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130 Soil Hydrology

6 ELEMENTARY SOIL HYDROLOGIC
PROCESSES

In this chapter, for the sake of a lucid discussion of seil hydrology, we separate
from the global hydrologic cycle those simple elementary processes which take
place in the soil. The first group of elementary processes to be discussed are
those to be described in the vertical direction and defined by simple boundary
conditions. Here we discuss

-infiltration,

-redistribution of water within a soil following infiltration,

-drainage to a water table close to the soil surface,

-evaporation from a bare soil and

-evaporation and transpiration (evapotranspiration) from a vegetated soil

surface.

Except for infiltration, all the above processes cause a water loss either from the
entire soil profile or from at least a particular layer usually from the topsoil
when 1-dimensional vertical flow is assumed. When two- and three-
dimensional flow is considered owing to field circumstances, lateral subsurface
and hypodermic flows may contribute to the water balance within the soil
profile.

Meteorological situations actually control the extent of the elementary
processes, and together with the water storage capacity of the soil profile, a
particular stage of a hydrologic regime evolves over a long time period. If these
stages are combined and averaged over still a longer span of time, we speak of a
hydrologic regime of a soil. Analogously, as meteorological situations refer to
weather during a period of weeks or months in a particular area, combined,
long time averages are considered as the climate of the area.

6.1 PRINCIPLES OF SOLUTIONS

Our knowledge of elementary soil hydrologic processes stems partly from
properly performed experiments and partly from mathematical solutions of
equations describing physical processes. In each of the procedures we simulate
the process either physically by an experiment or mathematically using either
analytical or numerical methods. When we speak of properly performed
experiments, we must experimentally impose exactly the initial and boundary
conditions. Before imposing the boundary conditions, we first establish the
initial conditions - the values of 8 or h at all z of the 1-dimensional column at ¢
< 0. When the initial condition demands a zero flux (g = 0), it is imperative that
dH/dz = 0 along the entire column. When the initial value of the soil water
content 6; is assumed constant with depth (d6;/dz = 0), a flux corresponding to a
unit gradient of H exists, i.e. g = -K(6;) provided that a continuity of liquid water
exists. If 6; is very small, the downward flux may be negligibly small. Altering
the value of the variable 8 or h, respectively, at the boundary (i.e. at the
topographical soil surface) induces a non-equilibrium condition that generates a
soil water flux within the soil profile. Non-steady fluxes will then persist in the
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system until an equilibrium is reached with g = 0, or until the flux is invariant
with time (dq/dt = 0) and a steady state flux density is reached. Another
possibility for causing water flow in soil is by imposing a defined flux density
4(t) on the boundary g,(t).

One boundary of a 1-dimensional soil column is its topographical surface.
The other boundary is that of a column having either a finite or infinite length.
A finite column is used to manifest a field condition, e.g. a ground water table
(h = 0) or a defined water content or water flux at its bottom end. If the column
extends to infinity, we speak of a semi-infinite column with its lower boundary
Z —yoo,

If we establish a new value of the variable 8 or h on a boundary for ¢t 2 0,
we obtain Dirichlet's (or a concentration) boundary condition (DBC). When a
flux density is imposed for ¢ 2 0 on a boundary, we have Neuman's (or a flux)
boundary condition (NBC). If 8 or h is specified on one boundary and a flux is
specified on the other boundary, we have a mixed boundary condition (MBC).

When we solve a steady flow problem which is characterized by dg/dt = 0
and dq/dz = 0, we do not define the initial condition because the flux and
variables 6 and h are independent of time. The solution is a particular value of
the flux g for which a unique distribution of 8 and k, respectively, along the z
axis exists.

Formulations of non-steady flow problems yield distributions of 6 or h,
respectively in space and time. These distributions 6(z, t) and h(z, t) for 1-
dimensional problems are usually given as continuous functions 6(z) or h(z) for
specific times or time intervals. For DBC we are frequently searching
additionally for the flux density at the boundary g,(f). In an experiment we must
establish the initial 6; or h; at all depths for ¢ < 0 and sustain 6, or ¢, at the
boundary during the entire experiment. It is imperative that the experimental
initial and boundary conditions are matched exactly with those described
mathematically. Without such initial and boundary conditions, the
experimental results cannot be properly evaluated and generalized.

In the mathematical treatment of problems, the initial and boundary
conditions represent the limits of integration. Additionally, the properties of the
soil need to be characterized. When we describe the process mathematically, we
characterize the soil by its hydraulic characteristic functions Ks, 6s, h(6) and K(6)
or K(h). D(6) is obtained from K(8) and h(6) or is defined directly from primary
measurements. Methods for obtaining the hydraulic functions will be discussed
later in Chapter 7.

Mathematical solutions of the elementary hydrologic processes are either
analytical or numerical. In analytical procedures, differential equations are
usually integrated only after some kind of transformation. Many analytical
procedures exist for somewhat trivial boundary conditions of unsteady flow in
soils defined by simple hydraulic functions and for steady flow processes in
homogeneous or distinctly layered soil columns. The analytical solutions
typically involve infinite series or transcendental functions that are evaluated
by numerical methods with the assistance of a computer. As a result, the
calculated results are approximate in spite of having an exact analytical solution.

Close to analytical solutions are the quasi-analytical solutions for which a
significant part of the procedure involves an analytical procedure. The overall



132 Soil Hydrology

equation, often reduced to one or more ordinary differential equations, is
integrated using a convergent iterative scheme. Alternatively, we split the
higher order partial differential equation (e.g. Richards' equation) into lower
order differential equations that are solved separately. In such cases an auxiliary
function is frequently assumed with its value being determined by consecutive
iterations. Analytical and quasi-analytical solutions developed for some
elementary soil hydrological processes fit soils with simple, special forms of
hydraulic functions. Such solutions, even if they are not directly applicable to
field situations, have a great advantage. They lead to a full understanding of the
physical process and provide estimates of deviations, e.g. owing to an alteration
of a boundary condition. Moreover, these solutions allow errors of estimation
of approximate and numerical procedures to be quantified. Approximate

solutions are frequently exact analytical solutions developed for a soil
characterized by a simple or even oversimplified hydraulic function. Or, they
are exact solutions for a very simple flow process that only approximates reality
in the field.

Numerical methods used in the solution of soil hydrologic processes are
procedures which enable us to replace a differential equation with a set of
approximate algebraic equations solved with a computer. These approximate
numerical procedures are (i) the method of finite differences and (ii) the
method of finite elements. Although their theoretical derivations are based
upon different mathematical approaches, there are many similarities between
both methods.

In the method of finite differences the spatial domain within which we
search for a solution is sectioned by a system of normals into small segments. In
1-dimensional problems we obtain line segments, in 2-dimensional problems
rectangle segments and in 3-dimensional problems parallelepiped segments. For
each node of these geometric segments, we determine the value of the
differential function describing the problem.

We replace the derivatives at a point by differences of the variable over a
small finite interval. This method for the function h(z) is therefore the inverse
of the definition of its derivative

dh_ g 12*82)~h(z) 61)
dz A=0 Az
Inasmuch as the approximation at one point depends to a certain degree upon
approximations at neighboring points, local approximations are controlled by
approximations applicable to the entire domain.

The continuous analytical equation is replaced by a set of algebraic
equations with differences substituting for derivatives of functions obtained
from Taylor's series expansions.

In finite element methods, the domain of the solution is subdivided into

@smaller sub domains, i.e. finite elements. The simplest scheme is composed of
triangles with a triangular pyramid erected over each node. The value of the
base functions represents the approximate solution with time taken as the finite
difference. Local approximation is the characteristic feature of the finite
difference method. In contrast, the finite element method manifests a global
view. Assuming that the solution is expressible by a set of basic functions, the



6.2 INFILTRATION

The term infiltration denotes the entry of water into the soil through its surface.
The soil surface could be plane, concave or convex, and could be formed by the
walls of a cavity of a defined shape such as a sphere, cylinder etc. The source of
water can completely or only partially cover the entire surface. Equations
describing infiltration are usually for 1-dimensional water flow in either the
vertical or horizontal direction. A limited number of solutions exist for 2- and
3-dimensional infiltration processes. Here, we restrict our discussion to 1-
dimensional, vertical infiltration. Implicitly, our solutions are valid for
infiltration through a plane horizontal surface.

Hydrologically, the infiltration process separates rain into two parts. One
part stored within the soil supplies water to the roots of vegetation and
recharges ground water. The other part which does not penetrate the soil surface
is responsible for surface runoff. Infiltration is therefore a pivotal point within
the hydrologic cycle.

Being consistent with present-day terminology, we shall call the flux
density of water across a topographical soil surface the infiltration rate.
However, this infiltration rate is often confusingly described by terms such as
infiltration velocity, infiltration capacity, infiltrability etc. in relation to a
specifically imposed boundary condition and in accordance with only some kind
of subjective criteria. For non-steady flows it is clear that the flux density is time
dependent and moreover, when boundary conditions are changed, the flux
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density responds and is also time dependent. Thus, we could formulate a
voluminous number of terms describing still the same phenomenon - the flux
density across the top boundary of the soil.

We shall discuss separately steady and unsteady infiltration owing to the
different hydraulic characteristics of both flows. Although steady infiltration is
simpler to solve and to understand because only the Darcy-Buckingham
equation is involved, unsteady infiltration is the dominant process in nature.
We shall discuss unsteady infiltration in two sections according to the boundary
conditions governing the type of infiltration. When the soil surface is
instantaneously and excessively ponded as it is in an infiltration test performed
with a ring infiltrometer, we have Dirichlet's boundary condition (DBC). When
infiltration occurs under natural rainfall, we meet Neuman's boundary
condition (NBC) for the full duration of the rain or for at least its initial
occurrence. With these two types of flow being fundamentally different, we
shall consider them separately.

6.2.1 Steady Infiltration

Steady infiltration is characterized by the condition that the flux density does
not change with time nor with position in the unsaturated soil, i.e. dq/dt =
and dg/ dz = 0. It follows from the equation of contmmty (5.62) repeated here
for 1-dimension

B __9H (6.2)

ot oz
that the soil water content does not change in time (i.e. d6/Jt = 0 as well as

dh/ dt = 0). In order to satisfy the condition dh/ dt = 0, we must define a non-
variant hydraulic condition at the bottom of the soil column. The simplest
practical provision is a constant ground water level at its bottom. Such
conditions are simply demonstrated by the following process. A rain intensity qr
is constant in time (dqr/ d¢t = 0) and equals the infiltration rate as well as the
flux density in the soil g provided that gg < Ks. In this case, rainfall has been
constant and infiltration has lasted long enough to allow the wetting front to
reach the ground water level. We further assume that the ground water level is
kept at a constant elevation by e.g. a drainage system. It is mathematically
convenient to identify the origin of the z coordinate at the ground water level
from which z increases positively upwards. As a result at z =0, 4 = 0 and at the
soil surface z =Z, h = hz and ¢ = - gg. Some solutions derived for steady state

conditions approximate non-steady infiltration after a long time has elapsed
when dg/ dt — 0. For example, the development of a h(z) or 6(z) profile in a
crust-topped soil or in a soil with distinct horizons of different hydraulic
functions and conductivities is practically identical for either steady state
infiltration or the quasi-steady stage of non-steady infiltration after a long time.
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Here, inasmuch as the direction of flow is oriented downward while the
positive direction of the z-axis is upward, the flux density ¢ < 0. Equation (5.31)

repeated here is

9=-K ()2
where H = (h + 2). We obtain g < 0 when dH/dz > 0. If indeed, dH/dz = 0, we
have a state of equilibrium with ¢4 = 0 and k = -2. The domain of h(z) which
satisfies (6.3) is therefore limited from the left side of the graph in Fig. 6.1 by h =
-z (g = 0) and from the right side of the domain by g = - Ks with dH/dz = 1 and
dh/dz = 0. For the determination of h(z) we integrate (6.3) with an appropriate
expression for K(h). For an exponential expression of K(h), see (5.39)

K =Ksexp(ch)
we obtain for the limith=0atz=0

J'o dz =

K, dh

1 ]
- qu exp(~ch )+ K’

After integration we have

pA =l]_n _iL .
¢ |g+K;exp(ch)

g
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Figure 6.1. Steady flow infiltration. Pressure head profiles h(z) and soil water
content profiles &(z) are plotted for flux densities gp =0, g1
<102, g3=-6-10? g4 =-10" om-h'! and q = -Ks in a soil characterized by Ks
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=2cmhland c = 0.02 cm™ in (6.5) and 65 = 0.5, 6, = 0.015,n = 1.8, m = 0.44

a = 0.015 in (4.43). The dotted line separates the domain where dh/dz = 0.

: Solution (6.5) is represented graphically in Fig. 6.2. For measured values
of Ks and ¢, we obtain values of z for a series of selected values of h using the
appropriate values of Ks/q. We obtain 6(z) shown in Fig. 6.1 using the soil water
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Figure 6.2. Steady flow infiltration. Graphical solution of (6.5) in dimensionless
parameters (Bradd™ ¢ and Kutilek, 1974).

retention curve SWRC. We see in the left graph that the depth of the zone
having dh/dz =~ 0 increases with increasing absolute magnitudes of g. Also,
within this zone § ~ -Kand d6/dz ~ 0. For example, for 4 = - 0.4 cm-h*}, (h, 6) at
z = 300 and 500 cm are (-79.98, 0.3396) and (-80.46, 0.3387), respectively, see the
right hand graph. Hence, if we measure h or @ for a series of steady-state
infiltration fluxes g, into a homogeneous soil with a water table at great depth,
we obtain Ky(h) = 14,1 or Ky(6) = 144!, respectively.

An equation similar to (6.5) is easily derived for a soil manifesting an air
entry value hy when a K(h) function described by (5.40) is used in (6.3). Soil
water pressure head profiles calculated for h4 = -20 cm are shown in Fig. 6.3 for
some values of g, given in Fig. 6.1. Note that the height of the water-saturated
zone above the ground water level is not constant but rises with an increase of
lgl. And, if g = 0, the height of the saturated zone above the ground water level
reaches only its minimum value, z = - h4, see Fig. 6.3. Such observations are a
graphical illustration that hydrostatic conditions differ markedly from those
involving systems where water is flowing.

Many additional solutions of infiltration for other expressions of K(h)
have been reported by Kutflek (1984b).

