Dee) and Dee here is identical to DQ in (5.90). Such equivalent
relations for the coupled coefficients DGT and DLT are not available. Combining
(5.111) with the equation of continuity for a one-dimensional system with soil
depth z > 0 measured from the soil surface, we obtain an equation similar to
(5.68)

dd_d( dB\ d( dT) d ( 3T) dK

The temperature is described by

where Aj is the thermal conductivity [W-m'^K'1], % the latent heat of
vaporization [J-kg'1] and CT the volumetric heat capacity [J-K^-m'3].

Solutions of such practical problems of non-isothermal flow in layered
soils require equations that are transcribed into forms analogous to the
capacitance equation (5.66) with pressure head gradient replacing the soil water
content gradient. Hence, (5.109) for one-dimension becomes

iG = -DCh~DGT^ (5.114)

and (5.110) is

^f)Dlrf. (5.U5,
Note that Km = K(h) and DQH is not identical to Dee- The equation of continuity
is also modified and CT and A of (5.113) are specified once for the vapor phase
and once for the liquid phase. For details of modifying the equations for
numerical procedures, see e.g. Passerat de Silans et al. (1989).

5.6.3 Flow at Temperature T< 0°C

Although the transport of water at temperatures less than 0°C is generally
described with theories outlined in the previous chapters, the hydraulic
functions are greatly modified by the formation and presence of ice in soils.

In a frozen soil not far below 0°C we distinguish ice, liquid water and air
within the mixture. The fundamental thermodynamic equation relates the
relative Gibbs free energy to the freezing point as demonstrated in Fig. 5.20.
Remembering that the definition of soil water potential is the equivalent of
Gibbs free energy, the SWRC should be equivalent to the graph demonstrating
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Figure 5.20. Theoretical relation between the temperature of water freezing and
the free energy expressed as negative pressure.

the soil unfrozen water content 6U(T). However, we must modify this simple
consideration owing to the fact that frozen soils manifest varying degrees of
rigidity. Soils rigid in their unfrozen state start to behave as non-rigid soils at T
< 0°C. In the hydrostatics of frozen soils we must include a component in the
total potential that accounts for the equilibrium ice pressure p,-. Moreover, the
mechanism of the development of micro- and macro-lenses of ice is still not
well known. Additionally, hysteretic concepts require modification owing to the
deformation of the soil solid matrix and to the hysteretic behavior of liquid
water and ice lenses. Hence, any final equilibrium state is substantially

O LEDA CLAY
• ELWOOD CLAY LOAM
A CASTOR SILT LOAM _
• MANCHESTER SILT

0 -1 -2 -3 -4 -S

TEMPERATURE T (°C)

Figure 5.21. Unfrozen water content Qu for various soils as a function of
temperature (Patterson and Smith, 1981).
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influenced by the path and direction of the temperature variation. Thus far,
measurements of soil behavior show quantitative agreement with basic
thermodynamic equations. For example, the content of unfrozen water 9U

decreases strongly with a drop of temperature below 0°C in the range of -0.5 to
-2.0°C, see Fig. 5.21. With further decreases of temperature below this threshold
range, the value of 0U changes only slightly. Consequently, for the solution of
problems of water flow below 0°C we need to directly measure 9U{T).
Additionally, the classical SWRC and 6U(T) should be combined analogous to
the procedure used for non-rigid soils at T > 0°C (Groenevelt and Kay, 1977). The
temperature dependence of the hydraulic conductivity at T < 0°C is then similar
to the water dependence of the unsaturated hydraulic conductivity function,
roughly Ku{ 9U

3). Therefore, the steepest decrease of Ku occurs at temperatures
only a few tenths of a °C just below 0°C, see Fig. 5.22.

Unsteady flow in partially frozen, unsaturated soil is accompanied by
many side phenomena such as formation of ice lenses, frost heaving etc. Hence,
an objective formulation of the basic transport equations analogous to Richards'
equation remains unresolved except for some well-defined simple (or
simplified) problems. Present-day equations of mass transport which consider
heat flow and heat consumption and release are considered with a combination
of Darcian and microscopic scales.

U

UNLENSED SLIMS VALLEY SILT

<*>

DENSELY LENSED
iA CLAYEY SILT

DENSELY LENSED LEDA CLAY
FINE SAND

I I I

- 0 . 2 - 0 . 4 -0.6

TEMPERATURE T (°C)

Figure 5.22. Hydraulic conductivity for various soils as a function of
temperature. Before the temperature was decreased, the soil was saturated
with water (Burt and Williams, 1976).
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PROBLEMS
1. The permeability of a soil Kp = 0.3 |im2. What is the water flux density when

the potential head gradient grad H = 2?
2. In the previous problem, what is the equivalent pore radius in the soil

approximated by Kozeny's model?
3. Formulate the functional relationship K(6) if the model of the soil leads to Kp

described by (5.19)?
4. What is the direction of flow if the tensiometer readings of pressure head hp

are: hp = -150 cm at soil depth z = 20 cm and hp = -140 cm at z = 50 cm?
5. Compute the flux density in the previous problem if K(h) is expressed by

(5.39) with Ks = 20 cm-day'1 and c = 0.05 cm'1.
6. If K/Ks = Qf and D = aQ\, what should be the relationship between m and n

in order to obtain a physically realistic 6{h) retention curve? Interpret the
physical meaning of the coefficient a.