6.2.1.2 Layered Soil Profiles

The simplest case is the crust-topped profile. Rainfall frequently destroys soil
aggregates within a soil surface. Or, if infiltration lasts for a long time and the
source of water is from a river or waste discharge carrying suspensions of clay or
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Figure 6.3. Steady flow infiltration. On the left, pressure head profiles h(z) if ha
= -20 cm, g5 = -1.5 cm-h™! and for other flux densities and soil

characteristics identical to those in Fig. 6.1. On the right, the position of
the saturated zone (elevation where h = -20 cm) depends upon the flux

density.

fine particles, they are deposited on the soil surface or within the soil profile.
Each of those processes denoted by sealing, crusting, collimation etc. results in
the formation of a less permeable soil surface layer. Here for the sake of
simplicity, we shall use the term crust for the result of all such processes. The
characteristics of the crust will be denoted by the index 2, while those of the soil
below the crust will be given the index 1, see Fig. 6.4. The origin of the z-axis is
again identical with the position of the ground water level which is kept
constant. The thickness of the soil between the ground water level and the crust
is Ly, the thickness of the crust L, and the depth of water on the soil surface h,.
For steady-state flow, 41 = 42, and we have

dH dH
K| =] ==K, | —] . 6.
Kl(dZ)l 2((12)2 ( 6)
If K51 » Kg2, and Ki(h) » Ka(h;) where h; is the value of k at the interface, we
have
dH dH
(71;)1» (7::)2 ©7
and because H = (h + z),
dh dh
—_ —1. 6.8
(dz)l»(dz)z (8)

This condition of a larger gradient of h occurring in the crust (layer 2) demands
a sufficiently small value of h; including hy < 0. Because we assume that just
below the interface in the subsoil (layer 1), dH/dz =~ 1, we can write

q =-K, (hl ) (6.9)
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Figure 6.4. Steady flow infiltration into a crust-topped profile with h(z) on the
left and 6(z) on the right for two cases. Case a., hy > k3. Case b., by < ha.
The pressure head at the boundary between crust and subsoil is by while
haz is the air-entry value of the crust.

For the crust assuming it remains water-saturated,

h,+h,+L
q=-Kg (—-—L' : J (6.10)
2
We also assume here that ka7 = 0 and h4; = 0. The value of h; is obtained by

equating (6.9) and (6.10).

The criterion for h; < 0 is derived from the total head loss between the
free water level on the soil surface and that of the ground water - (h, + L1 + L2).
Inserting this head loss into the modified Darcy equation (5.9) with the
hydraulic resistance R; for each of the two layers, we obtain

h,+L4+L
g=-|Rothrls . (611)
Rl + Rz
The soil below the crust will be unsaturated if 141 < Kg1. From (6.11) it can be
shown that the condition for unsaturation below the crust is

h<L, (% - 1) (6.12)

§2
if hay = 0. For haz > hy, the bottom part of the crust is also unsaturated, and h(z)

has a curved shape, see (b) in Fig. 6.4. For such cases, the above approach has to
be modified, see e.g. Takagi (1960), Srinilta et al. (1966) and Bear et al. (1968).
Kutflek (1984b) provides additional solutions when dH/dz < 1 below the
interface.
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Once h(z) is known, we can determine &2) in the entire profile. Although
h(z) has to be continuous, 6(z) is frequently discontinuous at the interface, see
Fig. 6.4. When criterion (6.12) .is fulfilled, the soil below the crust will be
unsaturated if hq1 > hy provided the SWRC manifests f4.
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Figure 6.5. Steady flow infiltration into a layered soil profile. The pressure head
profile h(z) indicates a water saturated zone. Note the position of the
water level in the piezometers.

If a soil profile has n layers (or horizons) with each layer having its
unique value of Ks and K(h), we integrate in intervals identical with the height
of the layers z,. As a practical example, let us assume that the soil profile
consists of 5 layers, see Fig. 6.5. The sequence of numbers again follows the
positive direction of the z-axis with the layer in contact with the ground water
level being 1, the next higher being 2 etc. Let us suppose that the soil has a
strongly developed Bt horizon with a very small hydraulic conductivity, our
layer 3. If g1 > Ks3 then for layer 3 we find that (dH/dz)3 > 1, or (dh/dz)3 > 0. For
the other layers gl < Ks;,dH/dz <1 and dh/dz < 0, see Fig. 6.5. The distribution
h(z) can be found either analytically or with the graph in Fig. 6.2. We start with
layer 1 as if it were a homogeneous profile to obtain h; on the boundary
between layers 1 and 2. For layer 2 we find what would be the position of the
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ground water level to obtain k) for the given value of . Let us call this position
£, a substitute ground water level for soil layer 2, see Fig. 6.5. With & we
determine h(z) between 27 ad 23, and at z3, h = h;. In layer 3 which has the very
small hydraulic conductivity, we assume h; 2 ha3 and h(2) is linear. If indeed h;
< ha3, we proceed analytically to obtain the distribution 4(z), see Kutilek (1984b).
Or, alternatively, we approximate reality by a linear relation as we did for hy >
ha3. Note that a linear increase of h for the sub layer with h > hy or for h > 0 is
exact. Having obtained the value of h3, we use in layer 4 Darcy's equation for the
saturated flow which occurs in the domain k 2 0. From the elevation z where h
= 0, we follow the same procedure as that already described for a simple 2-layer
soil profile.

It follows from the above analysis that the less permeable layer in a
profile acts as a hydraulic resistance which causes the development of a
saturated zone in and above this layer provided that the flux density is greater
than Kg of this less permeable layer. The thickness of the saturated zone
increases with ¢, or for a given g, it increases with a decrease of Ks in the less
permeable layer.

In Fig. 6.5, the zone of saturation starts above the top boundary of the less
permeable layer 3 and ends above the bottom boundary of layer 3 provided that
ha3 = 0. For hq3 = 0 the thickness of the saturated zone is greater.

The example described above also explains the conditions for a pseudo-
gley formation in layers 3 and 4 during long term steady rainfall, even without
the presence of a permanent ground water table.

6.2.2 Unsteady Infiltration, Dirichlet's Boundary Condition (DBC)

Assuming that a soil surface is continuously flooded with a negligibly small
depth of water at time t 2 0, the surface soil will be water-saturated. Before the
soil surface is flooded (¢t S 0), we assume that the initial soil water content 8 = 8,.
Water supplied to the surface keeps the surface soil at saturation (8 = 8s) but is
never allowed to rise significantly above the soil surface.

Such a situation defines Dirichlet's boundary condition (DBC) for
infiltration into a semi-infinite homogeneous soil. With z increasing positively
downward and z = 0 identified at the soil surface, the DBC is

t20 z=0 =26 (6.13)
or

t20 2=0 h=h,, (6.14a)

£20 z2=0 h=0. (6.14b)

We use (6.13) when the diffusivity form of the Richards' equation (5.68) is
solved and (6.14) for the capacitance form (5.66). Less frequently, the time
dependent behavior of &(t) or h(t) are defined at the soil surface.
The initial condition for the simplest case is
t=0 z>0 =6, (6.15)

Initial conditions were discussed in detail at the beginning of section 6.1. The
initial condition is sometimes considered as a boundary condition with ¢ =0
taken as a boundary similarly toz = 0.
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Boundary condition (6.142) has the advantage that it specifies the depth of
water flooding the surface, i.e. the pressure head on the surface. Flooded
alluvium along a river, flooded infiltration in an irrigation basin or in a basin
for tertiary sewage treatment are practical examples of that boundary condition.
Or, late periods of some rainfall events are other examples of (6.13). If a basin is
flooded at t = 0 without additional water being provided, the decreasing level of
water in the basin equals the cumulative infiltration I. Inasmuch as [ is a
function of ¢, we have for the DBC atz =0, h(t) = [h, - I(t)] where h = h, at t = 0.

Infiltration caused by a DBC is frequently demonstrated with data from
infiltration tests using double ring infiltrometers. The infiltration rate is
measured by observing the decreasing water level within the inner ring, or
even better, by measuring the inflow provided from a mariotte flask to the ring
in order to keep a constant water level. The outer ring serves as a hydraulic
buffer zone to minimize lateral flow below the inner ring. As a result, flow
paths below the inner ring are nearly vertical, see Fig. 6.6. However, because a
slight divergence of flow paths in the inner ring cannot be avoided, the
measured data do not represent exactly 1-dimensional infiltration. Generally,
the error is negligible compared with the inaccuracy of field experimentation
and the spatial and temporal variability of the soil hydraulic functions provided
that the soil is vertically homogeneous.

a b

PERCHED WATER
TABLE

SRRERIRARS
| Y V11 \

Figure 6.6. Flow paths when infiltration is measured a. by a single ring and b. by
a double ring infiltrometer and c. is the influence of a less permeable

layer (Bouwer, 1986).

When distinct soil layers exist in a profile, a strong divergence of flow
paths occurs and the assumption regarding 1-dimensionality of the experiment
is violated, see Fig. 6.6c. Hence, the measured data can be evaluated only for the
period up to the time when the wetting front reaches the top boundary of the

lesser permeable layer.
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Figure 6.7. Time dependence of the cumulative infiltration I [L] and of the
infiltration rate g, [LT"!] for DBC.

6.2.2.1 Characteristics of Infiltration

The primary data are measured values of cumulative infiltration I expressed as
[L), usually in cm as a function of time. The values represent the total amount
of water infiltrated into the soil surface from the beginning of the infiltration
test at £ = 0. A typical I(t) relationship is a smooth, monotonically rising curve,
see Fig. 6.7. The infiltration rate q, = dI/dt where the subscript o refers to the soil
surface at z = 0. The value of g, initially decreases rapidly with time and
eventually approaches a constant value. For t =0, 4, 9, and for t e , g, =
constant. Theoretically, g, 5Ks as t — «, see Fig. 6.7. Practically, the infiltration
rate starts to be constant for coarse textured soils only after decades of minutes
while that for fine textured loams is in the order of hours, depending upon the
hydraulic functions of the soil and 6. Infiltration sometimes denoted as quasi-
steady after this time limit will be discussed more fully in section 6.2.2.2. Steady
infiltration into a crust-topped profile or into a layered profile can be
successfully analyzed when 1-dimensional flow is guaranteed, e.g. by ponding
water on a large area at t = 0 when the ground water level is at great depth or
absent. The shape of g,(t) is empirically approximated by either a hyperbolic or
exponential curve.

For a solution of the infiltration problem we first search for h(z, t) and
from it we obtain (2, {) from the SWRC. Some solutions provide 6(z, t) directly.
Two examples of &z, t), one for sand and one for light clay are given in Fig. 6.8.
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Figure 6.8. Soil water content profiles 6(z, t) in a sand and in a light clay for
infiltration with DBC. 6, is the initial water content of the sand, 6 the
initial water content of the clay, 6ss the saturated water content of the
sand and Bs. the saturated water content of the clay after Haverkamp et al.

(1977).

The profiles are "piston-like", particularly for the sand. Where 6 decreases
steeply with z is called the wetting front. The rate of progress of the wetting
front into the sand profile is more than two orders of magnitude greater than
that into the clay profile. As the depth of wetting increases the shape of the
wetting front becomes more gradual, especially for the clay. As infiltration
proceeds, the shapes of 8(z) profiles for a given soil become nearly identical.
Theoretically, the shapes are identical as t — o.

Integration of the soil moisture profile at time ¢ defines the cumulative
infiltration at time

1=["zd6 (6.16)

which according to (6.15) will decrease as 6; increases. The influence of the
initial value of water content 6; is demonstrated in Fig. 6.9 for the light clay. If
6i/ 65 2 0.95, the infiltration rate g, can be approximated by g, ~ Ks. The influence
of the depth of ponding on the soil surface upon g,(t) is illustrated in Fig. 6.9.
For 0 s hy, < 2 ¢m, the influence is negligibly small. For h, = 10 cm, the value of
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Figure 6.9. The influence of initial soil water content 6; upon the DBC-
infiltration rate q, (left, Philip, 1957c) and the influence of the depth of
ponding water h, on the soil surface upon q, (right, Philip, 1958)for Yolo

1959 £ ) light clay.

qo is increased by 20% for large times and by more than 50% for short times in
light clay. These relationships demonstrate how important it is to keep the
value of h, constant and as small as possible in experiments when the DBC
(6.13) is applied.

Solutions to this type of infiltration can be divided into the three classes -
(i) analytical and semi-analytical procedures, (ii) approximate solutions and (iii)
empirical equations.

6.2.2.2 Analytical and Semi-Analytical Procedures

Richards' equation in its diffusivity form (5.68) is repeated here for the vertical
coordinate oriented positively downward from the soil surface located atz=0

98 _ a0 a8 dK 08

> &[D(e)&] TR (6.17)
This equation, sometimes denoted as the non-linear Fokker-Planck equation
(Philip, 1969a), is non-linear owing to the strong dependence of D and K upon 6.
The first term on the right-hand-side of (6.17) describes the transport of water
owing to the initial degree of unsaturation of the soil profile. Therefore, as 6;
increases, the importance of this term decreases. The second term on the right-
hand-side of (6.17) originates because the gravitational potential. Hence, it is
called the gravitational term and describes the flow of water owing to the force

of gravity.
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Figure 6.10. The influence of gravity upon the vertical DBC-infiltration into
Yolo light clay. On the left, soil water content profiles for either vertical or
horizontal infiltration. On the right, the partitioning of cumulative
infiltration into matric and gravitational quantities (Kunze and Nielsen,

1982).

Philip's (1957b) solution of (6.17) is based upon the idea of separating the
infiltration into its two components - those caused by the matric potential force
and by the gravitational potential force. The idea is illustrated in Fig. 6.10. In the
first step, he neglected the gravitational force and obtained a solution for
horizontal infiltration in the form x(6, t). Here, the dependent variable was
changed to that of the horizontal axis x. Next, he assumed that the real z(6, t) for
vertical infiltration was the horizontal component x(6, t) plus a correction , see
Fig. 6.10. The correction owing to the gravitational force is time dependent. The
influence of gravity upon infiltration is shown in Fig. 6.10 when 6; is small. For
short infiltration times its influence is very small, but with time it increases and
for very large times, the force of gravity dominates the process. Hence, we first
study horizontal infiltration.

Our horizontal soil column, initially at an unsaturated water content 6;,
has its end at x = 0 maintained at water saturation 8s. Hence, for

t20 x=0 0=06s (6.18)

t=0 x>0 0=6; (6.19)
we solve (6.17) without the gravitational term

a0 _ 0 a0

—=—|D(0)=—| 6.20

il [ (0)3 ] (6:20)

It is only here for a homogeneous soil (i.e. not layered) that the gradient of

represents the driving force of the process. When D is a constant in (6.20), the

solution is according to Carslaw and Jaeger (1959)
g -6,

) = erfc (WXE)

(6.21)
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When D is a function of 6, we transform (6.20) into an ordinary
differential equation using the Boltzmann transformation. The transformed
equation has a new variable 7 instead of the two original variables x and ¢. The
new variable 7 defined by the Boltzmann transformation

n(0) =xt™ (6.22)
leads to

ﬂ - _ _1 -2 __MN

> 5 xt = T (6-23)

9 _don __ndo

ot dn ot 2dp (624)

M _ e ’

o ¢ . (6.25)
and 0 d d de dn |0

z %19 § an |on

ax[D(e)ax] Bn[D(o)dn:}xJ&r 6.26)

d dé 12|12 ‘
=—|D(8)—t e
an[ ( )dn }
From the above (6.20) transforms to
ndé 2 de
-———=—1D{8)—1|. 6.2
2 dn 3 [ 0)7 (6.27)

The transformed boundary conditions are

n=0 6=65 (6.28)
and

n = o0 6: ei* (6.29)

The solution for which we search is simply 6(7), see Fig. 6.11. Measured
soil water profiles 8[x(t1)], 8(x(t2)], 6(x(t3)] etc. are thus transformed into the
unique 6(n) relationship by merely dividing x by #;/? for the first profile,t}?, for
the second profile etc. Note that for ¢ = 1, x = 1. Hence, the physical reality of &)
is the soil water profile &(x) when the infiltration time is unity.

SN
o 595 — — D = const. 05
B o,
g = n=xt’1/2 S=Ja‘ ndeo
D
=z \
o)
\
8 o0 0

0
BOLTZMANN'S
VARIABLE p [LT V2]

Figure 6.11.Boltzmann’s transformation reduces the soil water content profiles
6(x) for a series of times t to a unique profile 8(n) with n = xt'172 for
horizontal infiltration (absorption). Broken curves are for a "linear soil”
with D = constant while the full curves are for a soil with D(6).

DISTANCE x [L]
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Philip (1960) and _Kumgk_aﬂaﬁ.%have shown for which analytical
expressions of D(6) analytical solutions of (6.27) subject to (6.28) and (6.29) exist.
Because it is exceptional that any of those analytical expressions accurately
describe D(6) of a real soil, an iterative procedure proposed by Philip (1955) is
commonly used to calculate &) from measured distributions of D versus 6.

With the content of infiltrated water being denoted as cumulative
infiltration I,

1=["xdo (6.30)
or with (6.28),
1=["n(6)t"de. (6.31)

. Inasmuch as n(e) is uruque for each soxl Philip (1957b) introduced the term

sorptivity S [LTV/ 2]

S = 3 n(e )dé (6.32)
and
I =St (6.33)
Because the infiltration rate
=dl/dt, (6.34)
we have
4 = -;- St (6.35)

Here, we note that the sorptivity is physically the cumulative amount of water
infiltrated at t = 1, and at that time, the infiltration rate has diminished to one-
half the value of S. Sorptivity depends not only upon the D(6) function but
upon 6;. The value of S decreases with increasing 6; and as 6;—6s, S—0, see Fig.
6.12. When S is measured for a particular 6;;, we can linearly interpolate
between 6 and 6s in order to obtain a first approximation of S for 62 > 6;1. A
more laborious, exact procedure is described by White jnd-Broadbridgd (1989). If

6, < 65 is used in (6.18) instead of s, we proceed in the same manner to derive S.
However, the resulting value of $(6;, 6,) may indeed drop substantially from
that of S(6;, 6s).

Sorptivity is an integral part of most investigations describing vertical
infiltration. As a first approximation of the solution of (6.17) subject to (6.18) and
(6.19), Philip used (6.22), the solution of (6.20) for horizontal infiltration, i.e. 21(6,
t) = x(6, t). He corrected this approximation with the term y, ie. z2=2; +y.
However, because an exact value of y cannot be obtained, its approximation y;
defines another correction u, i.e. y = y; + u. Again, instead of an exact u we can
only find still another estimate u; etc. Hence, Philip obtained the infinite series
solution

z(6,t)=n,(8)tV +n,(0)t +ny(0 )t +-+ n,(6)t"* (636)
where the functions 71, 172, 13, - 7« are defined with D(6), K(6) and 7n,.1. The
procedure for computing terms 7, is described in detail by Kirkham and Powers
(1972).
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Figure 6.12. The dependence of the parameter S* [LT12 ] upon the relative soil
water content 6;/6s. Broken curve is for a “linear soil” with D = constant
while the full curve is for a soil with D(6). :

Inasmuch as the cumulative infiltration I according to (6.16) is
1=["zd0, (6.37)

Philip formulated analogously to the sorptivity equation (6.32) for horizontal
infiltration, the following equation from (6.36)

[ =StV 4 (A +K Jt+Ast Vet A " (6.38)
where 7

A, =["n(0)do n=2,3
and K; is K(6;). Note that K¢t expresses the cumulative water flow with dH/dz =
-1 at 6 = 6;. Thus, we understand physically that boundary condition (6.19) can be
kept only if we impose a steady flux density g, = K(6;) for z 2 0 within the semi-

infinite column.
The series (6.38) converges for short and intermediate times of

infiltration and the infiltration rate q,(t) obtained by differentiation is

4 =%St V4 (A, +K,) +%A,t Vs DAL (639)
For large times, (6.38) does not converge. Inasmuch as the shape of the wetting
front remains invariant at large times, the wetting front moves downward at a

rate
o= (Ks'KsJ (6.40)

while the infiltration rate for t — o is
qo = KS M

(6.41)
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Equations (6.40) and (6.41), commonly called the infinite time solutions, are
theoretically traveling wave solutions (Philip, 1969a).

The times for which (6.38) or (6.39) continue to converge was found to
range broadly from 0.67 h for sand to 250 h for light clay (Haverkamp et al.,
1988). Similarly, the times for which the infinite time solution is applicable
varies widely from approximately 100 min for a silt loam (Nielsen et al., 1961) to
about 10° min for light clay (Kunze and Nielsen, 1982). Piece wise solutions for

1-dimensional infiltration have been discussed by Philip (1987).
In order to obtain an intermediate time solution, Swartzendruber (1987)

adjusted Philip's time series solution of 4 to apply between the limits ¢ -0 and
t— oo. Inasmuch as the solution for infiltration into linear soils as well as some
approximate solutions lead to exponential forms of I(t), Swartzendruber
proposed intuitively the form —_

I= Z-S-[l —exp(~A,t 2 =Bt =C,t ¥ -]+ K¢t (6.42)

where A,, By, C, *++ are constants depending upon the soil hydraulic functions
as well as ; and 6s. The time derivative of (6.42) gives the infiltration rate

S 172 372
» [1-exp (At -B,t -C,t ¥ =]

9, =

A
. —zit V2B 4+ %C,t v: )]+ K;. (6.43)

Parlange (1971), realizing that Richards' equation originated from a
combination of the Darcy-Buckingham equation and the equation of continuity,
also obtained a solution. His original procedure consisting of iterative processes
was gradually corrected by Cfsler (1974) and further modified (Parlange et al.,
1982, and Parlange et al., 1985) to its present form (Haverkamp et al., 1990). The
procedure, based upon an integral moment balance (Raats, 1988), uses a double
integration of the equation of continuity (6.2). The starting point is

- d ¢~
[T(a-9.)4z =-ét-j° (9-6.)dz. (6.44)
When the diffusivity form of the Darcy-Buckingham equation was combined
with (6.44), Haverkamp et al. (1990) using two approximation steps obtained two
well behaved equations. Owing to this contribution of Parlange and
Haverkamp, we call them the P-H equations. In their dimensionless form they
are

I. =-q—.L-1-+(l—)')ln|:1+ ‘1 ] (6.45)
and
t* = (1- 27)1n[1+ ,1 ]+ A 1-,7 (6.46)
4, -1 4 -1 9
where
. dr
4 =
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2(Ks - K

I'=[1- S i)

[ K‘t]S’+2K,h,(es-8,)'
.. Z(KS—K‘)zt

S’+2K,h,(8,-9,)
and

— 2 Ks(h,=hy)(85-6,)

T ST+2Kh,(6,-6,)

The value of hw is the water entry value on the wetting branch of the SWRC.
After I* and #* are computed for chosen values of g,, all three terms are
transformed back to the dimensional forms I, g, and ¢£.

The integral method can also involve a mass balance formulation where

(Raats, 1988) SR
fla(t)-a]at=["z (ot )ds (6.47)

which is also obtained by integrating the equation of continuity. Philip (1973)
and Philip and Knight (1974) managed to reduce the number of independent
variables of the infiltration problem by using a guessed shape for the ratio of
flux densities g/4,. With the main idea of this “flux-concentration relation”
method being explained in more detail in section 6.2.3.2., only the principle is
given here.

The parameterized flux density F related to the parameterized water
content 6g for horizontal infiltration is

F(6,t) =1 ‘ (6.48)
or with (6.32)
[
6)de
F (6;) = __I:;n( ) (6.49)
L‘ n(0)do
where
-8-6
O =g g

Relation (6.49) is the ratio of the partial and total sorptivities calculated from
(6.32) and illustrated in Fig. 6.13. F(6R, t) is the guessed shape which is inserted
into the diffusivity form of the Darcy-Buckingham equation to obtain

F(8ut) =_D_(9_)gg., (6.50)

o

With
1
==St -1/2
1. =3
the sorptivity is (Philip and Knight, 1974)

172
s =[2L‘f’§g—_§'@)—%(—@ de] : (6.51)




6.2 Infiltration 151

L

D)

"ib

SOIL WATER CONTENT 6
o

BOLTZMANN'S VARIABLE

Figure 6.13. Flux concentration relation F(6) is expressed as the ratio of these two
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Figure 6.14. Dependence of the flux concentration relation F upon relative soil
water content Og for DBC-horizontal infiltration according to Philip
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If F(Or) is known, the above solution is available. Inasmuch as the time
dependence of F(6g) is neglected, the solution is approximate. Philip (1973) has
demonstrated that F(6g) can only exist within a relatively narrow domain. In
Fig. 6.14 it can be seen that the domain is limited on one side by the curve which
represents a linear soil having a constant D and from the other side by the
straight line (F = 6g) which is descriptive of a soil having a D(6) equal to a Dirac
S-function. For 8 =0, F = 0, and for g =1, F = 1. These two soils should
represent the extremes of existence of D(6) for real soils. Although the difference
between the F(6R) relationships for these two soils appears slight in Fig. 6.14,
their soil water content distributions for horizontal infiltration are strikingly

different, see Fig. 6.16.
For vertical infiltration (6.48) is modified to

F(6,,t) =-‘;7-—'—%- . (6.52)
o TN
and the F(6R) relationships for the two extreme soils are given in Fig. 6.15.
4 1
2
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Figure 6.15. Dependence of the flux concentration relation F upon relative soil
water content 6g for DBC-vertical infiltration according to Philip ( 1973&

The solutions for the two extreme soils have the typical features of a
theoretical treatment with no direct applicability to reality. Linear soil,
characterized by a constant D and a K proportional to 6y leads to h being
proportional to Inég ~ a relationship for a SWRC which is not realistic for soils
or other porous media. It would appear that for &function soils, infiltration
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Figure 6.16. Soil water content profile 6(n) for DBC-horizontal infiltration for
the "linear soil” (broken curve) and for a &-function soil (full curve).

should be easily approximated owing to the steep rise of D with 6 and that F(6g)
= Or looks like a good approximation for the ratio of flux densities. However,
when the sorptivities computed for §-function soils were compared to those
obtained analytically for soils having a very steep D(6), relative errors exceeded
20% (Kutflek and Valentovd, 1986). Therefore, for most soils the iterative
procedures proposed by Philip and Knight (1974) should be adopted.

In order to obtain solutions for models characteristic of real soils, proper
functional relationships D(6), K(6) and h(6) are required. To obtain them
Richards' equation is linearized with transformations, e.g. those of Storm or
Hopf and Cole. A review of such solutions identifying the authors of each

transformation is provided by Raats (1990).

6.2.2.3 Appr})‘ximate Solutions

The solution of the infiltration process, approximated physically or
mathematically, is usually not kept wholly within either category but relies
more heavily upon one or the other. A physical approximation is dominant in
the procedure of Green and Ampt (1911) while mathematical approximations
prevail in remaining, more recent procedures.

Green and Ampt (1911) simplified a real soil water profile of infiltration
to a step-like profile, see Fig. 6.17. In this model, water penetrates into the soil
like a piston which proceeds with time to greater depths. Below the abrupt,
horizontal wetting front, the soil remains dry at its initial value of 8 = 8;. In the
saturated upper part of the soil, flow is now simply described by Darcy's
equation. If at time ¢ the position of the wetting front is z = Ly (the thickness of
the soil saturated with water is also Ly), the infiltration rate is
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Figure 6.17. Solution of DBC-vertical infiltration according to Green and Ampt’s
approximation where the real soil water content profile &z, t) given by
the broken curve is replaced by the step-like profile given by the full line.

h=[h,=L,(t)] ho+L(t)-h,

g,(t)=-Ks { L{)=0 K L, ©) (6.53)
where h, is the pressure head at the soil surface (i.e. the depth of water on the
surface). Note that Lf is time dependent. The term hy is the soil water pressure
head at the wetting front owing to the unsaturated condition of the soil below z
with ks < 0. If there were no soil below z = Lyand water was freely falling out of
the saturated soil column (h = 0 at z = L), the water flux throughout the column
of thickness Ly would be

q:q_.[(h_.‘-LEL(_)

see Fig. 6.17. Because there is dry soil below z = Ly, its unsaturated condition
causes the flux to increase. Green and Ampt added the term hy to the driving
force to account for the extra force acting at the wetting front. Neuman (1976)
has shown that

h = Kis [ K (n)dn (6.54)

and
1 ¢o
h, =7$ L, D(6)4ds. (6.55)

Or, using the Parlange (1975) solution
n, =lj“‘(95'9(h)“29‘11<(h )]dh. (6.56)

2 0 85"' 9, Ks
Obviously, without knowing the original publication of Green and Ampt,
Budagovskij (1955) based his monographic study upon the same principle.
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Theoretically, the procedure is based upon the expected shape and
similarity of the 6(z, t) profiles. Philip (1957b, 1973}) showed that the following
Green and Ampt approximation is an exact solution only if D(6) is expressed as a
Dirac &function. Considering (6.53), we know ¢, = dI/dt and I = Lid6 where 46 =
65 - 6;, and hence, '

dL
g = 7{- 46. (6.57)

The rate of progress of the wetting front is linearly dependent upon the
infiltration rate for all t > 0. When the force of gravity is neglected, i.e. for
horizontal infiltration, substituting (6.57) into (6.53), we have

dL h,-h
—L A0 =K = /1] (6.58)
dt Ls(t)
and after separating variables
L, _t ho-h f ,
J, LydLy _joxs( — )dt. (6.59)
After integrating,
ho - h TV
= 1/2
Ly= {21(5 (-—Aa-i]] t (6.60)
or with Ly= 1/ 46,
V2 49 A
I =[2Ks{no - ,)Ae] L2, (6.61)
Comparing (6.61) with (6.33), we obtain the sorptivity S
- 1/2
3 =[2Ks(h, -h,)Ae] 2, (6.62)

Equation (6.61) can also be used to estimate I during a brief initial period of
vertical infiltration. Equation (6.62) defines approximately how S depends upon
6;. : '

When gravity is not neglected, (6.53) becomes

dL L,(t)+{h,=h
A6 —L = K )+ (k- 1) . (6.63)
dt L)

. After separating variables and integrating between the limits (0, ) and (0, Ly), we

obtain
A6 L :
t =—1J<L,—{h,-h lnl+(——£—5 . 6.64
Ks{f (° f) [ ho“hf]} ( )

Notice that this solution does not allow I(t) to be described explicitly. Such an
implicit transcendental function is typical for all solutions embracing the Green
and Ampt approach even when it is not apparent in some more sophisticated
developments. When (6.64) is transformed with dimensionless terms
. _ Kst
46 (h, - hy)

(6.65a)

and
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I
I* = (6.65b)
Ae(h,-h,j
we have
t‘=1‘-1n(1+1') (6.66)

which can be evaluated graphically (see Fig. 6.24) or by computing ¢ for a series
of values of L¢with I = LA6.