7.liqz> q\z in Fig. 5.14, insert <, > or = for:

£ . . .0 and * 0
oz at

Do the same if qz = q\z •
8. What are the dimensions of the terms in (5.62) and (5.71)?
9. For fluid mobilities kA and Aw in (5.86) and (5.87), insert <,> or = in lA ••• &w-

Do the same for the conductivities at 6/ds = 0.5, KA ... Kw-
10. Derive the dimensions in (5.86).
11. Derive the value of the Lagrangian coordinate m for the compressed part of

the unconsolidated soil at the wetting front in a swelling soil (see Fig. 5.19).
How is m related to x?

12. Consider that steady state water flow conditions exist in a 100-cm long
horizontal column of homogeneous soil. A pressure head h = 0 is
maintained at the left end of the column (x = 0) while h = -100 cm is
maintained at the other end. Calculate the direction and magnitude of the
flux density and graph h(x) for each of the following K{h) functions: a. K =
2, K = (2 + 0.0199/t), and K = 2 exp(0.053/i) cm-hr'1.

13. Same as problem 12 except the column is in a vertical position with the
pressure head h = 0 at the top (z = 0) and h = -100 cm at the bottom of the
column.

14. For problems 12 and 13, show that the product of K and the derivative of h is
everywhere along the column equal to a constant - the value of K(h).

15. Consider that steady state water flow conditions exist in a vertical,
homogenous soil column with a water table maintained at depth z = 300

h b ( ) h l f b d-T- y j cm. Assuming that K(h) is described by (5.38) with values of a, b and m
iO <!}-€-, \ being 200 cnvM"1,100 cm2 and 2, respectively, calculate and graph h(z) for

evaporation rates of 0.0054, 0.005 0.002 and 0.001 cm-d'1 and for infiltration
rates of 0.005, 0.001, 0.01, 0.1 and 1 cm-d'1. What is the maximum rate of
evaporation when h -> -«?
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Extension of 5.3.2.

Extension of Eq. (5.34) and the paragraph related to it:

Brooks and Corey (1964) eq. is:

= (dn )" where n = 2AI + 3 and K/Ks = Kr (5.34a)
Ks

However, this equation is frequently called either Campbell's eq. (1974), or Clapp-
Hornberger eq. (1978) with just a change of applied symbols, or with #, = 0 in 6fe. It is
obvious that such a procedure is against scientific ethics. When fractal theories are
applied, a general relationship is (Gimenez et al., 1997)

Kr <x 6" where n = 2/(3 - D) + 2 + a (5.34b)
Where D is fractal dimension and a is a pore interaction parameter that

accounts for pore connectivity and tortuosity of flow path. However, its value is
fluctuating in great ranges and practically it is a fitting parameter again. An other
development derived from SWRC by Fuentes et al. (1996)

0ozhD~3 (5.34c)
equation for relative hydraulic conductivity

A", oc 9n with n = 2/(3 - D) + 2D/3 (5.34e)

Extension of Eq. (5.54) and the related equations:

When fractal theories are applied, a general relationship is derived first for
tortuosity and then for K(h) relationships.
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Extension of Fig. 5.12 and the related discussion on p. 110:

If just one matching point of Ks is used for prediction of the unsaturated
hydraulic conductivity A in soil exhibiting bi-modal porosity, the difference between the
directly measured A.' and the computed A according to Mualem-van Genuchten model is
by one order of magnitude and even more, Fig. 5.12a. If two matching points are
applied, i.e. As for A' close to saturation and the measured A'at a certain h , a
substantial agreement is reached for measured and computed K(h), see Fig. 5.12b.
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Figure 5.12a: Unsaturated conductivity Figure 5.12b: Unsaturated conductivity
with Ks as matching point with two matching points
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Compaction of the soil results in the reduction of Ks even by orders of magnitude
due to the reduction of the volume of interaggregate pores, minimizing it often to zero.
This reduction results not only in the decrease of Ks , but unsaturated conductivity is
reduced for the whole range of h related to interaggregate porosity, generally for h
between 0 and about -100 cm Compaction is permanent in layer below the tillage
depth. See the Fig. 5.12c.
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Figure 5.12c. SWRC and unsaturated hydraulic conductivity in compacted and not
compacted subsoil
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Unsaturated hydraulic conductivity function is not constant in various seazons,
example is in next figure.
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Figure S.12d: Seazonal variation ofK in semiarid climate in soils with various
cultivation methods (Kribaa et al, 2001).
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