Because the procedure is simple, the Green and Ampt approximation has
been widely used in research as well as in the solution of many practical
engineering problems. It has also been applied to the description of infiltration
into layered profiles and those having a crust surface. However, we have to
keep in mind that real soils do not manifest a &-function D(6), and hence, the
method offers results of disappointingly poor accuracy. For example, the error
involved in predicting I(¢) or g,(t) can approach 30% in homogeneous soil
profiles. Its use should be limited to those wanting only a convenient, rough
estimate of infiltration.

Within the second category of approaches, Philip's (1957b) algebraic
infiltration equation is the most common. This approximate equation is merely
the first two terms of the series solution (6.38) with the cumulative infiltration

I{t) being

I =5tV + At (6.67)
and the infiltration rate g, (= dI/dt) being B
4 = % StV 4 A, (6.68)

These equations like their parent time series solution (6.38), are applicable to
relatively short times. The magnitude of A is (A2 + K; + €) where ¢ is the
truncation error for having used only the first two terms of (6.38). It was
expected that A be related to Ks by a simple, sufficiently accurate relation A =
mKs. Although the most frequently used value of m is 2/3, its value ranges
between 0.2 and 0.67 (Philip, 1987). However, detailed studies show that m
depends upon both 6; and time and sometimes exceeds a theoretical upper limit
of 2/3. The error of estimate of Ks derived from A could theoretically reach
about 30% in a relatively dry homogeneous soil (Kutflek et al., 1988). Therefore,
(6.67) cannot be reliably used for estimating the value of Ks from infiltration
tests.

Sorptivity S in (6.67) and (6.68) is an estimate of the theoretical value of
sorptivity for a soil having initial water content 6;. The truncation error
influences the estimated value of the sorptivity to a lesser degree than that of A.
Thus, S evaluated from the early stage of infiltration is considered a reliable
value (Kutlek et al., 1988).

In order to reduce the truncation error, Kutilek and Krejta (1987)
proposed to use three terms of the time series solution (6.38)

I=CtV +Ct+C,yt ™2 (6.69)
where C is the estimate of sorptivity S, C; the estimate of (A2 + K;) and Cj the
value of (A3 + &) where & is the truncation error for having used three terms of
(6.38). If we approximate the limiting time for which the truncated series (6.69)
converges as the value of t when dg,/dt —0, we have
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o= -El—
tim i’ (6.70)
And, if we make an additional approximation that g,(t/im) = Ks, we obtain the
estimate
K ~(3¢,C,) " + G, (6.71)
Simplifying (6.42) in a manner similar to (6.67), Swartzendruber (1987)
suggested using

I = A%[l ~exp (-4, V7)]+ Kit. ©6.72)

Substituting 4Ks/3S for A, into the above equation, we obtain the two-
parameter infiltration equation proposed by Stroosnijder (1976). On the other
hand, if we consider onl)' the first four terms of a series expressing the
exponential term exp(-A,¢!/2), we obtain an equation identical to (6.69).

Equations (6.69) and (6.72) have similar disadvantages. Parameters C,, C3
and A, are not simply calculated or predicted from known hydraulic functions
Ks, K(h) and 6(h). When those equations are used for estimating S and Ks from
measured values of [(t), the estimates are reliable only for a strictly
homogeneous soil column with an initial condition d6;/dz = 0. When the
equations are applied to field data, significant, intolerable errors are sometimes
apparent. For example, when Kj is being evaluated, physically unreal values of
Ks<0 are sometimes obtained (Kutflek and Krejta, 1987, and personal
communication from Kreja, 1989).

Brutsaert (1977) also began with the horizontal solution of Philip (1957a)
and subsequently sought a correction for the gravitational force. He obtained

S? 1
I =Kt + 1- 6.73
s BKS[ [1+(BKst"2)/5]2} (6.73)
and
1 1
, =K +1g¢m . (6.74
q £ 2 [1+(BKst‘/z)/S]T} )

He considered values of B =1/3, 2/3 or 1 each descriptive of physical reality, but
for most practical purposes, recommended B = 1. Values of I(t) computed with
(6.73) are nearly identical to those from (6.38) when the hydraulic functions of
the soil are known. And, inversely, estimates of S and Ks from the experimental
data using (6.73) appear more reliable than those using other approximate
equations based on comparative theoretical errors.

From this and the previous section, we conclude that both I(t) and g,(t)
can be quickly and reliably computed for trivial initial and boundary conditions
with (6.45) and (6.46) or (6.73) and (6.74), respectively. The value of § is
advantageously obtained using the approximate expression of Parlange (1975)

5% = [*(85+6~26,)D(6)do (6.75)

or the iterative procedure described by Philip and Knight (1974) or by White
(1989) for the solution of (6.51).
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From the authors' experience, increasing the number of parameters
brings a theoretical improvement especially when soil hydraulic characteristics
are evaluated from infiltration tests. For example, if we deal with approximate
equations based upon the infinite series solution, the truncation error is
reduced with an increased number of terms. However, equations with three or
more parameters are more vulnerable to the field soil not being homogeneous
and the boundary conditions deviating from the trivial ones assumed in the
theoretical development. This vulnerability is realized when a number of
physically non-realistic parameters are obtained (e.g. a negative value of Ks in
the inverse solution).

6.2.2.4 Empirical Equations -

Historically, empirical equations have been used to describe a decreasing
infiltration rate g, as a function of time . The shape of a smooth curve drawn
through measured values of ¢,(t) was simply compared with that of an analytic
function. Inasmuch as both equations and experiments were empirical, it is
useless to try to physically interpret the coefficients of the equations. The
coefficients have the character of fitting parameters only with no scientific merit
(Haverkamp et al., 1988, and Kutilek et al., 1988). On the other hand, because of
their popularity in the literature and their usage persists, we briefly present
them here.
Kostiakov's (1932) equation of q.(t) is the hyperbola

g, =c,t™° (6.76)
with
c -a
I =-1-_‘;t (1-e) (6.77)

where ¢ and « are empirical coefficients. The value of ¢; should equal g4, the
infiltration rate at one unit of time (usually 1 min), and 0 < a < 1. The equation
does not describe infiltration at large times inasmuch as g, -0 when {—co.
Mezencev (1948) overcame this inconvenience by shifting the go,-axis

=c,+c,tP (6.78)
9, 2 +€;

with
1 -
I =C2t+'i:—5C3t (t-#) (6.79)

where ¢y, ¢3 and f are empirical coefficients. With the shift, as ¢ — e, c3 4o, the
constant infiltration rate when quasi-steady infiltration is reached, and hence,
goc = Ks. The infiltration rate after the first time unit go1 = (c2 + ¢3).

Horton's equation (1940) represents an exponential decay of g,(t)

g, =c, +cgexp(-rt) (6.80)

with
[=c,t +-c-y§-[1-exp(—7t ) (6.81)

where ¢4, ¢s and 7 are empirical coefficients. In contradiction to the theory of
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infiltration for a DBC, g, has a finite value at ¢ = 0. As ¢ — o, ¢4 —q,c which yields
a value of ¢4 =~ Ks. With this approximation for K, the value of ¢s = [¢,(0) - Ks)
where ¢,(0) is g4, at¢ = 0. Inasmuch as Horton derived his equation for
infiltration of a high intensity rainfall, the physical objection against a finite
value of g,(0) is largely eliminated as we shall see in the next section.

Holtan’s equation (1961) for a decay of g, with I is

g, =c,(W-1)"+¢, (6.82)
where cg, c7 and ¢ are empirical coefficients, ¢7 = goc, W is soil water storage
above an impeding layer and ¢, not an integer, is most frequently greater than
unity. Equation (6.82), incorporated into the USDA Hydrograph Laboratory
model USDAHL, has empirical coefficients related to the soil mapping units in
USA (Holtan and Lopez, 1971).

6.2.3 Unsteady Infiltration, Neuman's Boundary Condition (NBC)

When we describe rainfall infiltration, we consider that the REV is defined at
the Darcian scale. Therefore, we do not describe individual raindrop events, but
consider the rain as a continuous flux with the intensity of the rain g, being the
flux density passing either totally or at least partially through the surface of the
soil. The boundary condition at z =0 and ¢t 2 0 is formulated by the Darcy-
Buckingham equation (5.31)

q, =—-K %’ (6.83a)
or in diffusivity form (5.69) _
4, =K(9)—D(9)%. (6.83b)

Condition (6.83), called Neuman's boundary condition, describes not only
rainfall infiltration, but infiltration caused by sprinkler irrigation or by a special
flux controlled technique, e.g. by a peristaltic pump providing a constant flux
through a membrane placed upon the soil surface. For drip irrigation, we have a
2-dimensional problem with boundary conditions appropriately modified. Field
measurements of infiltration with boundary conditions (6.83) are usually
performed with rain simulators, see a review of Amerman (1983). Nozzles or
hypodermic needles are used to produce drops similar to raindrops at a certain
height above the soil surface. Regardless of how boundary condition (6.83) is
achieved, the initial condition is kept the same as that for the DBC.

6.2.3.1 Description of the Process

We denote this description into the three categories (i) constant rain intensity g,
> Ks, (ii) constant rain intensity ¢, < Ks and (iii) rain intensity g,(t). In all three
categories soil water profiles 6(z) at intermediate times do not resemble 6(z)
during early stages of infiltration. The distinguishing feature is that the soil
water content 6,(t) increases at the surface with time.
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Figure 6.18. Constant rainfall infiltration with rain intensity g, > Ks. Soil water
content profiles 6(z, t) on the left, and the soil water content of the soil
surface 6,(t) increasing with time on the right. Note that ponding time t,
depends upon g,.

Constant rain intensity q, > Ks. The value of the soil water content of the
surface 6, increases steeply with time until it reaches s, see Fig. 6.18. The greater
is g, the steeper is 6,(#). If rain continues, water ponds on the surface and the
start of ponding is called ponding time ¢,. If surface runoff is prevented, the
depth of water on the surface h,(t) increases with time and h, > 0 for ¢ > ¢,. With
the increase of h, being time dependent, dh,/dt < g,. The shape of the soil water
profile at ¢ < t, depends upon both g, and the hydraulic functions of the soil, see
Fig. 6.22. For { = t, the thickness of the saturated zone Ly extending below the soil
surface is (Rubin and Steinhardt, 1964)

haKs J
L,=a|—— 6.84
4 (qr -KS ( )
where a4 is an empirical parameter. For ¢ 2 t, the soil water profile 6(z, ¢)
resembles the profile with a DBC, i.e. with water ponded on the soil surface.
Hence, we specify the boundary conditions as follows

q,=I<(9)—D(0)-§Zg z=0 0<t<tp (6.85)

6 =065 =0 t2tp (6.86)
or, more exactly

h=0 z=0 t=t, (6.87)
and either

h=20 z=0 t>t¢ (6.88)
or :

h = ho(t) z=0 t>¢ (6.89)

Ponding time #, separates the infiltration event into two different periods. The
first is governed by the NBC (6.85) while the second is governed by the DBC
(6.86) or (6.87) to (6.89).



6.2 Infiltration 161

Constant rain intensity g, < Ks. For the entire duration of infiltration, the
flow is governed by NBC (6.85) where the term £, does not exist. On the soil
surface the value of g, is alwys less than that of g5 and hence, , cannot appear.

For non-constant rain intensity 0,(t), we formulate the functional
dependence /(t) in the NBC (6.85).
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Figure 6.19. Infiltration rate versus time for several constant rainfall intensities
qgr > Ks (left). The estimation of ponding time t, for a given q, when
infiltration rate qp and cumulative infiltration Ip for DBC are known
(right).

6.2.3.2 Approximate Solutions

Constant rain intensity q, > Ks. For an approximate intuitive derivation of ¢, we
compare infiltration for a DBC with that for a NBC. The parameters will be
indexed by D for DBC and by N for NBC. Rubin (1966) has shown that the
ponding time ¢, decreases with an increase of 4, and that t, > t, where ¢, is the
intersection of ¢, and qp, see Fig. 6.19. In order to satisfy boundary conditions
(6.85) and (6.86) as the NBC transforms to DBC, we assume the soil water
profiles 6(z, tp)n and 6(z, t;)p are identical. Hence, we are searching ¢y and ¢,
which satisfy two conditions. The first one is IN(tp) = ID(t;). or

[Pa.(t)dt = ["q0(t) at. (6.90)
The second condition is
qr(tp) = qD (tx) (6'91)
and for a constant value of g, we obtain
1 ¢t
= [ aolt)ae (6.92)

where t, is the time at which ¢, and gp intersect. Graphical interpretation of
(6.90) and (6.91) is given in Fig. 6.19. With qp(t) expressed by Philip's
approximate algebraic equation (6.68), we obtain
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= .§. ’ 2Q'.-1

where Q = 4,/A. By approximating F(6r) = 6g, Kutflek (1980) also analytically
derived this equation, see section 6.2.3.3. Similarly, qp(t) from other
approximate solutions can be used to calculate #,,.

At t St the infiltration rate g, = q,. At ¢ > ¢, the infiltration rate can be
approximated by shifting qp(t) by (¢, - t;). With (6.92) and with

SY 1
t, ={— .
x (A) ——!'4(Q’,_1) (6.94)

we obtain the infiltration rate g,(t) for ¢ > ¢,

: -1/2
1 s?
==S|t - . .

All of the above approximations as well as many others in the literature
have two disadvantages. First, the equality In(¢y) = Ip(ty) is just an assumption
teoretically derived by Mls (1980) and the same is for post-ponding infiltration
rates when they are computed as simple translations of the rate gp. Second, the

simple explicit formulation of qp(t) is, in reality, only an approximation.
Therefore, the purpose of our above discussions was to illustrate as simply as
possible the nature of infiltration under two different boundary conditions. The
equations can be used for rough engineering estimations provided that the soil
surface quality is not altered during the process, see section 6.2.4.1.
Constant rain intensity ¢, < Ks. Here, the value of the soil water content
on the surface ,(t) increases similarly to the first case but its limiting value is 6
< 6s. Inasmuch as.dH/dz —-1 at the soil surface as - e, we obtain a quasi-steady
infiltration rate g, =g, = K(6y). And, the value of 6,(t) approaches 6
asymptotically in time, see Fig. 6.20. The shapes of the soil water profile vary
with both time and infiltration rate. In Fig. 6.22 we see the importance of the
hydraulic characteristics of the soil for a constant infiltration rate at different
times. This example from Broadbridge and White (1988) is for two different
forms of the SWRC which are derived from the solution having an empirical
coefficient C. The influence of the value of C upon the shape of the SWRC is
shown in Fig. 6.22. The details of the solution are described by the authors.
Non-constant rain intensity q.(t) . When g,(t) is strongly time dependent

as it is in a great majority of heavy rainfalls, we obtain an estimate of {, using
the procedure described for a constant value of g, > Ks. Note that ¢, is no longer
the intersection of g,(t) with gp(t) as it was derived for constant rain intensity
infiltration. Equations (6.90) and (6.91) can be solved iteratively. Or, if g,(t) is
capable of being expressed as a probability distribution function, we can solve
them analytically. Regardless of the procedure, we recall that the solution
remains only an approximation owing to the use of gp(t). Figure 6.21 shows the
example of the graphical solution of (6.90) and (6.91) for ponding time t,. By
simply shifting qp by (¢p - tx) we obtain estimates of the infiltration rate for t > ¢,
and the hydrologically effective rainfall. The same priciple was applied for a
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Figure 6.20. Constant rainfall infiltration with rain intensity q, < Ks. Soil water
content profiles 6(z, t) on the top. Soil water content of the soil surface
0,(t) increasing with time on the bottom. The asymptotic value of 6y at
t— e follows from the condition K(6p = g,.

histogram of rainfall intensity. Details regarding the construction or
computation are described by Peschke and Kutflek (1982).
White et al. (1989) proposed the approximate analytic solution

2 ¢
t,=_lM-S—1n[ a(t) ] (6.96)
4. KS 9. tp - KS

where {, is the mean ¢, during the time interval (0, #,) and 0.5 < M < 0.66. More
than a decade earlier Parlange and Smith (1976) had derived a very similar
expression. Both expressions have features like those of the Green and Ampt
solution. In order to avoid redistribution, these expressions require g,(t) not to
decrease, see section 6.3.
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Figure 6.21. Time-dependent rainfall infiltration. Equations (6.90) and (6.91)
were applied for estimating the ponding time t,. With the exception of
the time interval (t, - t.), the actual infiltration rate equals the rain
intensity q,(t) if the excessive rain runs off. For ¢, < t < t, the infiltration
rate is obtained by shifting qp(t) , i.e. the DBC infiltration rate.
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6.2.3.3 Analytical Solutions

If we neglect early approximate solutions based upon the Green and Ampt
approach (e.g. Mein and Larson, 1973), four scientists eventually achieved an
analytical solution for t,. Parlange (1972) provided the initial effort which was
~subsequently modified by Philip (1973) and by Philip and Knight (1974). Philip
and Knight utilized the concept of “flux concentration relation" [for
convenience, (6.52) is repeated here] ‘
F(6,,t) = ; - f(‘
o T M
and neglected its time dependence which is even weaker than that for the DBC.
When the above expression for F(6g, t) is inserted into the diffusivity form of
the Darcy-Buckingham equation (5.69)

q =—D(9)%ze<+ K(8) (6.97)
we obtain with ¢, = g, .
F(6:)(q. - K)~-[k(8)-K] =~ D(O)%f—. (6.98)
Integrating from z = 0 yields
- r.(‘) D (9) de (69)

“ F(6:)(9. - K,)-[x(8)-K]
where 6,(t) remains unknown. Integrating the equation of continuity (5.62) with
gr constant between the limits (0, £) and (0, 2) gives

L
-(g,-K)t= L'(‘)zde. (6.100)
Combining (6.99) and (6.100) and integrating leads to
o) (0-6,)D(0)de
g9, -K)t= .
G-kt ey K- K@) -K]
From (6.101) the evolution of the water content of the soil surface 6,(t) is

ascertained. When we know 6, for a particular time ¢, we compute the soil water
profile 6(z) from (6.99). If g, > Ks we compute the ponding time £, from (6.101)
[ = 1 Jo, (6-6;,)D(0)d6 . (6.102)

9- - K;*% F(6g)(q, - i) - [K(8) - K]
A detailed step-by-step development of the procedure shows that the authors
treat component equations of the Richards' equation and integrated the Darcy-
Buckingham equation by using a guessed shape of the flux concentration
relation F(6R).

Proper judgment for an appropriate value of F(6g) is critical. Philip's
(1973) calculations of F(6R) for horizontal infiltration into linear and &-function
soils lead to approximations for early stages of infiltration limited to values of g,
» Ks. Another approximation for a constant flux infiltration was found

assuming F(6g) = 6z with 0.8 S n < 1 (Kutflek, 1980, Perroux et al., 1981, and

Boulier et al., 1984). In general, errors associated with the uncertainty in F(6R)
are less than those owing to our uncertainty in estimating D(6). Considering the

(6.101)
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joint development of (6.102), the procedure should be called the Parlange-Cisler-
Philip-Knight (PCPK) method' see our introductory remarks and comments to
(6.44) and (6.47). .

Morel-Seytoux (1982) also provided an acceptable approximation for a
constant intensity rainfall. For a variable rainfall his solution is restricted to
soils having K/Ks = 63 and to that initial part of a rainfall when its intensity is
increasing with time. His method cannot be applied to the receding part of
rainfall inasmuch as the procedure does not consider 8, decreasing as water
redistributes within the profile. Generally, infiltration stemming from a
variable rainfall can only be accommodated by numerical procedures.

The most versatile analytical solution of constant rate infiltration was
published by Broadbridge and White (1988). They allowed the soil hydraulic
functions to exist in broad limits between those of linear and §-function soils.
The hydraulic functions typical of real soils are expressed by a simple, free
parameter C which is easily measured in the field. A detailed description of the
procedure involving Kirchoff, Storm, Hopf and Cole and Laplace
transformations is beyond the scope of this book. Their strictly analytical
solution in parametric form given in Fig. 6.22 is most useful for testing
numerical schemes. Moreover, the application of their solution to practical
examples contributed to our knowledge of infiltration discussed in the previous
section.

Numerical solutions have been reviewed by Vauclin et al. (1979) and van
Genuchten (1981). Among improvements provided in the last decade are those
of Mls (1982).

6.2.4 Field Infiltration

When field infiltration tests are performed and evaluated, we meet a complex
set of effects not fully accounted for by exactly defined infiltration equations.
These effects more or less influence the observed data and the applicability of
infiltration theory to runoff hydrology, irrigation and other practical domains
involving infiltration. Some of these effects will be discussed.

6.2.4.1 Soil Sealing and Crusting

During ponded infiltration tests (DBC), the abrupt contact of the soil surface

with excess water causes weak aggregates to disintegrate and slake. The
migrating smaller particles quickly form a seal on the soil surface within a short
period of only a few minutes. The slaked clay particles are gel-like and exhibit a
thixotropic behavior not yet fully studied in detail. We expect in the presence of
mono-valent cations that this peptization of clays leads to the separation of
individual sheets of clay minerals that subsequently reorient into horizontal,
parallel configurations that tend to seal the soil surface causing an extremely
small value of Ks. Bi-valent cations allow the clay sheets to remain coagulated
and in a face-to-edge configuration. Hence, the value of Ks of the seal for bi-
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Extension of 6.2.4.

For field infiltration we have assumed a continuous and distinct wetting front in
accordance with the assumed homogeneous porous system. If the bi-modal porous
system is typical for a given soil, we have to apply a model corresponding to Fig. 2.20
and the resulting invasion percolation is different from the assumed developments of
soil water profiles and wetting front in homogeneous porous system, see Fig. 6.22a
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Figure 6.22a: Infiltration demonstrated as invasion percolation of water into
porous systm modeled by Fig. 2.20.
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Generally, we meet often preferential flow

Three types of preferential flow are detected in some field situations:
1. In soil porous system due to soil micro- and macro-morphology.
. Fingering mainly due to instability on the wetting front.
3. Irregularities in hydrophility.

1.1. Preferential flow in interaggregate (interpedal) pores, i.c. category of soil
pores 2.2.: If saturated hydraulic conductivity of matrix is K¢ = 1, then
matrix plus interaggregate K = approx. 10°. Unsaturated flow in matrix is
negligible in the first approximation. This type of preferential flow is
sometimes misinterpreted as flow in macropores.

1.2. Preferential flow in macropores, i.e. Category 3. K is by one order or more
greater than in saturated micropores. Unsaturated flow does not exist. Flow
in cracks reaches to the depth 100 cm maximum. In biopores it reaches
vsually below the pedogenetic depth.

Partial review of the problem is in a serie of papers of Ju et al. (1997). However,
there is a mess in terminology and definitions. It is frequent that the flow in category
2.2 of pores is denoted as flow of mobile water, while the water in the category 2.1. is
named immobile water. Flow in 2.2 is named funnel flow, too.

2. Preferential flow due to fingering

A wide variety of instabilities may occur when flow of water is realized in porous
media. Most frequently, they are driven either by viscous and gravity forces. Gravity
driven instabilities are related to infiltration and redistribution of water in soil. The
linear stability analysis suggests that the water-air interface will be unstable if its
velocity is less than the saturated conductivity of the medium. This wetting front
instability results in formation of fingers where the transport of water (and solutions) is
realized.

The hydrodynamic instability of flow in unsaturated soil may take place due to
the soil stratification and the imposed initial and boundary conditions. It is observed
when hydraulic conductivity increases with depth and the fluid meets an interface of
great variation of K i.e. from a smaller value (fine texture soil, or compacted upper
layer) to a greater value of K (coarse texture soil, or loose sublayer). The Richards’eq.
which usually describes the transport of water, assumes the validity of the hypothesis on
wetting front stability. As this condition is not met, the mentioned equations are not
applicable. Due to the instability of the front, narrow zones, .fingers® of nearly
saturation, or of increased water content are formed ahead of remaining wetting front
and these fingers are protruded in time. They occur not only during infiltration, but
they have been observed in redistribution, too. Fingers are domains of preferential flow.
Studies on fingering have been carried out through visual observations, light
transmission, immage processing and magnetic resonance imaging, see Onody et al.
(1995), Fig. 6.22b.
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Fig. 2. Images obtained with the MRI] system, showing three transverse sections of the fingering
phenomenon in steady-state conditions. Each section represents a slice, 2.0 cm thick, 15.0 cm wide and
14.5 cm high, of the cubic soil column, 15 x 15 x 15 cm®. We can clearly notice the spatial variability of
the phenomenon in these three images. In (a) the fingers are close to the bottom of the box. In (b) and
(c) they are close to the central part of the cubic column; still halfway to the bottom (Posadas, 1994).

(b)

(e) | M

Figure 6.22b: Fingering in soil column consisting of top less permeable layer
above more permeable layer.
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Parameters of fingers. as dr - finger diameter, gr - average flux in the finger are
dependent upon K, sorptivity S, and & , &;, saturated and initial soil water content.

Theory of fingering is related to the geometry of porous media. With fractal
characterization of fingering two type of models were created: Diffusion limited
aggregation and Invasion percolation model, for quotation see Onody et al. (1995) and
see Fig. 6.22a, too.

3. Irregularities in hydrophility

Dry soil of high organic content and peats are known to inhibit water
infiltration, ultimately forcing water to fiow via preferential paths through unsaturated
vadose zone. Important is the value of critical soil water content 8. .If actual 6 < Oz,
the soil behaves as water repellent, i.e. hydrophobic with high value of the wetting
angle above 90°. With water-entry value of the boundary wetting branch beneath the air
entry value of the main drainage branch, perturbations occur leading to formation of
fingers, Fig. 6.22¢. (Ritsema and Dekker,1994, Ritsema, 1998). The observed fingering
was up to now restricted to sandy soils with high organic matter content.
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Figure 6.22¢. Hysteretic water retention curve of the water repellent soil
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valent cations is larger than that for mono-valent cations, but nevertheless
orders of magnitude less than that of the original soil. The value of Kg of the
seal and its thickness are both time dependent. The formation and quality of
this seal are major factors responsible for the difference in infiltration rates
between structured and structure-less soils, see Fig. 6.23. Surface sealing is not a
rare phenomenon - indeed, it occurs with virtually all arable soils during
ponded infiltration. -
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Figure 6.23. Infiltration rate q,(t) for DBC into a structured and structureless
luvisol on loess (left) and q,(t) for a soil with different resistances (Rc1 = 1,
Rc2 = 9.1 and Re3 = 17 d) on the surface (right) for a loess soil (Hillel and
Gardner, 1970).

During rainfall infiltration, the slaking of aggregates is enhanced by the
kinetic energy of the raindrops. The impact of raindrops upon the soil surface
can be compared to a micro-bombardment. The drop after hitting the soil forms
a micro-crater with some of the segregated fine soil particles relocating to clog
pores and the remainder washed deeper into the soil with the infiltrating water.
Inasmuch as the ponding time differs from one point to another, suspended
clay particles are transported to small puddles and unevenly deposited across
the soil surface. During the subsequent dry period after the rain, the newly
formed seal consolidates and forms a crust. With repetitive rainfalls the process
of sealing and crusting eventually forms a crust-topped soil. For such a soil
crust, McIntyre (1958a and 1958b) defined two layers - a compacted thin layer
called a skin and a less dense "washing-in layer". For an originally undisturbed
soil having a value of Ks = 36 mm-h'!, he reported a 0.1 mm thick skin having a
Ks = 0.018 mm-h? and a 1.5 to 2.5 mm “"washing-in layer" having a value of K
= 0.115 mm-h'L

Mualem et al. (1990) defined two types of crusts. Depositional crusts are
formed by fine particles settling from a suspension reaching a depositional site.
The scale of this type of crust is related to the scale of observation. Structural
crusts are caused by the destruction of soil aggregates exposed to the direct
impact of raindrops as we discussed in the paragraph above. ‘
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Soil surface seals have relatively large values of bulk density pr. The rate
of increase of pr depends upon the kinetic energy of the rain, nature of the soil
and its aggregates and initial values of bulk density pri. The smaller is pr;, the
larger is the rate of change of dpr/dt. Similar relations hold for Ks and other
hydraulic functions of the seal.

Seal formation is more dependent upon rainfall energy than upon
cumulative rainfall. Rainfall energy is closely correlated with rain intensity. The
kinetic energy of rain which induces seals and crusts ranges from about 0.1
J's1:m-2 for a rain intensity g, of about 0.3 mm-min-! to 1.2 J-s-m-2 for gr~2.5
mm-min-l.

Once a seal is developed by a rain event, the physical properties of the seal
are usually sustained. Repeated high intensity rainfall or sprinkler irrigation
forms deleterious, undesirable crusts-in the majority of agricultural soils. For
example, below a 5 mm thick surface crust, Passerat de Silans et al. (1989)
measured values of pr = 1.32 g-em™ and Ks = 1.3 - 104 m's'l. Within the crust pr
= 1.45 g-em™3 and K = 2.8 - 106 m's°l. Similar examples are reported in the
literature, e.g. Callebaut et al. (1985). With the nature and extent of soil crusts
being highly variable, their behavior falls between the one extreme of
manifesting an earlier developed, constant hydraulic resistance and the other
extreme of a gradually increasing hydraulic resistance as a seal develops during
rainfall on an originally crust-free soil.

6.2.4.2 Infiltration into Crust- and Seal-Topped Soils

The first solution of infiltration into a soil profile having a surface seal of
constant hydraulic resistance Ry = L1/Kg; was proposed by Dole2al and Cisler
(1969) assuming the Green and Ampt approximation, see (6.53). Analogous to
(6.63) we obtain

de 40 = KSZ(ho —hf)'l-Kssz

dt Ksz Rl +L f
where index 1 is for the seal, index 2 for the homogeneous soil below the seal
and L, is the thickness of the seal provided that Ly « Ly After integrating
between the limits (0, ¢) and (0, Ly, and using dimensionless terms (6.65) with

dimensionless resistance y° where

(6.103)

- = RiKs
- 1
Sy (6.104)
we obtain analogous to (6.66)
=1+ -1)In(1+1°) (6.105)

which is graphically demonstrated in Fig. 6.24. The primary disadvantage of this
and similar approaches is the error introduced by the simplified conditions L; «
Lyand 6; = 053 at the interface. When the wetting front is in the vicinity of the
interface between the seal and soil, the soil water content 6, immediately below
the interface is time dependent, see also Fig. 6.25. A similar approach was later
published by Hillel and Gardner (1970).
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Figure 6.24. Dependence of dimensionless cumulative infiltration I* upon
dimensionless time t* for DBC when the dimensionless resistance x* in
(6.104) is defined on the soil surface (Dole2al and Cisler, 1969).
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Figure 6.25. Infiltration into a silty clay loam with a seal for DBC. Soil water
content profiles below the seal 6%(Z*, T*) with scaled variables (Kutilek et
al., 1991).
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When the water capacity in the seal is neglected, the boundary condition
at the seal-soil interface can be formulated as a Neuman boundary condition.
Neglecting the seal thickness L; we write

a.(t) =K(6)-D(0)2 z

"
[=]

t20 (6.106)

or

q,(t)=-ﬂ%—ﬂ z=0 £20 (6.107)
Here, the resistance transforms the original DBC to a NBC. The example in Fig.
6.25 (Kutflek et al., 1991) shows infiltration into a soil with a surface seal of
resistance R. Water stored in the seal is neglected. The soil water profiles
6*(Z*,T*) are typical for NBC, compare them with those in Fig. 6.20 or 6.22. We
explain more about these scaled variables 6*, Z* and T* in section 8.3.

For rain infiltration (i.e. for a Neuman boundary condition above the
seal) a similar procedure leads to 6(z, ) analogous to that presented in Fig. 6.25.
When the rain intensity ¢, > Ks1, where Ks1 is the saturated hydraulic
conductivity of the crust, we obtain the reduced ponding time. The decrease of
ponding time ¢, with an increase of crust resistance R has a nearly exponential
form. When R rises by one order of magnitude, the value of ¢, may be reduced
by nearly two orders of magnitude (Aboujaoude, 1991).

Up to now, we have considered approximate solutions of infiltration
based upon the surface seal resistance being constant in time. However, rain-
induced seals as well as their hydraulic functions are time dependent. Edwards
and Larson (1969) observing an exponential decrease of Ks1 (seal) with time
during a high intensity rainfall proposed the following formulation of the
saturated hydraulic conductivity of the seal

Ksy(¢) = Ksp +(Ks, — Ksp) exp (-Et) (6.108)
where Ksr is the final value of the saturated hydraulic conductivity of the seal
(usually at the ponding time), Ks, its initial value at the beginning of the rain

. (usually taken as Ks; of the underlying soil), E the energy of the rain and o a

parameter which characterizes the susceptibility of the soil to seal formation
including the eventual impact of water quality upon the slaking of the soil.
Owing to the large, abrupt decrease in pressure head across the seal, microscopic
bubbles of air released immediately below the saturated, compacted seal block
the pores of the lower portion of the seal and contribute to a decrease in
hydraulic conductivity of the seal. The effect of these bubbles is empirically
included in the value of a. Inasmuch as the energy of the rain E is generally not
measured, the term E is sometimes replaced by rain intensity 4, (and hence, aE =
a14,) or the cumulative value of rainfall appears in the exponent. Inasmuch as
the seal is almost instantaneously saturated with water at the beginning of the
rainfall, other hydraulic functions of the seal are not needed for the infiltration
solution.

Because the time dependency of Ks;i(t) of the seal shifts the ponding time
tp by only 10 to 20% compared with that for a soil manifesting a seal of constant
hydraulic conductivity, the time dependency of a seal's hydraulic conductivity
can often be neglected. Measurements and data collection should be aimed
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Figure 6.26. Hydraulic conductivity and seal thickness as functions of
cumulative rainfall energy (Mualem et al., 1990).

primarily at the determination of Ksr in relation to the energy of the rain, see
Fig. 6.26.

8 We denote the time dependency of the hydraulic conductivity of the seal
described above as a short-time dependence. This short-time dependence of
hydraulic functions of a soil wetted during infiltration remains more intuitive
rather than being based upon exact evidence. In addition to a short-time
dependence, a well-known large-time dependence of hydraulic functions exists
mainly in the topsoil. The time scale of these changes embraces several months,
an annual season or years. This large time infiltration variation is heavily
dependent upon the plant canopy and the frequency and type of cultivation.
Although the effects of cultivation appear to damp out after several months, the
effect of root channels is more persistent (Gish and Starr, 1983).

6.2.4.3 Infiltration into Layered Soils

Infiltration is primarily dependent upon the relation of K in each of the layers
to gradients of the respective pressure heads h. Let us consider infiltration
under a NBC into a simplified profile consisting of only 2 layers: layer 1 on top
is texturally finer than that of layer 2, e.g. loam over sand with Ks; « Ks3, where
the indices 1 and 2 denote each of the layers. Because infiltration into a layered
soil profile is dependent upon the relation K(h), see earlier Fig. 5.9, the sandy
sub layer, even if more permeable at saturation, behaves like a less permeable
layer at h < h.. As the wetting front approaches, the hydraulic gradient should
increase at the interface of the two layers. The increase is realized through an
increase of h at the bottom of layer 1 which is reflected by an increase of 8 above
the value 6, at the bottom part of layer 1, see Fig. 6.27. Although h(z) is
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Figure 6.27. Soil water content profiles 6(z, t) for NBC-infiltration into a layered
soil. At the interface between the layers, 8 may reach 65 in loam over
sandy soil without saturation occurring at the soil surface.

continuous, 6(z) is discontinuous at the boundary of the layers. If indeed, there
were a gravel layer instead of sand below the fine-textured topsoil, the water
flux in these macropores and cavities would occur only if h > 0 above the
interface.

This layering of a loam over a sand can also cause an instability of the

wetting front visualized as finger-like wedges below a continuous wetting front
during infiltration. The term fingering used by Hill and Parlange (1972) is
commonly explained either by hydrodynamic instabilities (Diment et al., 1982)
or by descriptive empirical approaches (Hillel and Baker, 1988). When the
wetting front arrives at a textural or structural interface, h is too small in the
upper layer to allow the entry of water into the coarse pores of the sub layer. As
6 increases in the soil above the interface, h increases until it is large enough to
allow water to enter clusters of fine pores of the sub layer, thus forming the

nucleus of fingers. As the wetting front progresses, the average h > h. with K3 of
the sub layer larger than Kgs; of the topsoil. Because the topsoil supplies a
limited amount of water g, ~ K51, the sub layer conducts this water only
through those originally preferential domains or clusters, and as a result, the
fingers conduct the water and increase vertically in size. From the description of
this fingering we immediately recognize an imperfection in our quantitative
modeling of the soil porous system.

On the other hand, when the topsoil is a layer of loam or sandy soil over
a clay sub layer, a zone of h > 0 is formed during infiltration governed by a NBC
with g, < Ks1 (topsoil). The height of this saturated zone in the bottom part of
the top layer depends upon ¢, and the ratio Ks1/Ks;. After a large infiltration
time the h(z) profile resembles that in the top part of the profile shown in Fig.
6.5. When infiltration starts with a DBC into an unsaturated topsoil underlain
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Figure 6.28. The influence of air compression ahead of the wetting front upon
the infiltration rate q,(t).

by a clay subsoil which is either saturated or nearly saturated with water, the
approaching wetting front displaces air giving rise to a pore air pressure ahead
of the front that increases above atmospheric air pressure. At this time, the
continuity of air-filled pores below the front with the atmosphere is interrupted.
Hence, the air ahead of the wetting front cannot escape until eventually the
increased pressure exceeds the air-entry value hy of the soil. At that time, the
monotonic decrease of g, with ¢ is interrupted giving rise to a sudden increase of
4o, see Fig. 6.28. On the other hand, if the increased air pressure does not lead to
a bubbling of air through the wetted topsoil, the infiltration rate remains
substantially decreased. The two-phase formulation of infiltration accounting
for the effects of air and the behavior of the air pressure ahead of the wetting
front for different values of §; has been presented by Morel-Seytoux (1976 and

1983).

6.2.4.4 Further Rainfall Infiltration Effects

Although the area of a rain-simulation plot is usually greater than the REV,
local inhomogeneities together with a variable micro-relief oftentimes lead to
some phenomena not yet satisfactorily described in theory. As an example,
because the ponding time t, is not well defined experimentally, Rubin and
Steinhard (1964) defined three stages:
1. Stage A (absorption and retardation) occurs when the first perceptible
retardation of raindrop absorption can be observed.
2. Stage P (puddle formation) occurs when about one-third of the soil
surface is covered by puddles of rain water.

3. Stage C (completion of a water mantle) occurs at that instant when the

last soil area not yet covered by a layer of free water disappears.
Irregularities of hydraulic properties at the soil surface also lead to the
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horizontal redistribution of free water on the soil surface which contributes
further to a non-uniform soil wetting depth within the infiltrated domain
(Clothier and Heiler, 1983). When the surface runoff of water from a small plot
is observed, point heterogeneities lead to a suppression of the ponding time
indicative of observable runoff. This suppression of f, by local heterogeneities
was confirmed by models of elementary runoff (Vauclin and Vachaud, 1990). A
further factor influencing rainfall infiltration and runoff is the existence of
preferential flow paths. Their existence renders the quasi-constant infiltration
rate 4. dependent upon the rain intensity ¢, with the ponding time depressed
and practically independent upon g,, see Fig. 6.29. In such cases observations of
infiltration q,(t) are different than the theoretical function shown in Fig. 6.19
because the micro-catchment area of each of the preferential flow paths is g,
dependent and film flow exists in the majority of the preferential flow paths
(Peschke and Kutilek, 1976). o
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Figure 6.29. Rainfall infiltration measured with a rainfall simulator on a plot
without (left) and with (right) macropores which cause the existence of
preferential paths (Peschke and Kutilek, 1976).

6.2.5 Infiltration into Seasonally Frozen Soils

Within the season of frost additional factors exist which influence infiltration
either directly from snow melt, or from rain combined with snow melt. We
have shown in section 5.6.3 that frozen and unfrozen water co-exists at
temperatures T < 0° C. Under such a condition the value of the hydraulic
conductivity is influenced by the ratio of those two phases of water and by the
microscopic and macroscopic characteristic features of ice lenses in the soil, see
Fig. 5.22. Generally, the hydraulic conductivity decreases strongly with a
decrease in temperature. However, near 0° C the ratio of solid to liquid water is
highly variable and under natural dynamic conditions, snow melt infiltration
frequently occurs.
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Figure 6.30. Four types of infiltration r[zttés'qo( t) into frozen soils (Gray and Male,
1981).

Because the flux of water is accompanied by a phase change, the
simultaneous transfer of both heat and water must be considered. Additionally,
the liquid and vapor phases of the water flux have to be treated separately.
Water and heat transport processes have to be studied quantitatively in the
period before infiltration starts inasmuch as they influence the initial water/ice
content in the profile and the eventual occurrence of an impeding ice layer
deeper in the profile.

Fig. 6.30 demonstrates the four basic types of infiltration curves g,(t)
according to Gray and Male (1981):

Curve A is for a soil which is frozen when initially water saturated, or
when an impervious ice layer develops on the soil surface during a melt
period. The infiltration rate, practically constant with time, is very small
and approximately equal to the hydraulic conductivity of the soil frozen
at the given temperature.

Curve B is for a frozen soil having a large water content but distinctly
below saturation. Some of the melt water penetrating deeper into the soil
profile transfers heat and causes ice within soil pores to melt.
Progressively, as the soil warms and the ice in the pores melt, the
infiltration rate continually increases to values sometimes one-half an
order of magnitude greater than that of the initial value of 4,. Eventually,
the infiltration rate decreases because the topsoil approaches water
saturation and the deeper layers of the frozen profile remain nearly
impermeable.

Curve C is for a frozen soil having a small water content and at a
temperature near or above freezing. With only the small pores filled with
ice which thaws rapidly with a downward movement of infiltrating
water, infiltration proceeds in a manner similar to that for a soil in an
unfrozen condition.
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Curve D 1s for a frozen soil having a small water content and at a
temperature well below freezing when snow at its surface 1s melting
Water 1utially infiltrates as in an unfrozen soil but after entering the
extremely cold soil, 1t 1s frozen everywhere within the soil pores with its
movement drastically inhubited Here, the infiltration rate being very
small 1s described by Curve A
The curves given 1n Fig 6 30 provide only schematical information that
must be tempered further by variations which occur that are dependent upon
local heat-water-transfer conditions It should also be recogruzed that
infiltration from snow melt 1s moderated or controlled by the flux of water
through the snow cover The boundary condition at the scil surface 1s therefore
not easily defined as can be recogrized from the model of melt-water
infiltration 1n subfreezing snow (Illangasekare et al, 1990) Although the
modeling of melt-water 1infiltration 1s feasible and useful for a detailed study
and interpretation of observed phenomena, the predictive use of such models
remains questionable

6.3 SOIL WATER REDISTRIBUTION AND DRAINAGE
AFTER INFILTRATION

After infiltration ceases, we can detect a gradual decrease of the soil water
content even when the soil surface protected by a cover allows no evaporation
The decrease of 6 withun the originally wetted topsoil 1s caused by a downward
flow of so1l water We distinguish two cases First, the drier soil below the
wetting front 1s at a great distance from the ground water level, or more
generally, we assume that free ground water 1s absent In thus case, when water
drairung from the wetted topsoil wets the originally drier subsoil, we speak of
soil water redistribution The second case exists when the wetting front 1s close
to the ground water level or reaches the ground water level with water flow at
or near steady state conditions, see Fig 61 When infiltration stops, transient
conditions allow the excess water from the topsol to pass directly to the ground
water Thus process 1s denoted as drainage to the ground water level

6.3.1 Soil Water Redistribution after Infiltration

When 1infiltration ceases, a relatively large soil water potential frequently near h
= 0 exists withun the topsoil down to the depth of the wetting front z; Below the
wetting front, the value of h 1s very small, and hence, the soil water profile 1s 1n
a dynamuc state rather than one of equilibrium When we discuss thus non-
equilibrium process caused by infiltration, we denote the time of cessation of
infiltration ¢, = 0 The non-equilibrium produces a downward water flux withun
the soil profile without a contribution to the flux from the surface,1e atz =0, g,
= 0 With the soil between z = 0 and z = zs being dramned, water flows below zf
forming a new redistribution wetting front at z,, see Fig 6 31 The soil water
content profile 6(z) at ¢, 1s the profile at the end of infiltration Subsequently, at
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Figure 6.31. Soil water content profiles 6(z, t) during redistribution after

infiltration.
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Figure 6.32. Averaged relative soil water content Or as dependent upon the
depth of the wetting front after infiltration z; and upon time t* plotted in
scaled quantities (Youngs, 1983).

times ty, ¢y, ¢3, -, redistribution profiles are observed. The cumulative drainage
Iz and the cumulative wetting I, below zy are equal for the time interval (0, #1),
see the hatched areas in Fig. 6.31a. As the redistribution front moves downward,

the mean relative water content 8, [=(6- 6)/(6s - 6;)] betweenz=0and z = z¢
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g, = % [z (6.109)

decreases with time, see Fig. 6.32. The rate of decrease depends upon the
hydraulic conductivity and the depth of the original wetting front from the
infiltration. The values of both are included in the scaled variables together
with scaling factors & and f in the figure. The decrease of 6 for the clay is much
slower than that for sandy soils. If 6; is relatively large, the force of gravity has a
large influence. We note in Fig. 6.32 that the larger the value of 46 (= 8- 6)), the
faster is the redistribution process. The flux density across the redistribution
front decreases in time owing to two factors. First, the potential in the wetted
topsoil decreases with a simultaneous decrease of the gradient of the total
potential dH/dz. Second, the value of the hydraulic conductivity decreases

strongly with only slight decreases of 6.

Inasmuch as water redistribution within a soil profile is composed of
both drainage and wetting, the entire process is strongly influenced by
hysteresis. Hysteresis not only slows down the redistribution process but
prevents the soil from subsequently draining to a value of 6 < §; inasmuch as for
a given h, 65 > 6, (where the indices 4 and w again denote drainage and wetting,
respectively). Inasmuch as 64(hj) > 6,(h;), redistribution profile &(z),es > 6,(2)
even at equilibrium. Although a rigorous analytical treatment of redistribution
is not feasible owing to hysteresis, approximate solutions of Gardner et al. (1970)
confirm most of the above statements. Because analytical procedures are
inadequate to predict redistribution in real soils, numerical methods are

advisable (Rubin, 1967).

When soil water content profiles 6(z) are observed for particular time
intervals ty, t3, ---, two different kinds of profiles are evident, see Fig. 6.31.
Youngs (1983), reviewing his earlier studies of the problem, offered an
explanation for the two kinds of profiles based upon the scaling of experimental
data and hence, confirmed earlier proposals of Biswas et al. (1968 6).

In Fig. 6.31a, the soil water profiles during redistribution maintain
approximately the same shape of the initial infiltration profile, but
progressively become "slimmer" as the soil water content of the topsoil
gradually decreases. The soil water content above the sharp wetting front is
nearly uniform. This situation develops when the cumulative infiltration is
small or when the saturated hydraulic conductivity Ks of the topsoil is
relatively small, i.e. that of a fine-textured soil. On the other hand, in Fig. 6.31b,
the redistribution profile 6(z) shows a relative maximum of 6 at some depth
above the original infiltration wetting front zy Below this wetting front
persisting during the redistribution at zs a step-like profile manifesting a small
increase in soil water content 48 advances into the deeper, drier soil. With
depth, we note that the value of 46 (= 6, - 6;) remains relatively constant as
redistribution continues. The soil surface desaturated to a greater extent than
that portion of the profile near zy is assumed to be typical for large volumes of
cumulative infiltration into a coarse-textured soils.

Although some authors assume for case (a) in Fig. 6.31 that computed
values of 6(z) are obtained when hysteresis is neglected, this type of profile is
obtained even with hysteresis when gravity is neglected. In both cases during
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redistribution , although 6 decreases monotonically with time for z < z;, the rate
is however different. Below the position of the infiltration front the soil water
content at z > z first increases in case (a) to a certain maximum and then
decreases slightly. In case (b), the soil water content increases monotonically to a
constant value.

When a soil profile is layered, the redistribution soil water profiles are
similar to NBC infiltration profiles of layered soils with g, < Ks. Except when 6
is close to 6, a sandy layer may either slow down or even stop redistribution.
However, if 6; was close to 65 before infiltration and remains large just below
the wetting front, a sandy layer in the subsoil may accelerate redistribution.
During redistribution, large cavities and macropores will not be filled with
water until & > 0. When a clay or loam layer is below a sandy soil, it may serve
as an impeding layer and cause waterlogging above it.

The practical importance of redistribution is seldom fully appreciated.
With the duration of redistribution being much longer than that of infiltration,
redistribution plays an important role regarding soil water storage and its
availability to plants. It contributes together with evaporation and transpiration
to the initial boundary condition for the next infiltration and it contributes
directly to the redistribution of solutes within the profile as well as their
eventual transport to ground waters. v

In addition to the redistribution which occurs after infiltration,
redistribution can also occur during rainfall infiltration if the rainfall intensity
q.(t) is strongly time dependent. We distinquish the occurrence of two cases. (i)
After ponding time f, has been reached, redistribution occurs during decreasing
portions of 4,(t) at times when g, drops below Ks, provided that surface runoff is
not inhibited. (ii) If g,(t) is sufficiently small that ponding never occurs,
redistribution starts the moment ¢, decreases and persists as long as g,(t)
continues to decrease.

If surface sealing develops during rain infiltration, the hydraulic
resistance of the soil surface increases. The time-dependent increase of the soil
water content 6, at the seal-soil interface is less pronounced than that of 6, for a
soil without a seal. Eventually, 6, may even slightly decrease after reaching its
maximum during infiltration. In such a case, infiltration is accompanied
simultaneously with redistribution and hysteresis.

Detailed solutions of redistribution and its accompanying processes are
available only from numerical methods.

6.3.2 Field Capacity

The practical importance of redistribution and its consequences for water stored
in the soil profile was recognized early by soil physicists in the last century
(Heinrich, 1886). The terms “field capacity”, "specific retention” and "retention
capacity” were coined to describe the amount of water held in the topsoil after a
thorough wetting followed by excessive water draining (now we should say
redistribution) to the drier subsoil. The downward movement of water is
assumed to stop, or nearly so, within 2 to 3 days. This assumed state of
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equilibrium (or quasi-equilibrium) is verified in the field by measuring the soil
water content as a function of time to ascertain the value of 8 when d8/dt = 0.
This field capacity value 6rc was supposed to be a real, universal characteristic
constant of a soil. However, when the theory of soil water flow is applied, it can
be simply demonstrated that the assumption of universality and constant
character of 6rc is not a reality and that the value of 6fc is a rough
approximation to be used as a “rule of thumb". The value of 8¢ measured in
the field for a given soil depends upon 6; before thoroughly wetting the topsoil
and upon the depth to which the soil was wetted before the commencement of
redistribution. Because the rate at which d6/dt —0 is not unique even for a
given soil, a rigorous quantification of 6rc is not possible. For a detailed
discussion and criticism of the field capacity concept, see Hillel (1971), Baver et
al. (1972) and Cassel and Nielsen (1986).

In spite of our theoretical reservations the concept of field capacity is
useful in the design of field management schemes for approximating soil water
storage. Field capacity 6fc is taken as an upper threshold value of @ within each
soil layer such that any water in excess of 6r¢c quickly drains to the next deeper
soil layer. With this concept, the soil profile is considered a vertical sequence of
reservoirs with the overflow level for each reservoir representing the value of
6rc for each corresponding layer. During irrigation or rainfall the top reservoir
is first filled up to the overflow and if more water flows in, the excess water
flows over to fill the next lower reservoir etc. With a judicious selection of the
depth of each soil layer, this simple analog of the soil profile is easily modeled
and computed.

Inasmuch as field measurements are laborious and time consuming, the
value of 6f¢ is frequently estimated in the laboratory using soil core samples.
The traditional European procedure calls for the sample to be first thoroughly
saturated and then allowed to. drain for a designated time, e.g. for 2 hours on a
many layered mat of filter papers or on a layer of dry soil. Terms such as
capillary or retention capacity are used to describe the characteristic value of 6
derived from specified laboratory procedures (Kopecky, 1914 and Rode, 1952).
The American school generally estimates 6f¢ as the value of 6 on the SWRC at
1/3 bar or less. Sometimes, especially for sandy soils, the value of 6
corresponding to 0.1 bar defines field capacity. To avoid misunderstanding, the
characteristic is called simply the 1/3 bar soil water content with its value
recognized as an approximation of field capacity. In general, the European
procedure provides a better correlation to field capacity than the 1/3 bar soil
water content. However, in both cases, we must keep in mind that these
laboratory-determined characteristics are two steps removed from reality. We
first assumed that redistribution stops at field capacity. The second step
substituted a laboratory procedure for a field test. Therefore, we should be fully
aware of the possibility of the laboratory approximation not being a reliable
estimate of Grc or the retention of water in a field soil profile.
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6.3.3 Drainage to the Ground Water Table

Here, we differentiate between two conditions. For the first condition, we
consider drainage from the soil profile after steady infiltration has ceased. With
the ground water table kept at constant depth Z, the profiles h(z) and 6(z) att =0
correspond to those in Fig. 6.1 except that now z = 0 is at the soil surface and the
ordinate z is oriented down positive. Because §(z) is greater than the SWRC [6(z)
> 6(h)] and dH/dz < 0, water flows downward to the ground water table. We
recognize that the flux density g is time dependent based upon the following
discussion. In the topsoil (0 Sz <z;) where dh/dz =0 and dH/dz = -1,q9 = K. If we
assume an exponential model (5.39) describes K(h), we obtain

Ing=A+ch (6.110)
and for K(6g), (5.34) becomes
Ing = A +nlnd, (6.111)

where A =InKs. Values of 0g decrease rapidly at the beginning of drainage and
eventually approach an equilibrium distribution within the profile 6r(z) = 6r(h),
the drainage branch of the SWRC. The position of z, moves upwards with time.
Neglecting the change in 6r along the curved part of h(z), we obtain

% ~ K077 (6.112)
The rate of change of the flux g(t) leads for the water storage W = 6z, to the
second derivative of 8 with ¢. The total height of water drained is

Z 0
o =) 0dz- jh__ze(h)dh (6.113)

where &(h) is the SWRC.

The second condition of drainage to the ground water table is when water
flows from a totally saturated soil profile. Swartzendruber (1969) modified the
procedure of Gardner (1962) by linearizing Richards' equation

96 _ dz dh\db
= = [ (e)( =55 0) 3z] (6.114)
using o\
h )36
N = —K(O)( %_2 0) 0 (6.115)
for conditions
0=0s 0szsZ t=0 (6.116)
0=0s z=Z t>0 (6.117)
a6 _ 090
E = —a-l; z=0 0 (6.118)
With the SWRC being simplified to
6 =6, +bh, (6.119)
boundary condition (6.118) becomes
%zq= z=0 t20 (6.120)
Equation (6.114) now transformed to
2
i N — 99 (6.121)

ot £
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is solved using separation of variables. Neglecting all except the first term of the
infinite series solution, we obtain

2

KVW(—? =1 -%exp[—(-zlz) Nt]. (6.122)
With a weighted diffusivity D (Gardner, 1962) the above equation becomes

B 21-Leg (-f—z’?-) e
where

W, =26, [ _6()dh (6.124)
or with (6.119)

W, =2Z(26; -bz)/2. (6.125)

By following procedures of Broadbridge and White (1988), Warrick et al. (1990)
extended this solution to more realistic soils of a non-linear character with
SWRC characterized by parameter C, see Fig. 6.22. However, the general features
of the solution embracing the non-linear character of D do not differ from those
of (6.122) or (6.123). In other words, the volume of water draining from the
profile decreases exponentially with time and the deeper the ground water table,
the slower is the drainage.

Collis-George and Yates (1990), reviewing earlier publications on the role
of encapsulated air in drainage, found for ¢ > 0 during the first stage of drainage
that water leaves the soil without any pores being drained. During this period,
drainage occurs as a consequence of the encapsulated air expanding with the
value of h decreasing below 0. They designate this early behavior as the first
stage of drainage from ponded soils. As we noted earlier, they state that both
analytical and numerical solutions of the influence of encapsulated air are
virtually impossible with only qualitative descriptions being feasible.

6.4 EVAPORATION FROM A BARE SOIL

Evaporation of water from bare soil is one of the simple processes of water loss
from land to the atmosphere. It is not just an academic exercise of theoreticians
trying to simplify the more complicated processes of water loss from land
surfaces. Such a simple process occurs from plowed soils, from fallow land,
from soil between tree and row crops and frequently from agricultural lands
during non-vegetative periods. Evaporation involves three events: (i) the
transport of water to an evaporating surface located either within the soil profile
or on the geographic soil surface, (ii) a phase change from liquid water to vapor
water and (iii) the transfer of water vapor from the soil surface to higher
elevations within the atmosphere. And, in general, the process also includes the
simultaneous transport of matter and heat according to conservative concepts of
mass and energy.

In this section, we assume that an energy balance is implicitly included as
evaporation occurs from a free water surface, and that the evaporation from a
free water surface is identical to that from a saturated soil when both are
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subjected to equal atmospheric conditions. Theoretically, these two evaporation
rates cannot be equal for the same atmospheric conditions because the
properties of the two evaporating surfaces are different. The albedo, surface
roughness, area of air-water interface, heat capacity and heat conductance each
differ and lead to different surface temperatures of the free water and saturated
soil. Hence, our assumption regarding the equality of evaporation from a free
water surface and from a water saturated soil is merely an approximation which
appears acceptable within the limitations of our experimental observations.

We denote the upward water flux density g, across the soil surface as the
evaporation E [LT!] and conventionally take E as a rate. Similar to the
description of infiltration, we distinguish between steady and unsteady
evaporation. The intensity of steady or unsteady evaporation is dominated by
the evaporativity or potential evaporation Ep. It is quantified here as the
evaporation rate from a free water surface. In this section we ignore
temperature fields.

6.4.1 Steady Evaporation

Owing to the condition of steady flow (dq/ dz=0), we are solving the transport
equation in its simplest form, i.e. the Darcy-Buckingham equation (5.31) for the
boundary condition z =0, h = 0 and for z positive upward from the ground
water table similar to that described in section 6.2.1.1.

6.4.1.1 Homogeneous Soil Profile

For the exponential form of K(h) [see (5.39)], we obtain an equation identical to
(6.5) except that 4 > 0 and the sign in the denominator of (6.4) is changed. The
solution is (Gardner, 1958)

-1
z_1. M +1 (6.126)
h ch | KsE™' +exp(ch)
where g, = E. We obtain values of z(h) for a given evaporation rate E, or we can
compute E if h is known at any elevation z. The maximum possible
evaporation rate Eay for a ground water table at depth Z is found with the
assumption of the most extreme condition of dryness at the soil surface. We
integrate (6.4) for h ——ecat z = Z and obtain

E&_ =exp(cZ) - 1. (6.127)

If Eonax in this solution is greater than the potential evaporation E,, h > - «, and
hence, we obtain E = Ej, from (6.126) using the appropriate value of hatz = Z.

When K(h) is expressed in the hyperbolic form of (5.38), the solution for
Epax for the boundary conditions above is (Cisler, 1969)

avm (o Y_a_, " 6.12
z= mSin(ﬂ/m)kbme)[bme +1] o
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Figure 6.33. Steady evaporation from a soil with ground water level depth z.
The distribution of pressure head h with z depends upon the rate of
evaporation E.

Numerous solutions available in the literature have been reviewed by Raats
and Gardner (1974) and Warrick (1988). -

The distribution h(z) within the soil profile during steady evaporation is
illustrated in Fig. 6.33. If no evaporation is occurring (E = 0),dh/dz =-1and h = -
z.IfE>0,dh/dz < -1, and an increase in the evaporation rate is accompanied by
a decreased hydraulic gradient dh/dz. Accordingly, d6/dz also increases with an
increase of E especially near the soil surface, where 6 may approach the
hygroscopic soil water content 6. If the top soil layer manifests a value of 8< 6y,
water also moves as a vapor. In this top layer water transport occurs
predominately by diffusion which is a much slower process than liquid flow
even for the same hydraulic gradient. Thus, this top layer functions as a strong
hydraulic resistance that causes the actual evaporation E4 « the potential
evaporation E,.

The real situation is far from the simplifications considered to obtain the
solution above. Atmospheric conditions are never constant in time,
evaporation rates from a free water surface usually follow a periodicity of 24
hours and the soil-atmosphere system is not isothermic. Nevertheless, steady
evaporation solutions provide practical guidelines for some field situations. For
example, they can be used to estimate the depth of the ground water table
necessary to substantially reduce evaporation, to estimate the contribution from
a given water table depth to supply water to plant roots or to estimate the critical
depth of the water table to minimize soil salinization. Such guidelines for field
soils can be improved by considering some more approximate solutions of
steady evaporation from layered soil profiles.
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6.4.1.2 Layered Soil Profiles

Steady evaporation from a layered soil profile is formulated similarly to that
from a homogeneous profile where the vertical axis is oriented positively
upward, i.e. in the direction of flow. The bottom layer (soil 1) is in contact with
the ground water table where z = 0 and h = 0. At the soil surface the soil is
assumed to be completely dry (b ——<0). The simplest case is that of two layers.
At the interlayer boundary 2; (see Fig. 6.34) it is assumed that h is continuous.

SUBSTITUTE
TOP LAYER
REAL SOIL &
2 b —oo
SUBSTITUTE PROFILE
TOP LAYER . h— —oo SOILL 1
4o 1 R, — | K
Re oK | K Ky <Ky
K 2 1 2 at z
27 [—1 atz g 7
SOIL 1 SOIL 1 SOIL 1
Ry Ry Ry
z=0 0 0

o
t—le
e

Figure 6.34. Steady evaporation from a layered profile is equal to that from a
homogeneous profile of a substitute length & offering the same hydraulic
resistance.

In the solution, two strategies exist. In the first one we search for the
value of h; at the interlayer boundary z;. Evaporation from the top layer is
computed for boundaries z; and 27 and for pressure heads h; and - o,
respectively. By plotting separate graphs of flux density versus pressure head for
the thickness of each layer, Willis (1960) matched the graphs to obtain the
evaporation rate and the value of h; at z;. From his graphical iterative
procedure he concluded that the evaporation rate from a system of fine-textured
soil overlying a coarse soil is only slightly greater than that from a
homogeneous, fine-textured soil profile. On the other hand, a large effect on the
evaporation rate was observed when the order of the layers was reversed.
Willis' conclusions, valid for the conditions he studied, demonstrate the great
variation of evaporation rate expected in relation to the hydraulic
characteristics, length and relative position of the soil layers. Hadas and Hillel
(1972) using the same strategy solved the problem by numerically integrating

n o, (n, _(Mz)_ dh Wz)  dh
I, dz+jzl dz = _——1+E/1<(h)+~fh(z.)“——1+s/1<(h)' (6.129)
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For the second strategy, we consider the resistance of each of the
individual layers in a manner similar to that for saturated flow in layered
systems, see Fig. 5.2 and (5.9). For a 2-layer profile, indices 1 and 2 represent the
bottom and top layers, respectively. Hence, the total resistance R = (R1 + Ry).
Determining the resistance of each layer follows from the dependence K(z, E)
which, in turn, follows from K(h) and h(z, E). We distinguish two cases
illustrated in Fig. 6.34. (i} This case illustrates a soil with a mulch on its surface

_or a freshly tilled soil having an increased porosity and an increase in the
number of large pores that increase Ks. However, because K/Ks decreases
rapidly with decreasing values of h, usually K1 > K3 at the interface where h =
hy. Evaporation from this two-layer profile (case i) will be the same as that from
a homogeneous profile consisting only of soil 1 but of a length greater than z,.
Let us denote the elevation of this fictitious substitute surface of the
homogeneous profile as & Then Rg = R. Here for case (i), &2 > z2. When & is
found, the maximum evaporation is simply obtained from (6.127). (ii) This case
illustrates a soil with a compacted top layer where K decreases with decreasing 4
much more slowly than in the subsoil. With the exception of some soil profiles
that are water saturated up to nearly the soil surface, usually K1(h1) < Ka(h1).
Evaporation from this two-layer profile equals that from a homogeneous profile
of soil 1 having a length smaller than z;. Here, &; < z. inasmuch as R¢ = R».

For an approximate solution for both cases, we make three assumptions.
First, we assume that soils 1 and 2 have an identical functional relationship for
K(h) with unique values of parameters that describe each soil. Later we assume
that function is (5.39) with Kg1, ¢1 for soil 1 and Ks3, ¢2 for soil 2. Second, we
assume the inequality of Ki(h1) and K2(h1) properly characterizes the top soil
layer as being either less or more permeable in the region hy > h > - . Third, we
assume that hy is very low and K changes nearly linearly between h1 and hy;
with K(hz3) = 0.

With the resistance R; of layer 2 being first approximated, the substitute
resistance Rg is found for substitute layer of soil 1. From Rz = Rg, we obtain with
further approximations (Kutflek and Mls, 1975)

G1-6

& -z, _Ky exp(c, 52)”37‘17(5121)]]7. (6.130)

5~z Kg |ewp(c Zl)[exP(G &)-1

From the value of & we can obtain the maximum evaporation rate Eqy using
(6.127) where K;s and c are data of soil 1.

If a soil consists of more than two layers, numerical procedures for the
solution are appropriate. In general, when we wish to relate the depth of the
water table to evaporation, we should consider the primary role played by the
layer having the greatest resistance within the profile. The resistance is that
obtained from the unsaturated hydraulic conductivity corresponding to the
measured pressure head profile h(z). Resistances estimated from ratios of
saturated hydraulic conductivity values Kg for different layers only are
obviously not correct. For example, a loamy sand layer in the middle of a loamy
profile usually reduces evaporation provided that the layer is considerably
above the water table. Or, a sandy layer above a water table and overlain by a
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loam layer reduces evaporation compared with that of a homogeneous loam
profile, provided again that the boundary between the layers is well above the
water table.

6.4.2 Unsteady Evaporation

Evaporation from a soil in the absence of a water table is a transient process
even for the following most simplified initial and boundary conditions:

z=0 t=0 6= 6 (6.131)
z=0 £>0 Go=-E (6.132)
z=L t=0 6= 6 (6.133)
z=L £>0 q=0 (6.134)

Here, a soil column of length L initially saturated by water has its soil surface
open to evaporation at ¢ > 0 and its bottom at z = L closed with no flux across it.
Both experiment and theory have shown that three distinct evaporative stages
of drying of a soil column exist, see Fig. 6.35 (Kossovitch, 1904, Lemon, 1956,
Gardner, 1959, Gardner and Hillel, 1962).
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Figure 6.35. Three stages of evaporation from a soil during constant atmospheric
conditions. Top: Evaporation rate E as a function of time t for three
values of potential evaporation Ep. Bottom: Profiles of 6(z) for increasing
times from ty to t3 in the first stage and from ty to t7 in the second stage of
evaporation.



188 Soil Hydrology

In the initial, first stage evaporation is governed exclusively by external
atmospheric conditions and we denote it as potential evaporation Ep. This value
of Ep is sustained as the soil water content decreases with time in the topsoil
owing to the hydraulic gradient increasing sufficiently to compensate for the
concomitant decreasing value of K. Eventually, as still more water is lost from
the topsoil, the hydraulic gradient can no longer increase especially when the
soil water pressure head approaches a value equivalent to the partial water
vapor pressure p/p, of the adherent atmosphere and 6 = 6,. At this time when
the decrease of K is not compensated by an increase of the hydraulic gradient,
the first stage of evaporation ends.

Gardner (1959) derived an approximate description of evaporation during
the first stage by neglecting the gravitational force. Assuming water loss by
evaporation from a soil profile of depth L is

E=-L % (6.135)
and that the diffusivity equation (5.73) with the soil water diffusivity D
expressed by (5.74), he obtained after still further approximations, the expression

1
*=2lnl1+— .1
w n( +D,) (6.136)
where
we =EZ1 (6.137)
and
. 2D
= 2 .1
E AL (6.138)

with D, = D(6,) and W the water storage in the entire soil profile at the end of
the first stage t = {; being

W = [ 6(z,t)dz. (6.139)
Instead of (6.136), Kutilek (1978) provided the exact solution

. (2

w* =(D"+1)" ln[wmﬂ] -2. (6.140)
(D°+1)" -1

The difference between the two solutions can approach 30%, see Fig. 6.36. For a

steep D(6) relation characterized by a large value of B, the amount of water

storage W at the end of the first stage is large. On the other hand for a D(9)

relation typical of a linear soil, W is substantially reduced.

The duration of the first stage depends upon both atmospheric and soil
conditions. If the atmospheric conditions and therefore E, are the same, the
period of the first stage is greater for a clay soil than for a sandy soil, and greater
for a structureless soil than for a structured soil. Therefore, the quality of the soil
surface influences the length of the maximum evaporation E, period and the
cumulative evaporation. Mulching the soil shortens this first stage of
evaporation and increases the amount of water stored in the soil profile.
Depending upon the atmospheric conditions, the smaller the value of E,, the
longer is the period of the first stage. And, if the value of E, is very small, the
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Figure 6.36. The approximate (Gardner, 1959) and the exact (Kutilek, 1977)
solution of the first stage of evaporation with D = Doexp[f(6 - 6,)] plotted
in dimensionless terms.

soil profile is dried more uniformly with depth owing to the small hydraulic
gradient required to provide water conduction through the profile.

The second stage of evaporation is characterized by a gradual decrease of
the evaporation rate with time with actual evaporation E being less than
potential evaporation E, and the difference between both increasing with time.
In addition to atmospheric conditions, evaporation depends upon the rate of
transport of water from deeper parts of the profile to the soil surface. Soil water
content continues to decrease with time as well as the value of the hydraulic
conductivity. Because the increase of the hydraulic gradient is small and often
negligible, it approaches a constant value in time, and hence, the rate of water
movement to the soil surface layer as well as E decreases. With the soil water
content near the soil surface being extremely small and near the value of the
hygroscopic 6, the thickness of this dried surface layer increases with time. The
progress of this dry front with soil depth is dependent upon #1/2 with the water
flux through the dry soil surface layer realized as water vapor transport
achieved through molecular diffusion. Here, the dry layer acts as a hydraulic
resistance and as its thickness increases with time, its resistance also increases.

For an analytical solution of this second stage of evaporation, Gardner

(1959) applied solutions for diffusion published by Crank (1957). The description
of the boundary conditions was simplified by assuming that the first stage of
evaporation did not exist. Hence, it was assumed that E, - when the second
stage starts at £ =0. Subsequently, Gardner uses (5.73) assuming that the
influence of gravity is negligible and that dD/dz = 0. When D is expressed as a
mean weighted diffusivity D in (5.80) for boundary conditions

06=6 0szsL t=0 (6.141)

6=6, z=0 £>0 (6.142)
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the evaporation rate after additional approximations is

5 n
E=(6-6,)—1| . 6.143
(& .,)(”t) (6.143)
And, the cumulative evaporation is
= \V2
E, =2(e,-e,)(%) . (6.144)

The dependence of E(t), demonstrated graphically in Fig. 6.35, is only
approximately valid for very long soil columns. When the condition of
uniform 6 with z is not fulfilled, we can assume in accordance with a similar
analysis of heat flow (Carslaw and Jaeger, 1958), that soon after the start of
evaporation the terms expressing the influence of a non uniform &z) disappear.

In some later attempts to achieve an analytical solution, the term
desorptivity [LT/2] was introduced analogous to sorptivity. However, if E, -
is not assumed, the solution for both the first and second stage of evaporation
must be treated as a continuous process and without simplifying
approximations such as neglecting gravity. Inasmuch as no appropriate
analytical solution exists, our discussion here is based upon numerical
procedures. Boundary condition (6.142) is replaced by

0<t<t z=0 do=Ep (6.145)
t> 1 z=0 6=06, (6.146)
where ¢} is the time dividing the first two stages of evaporation, and a zero flux
at z = L is still maintained. Numerical solutions as well as experimental data
show that E during the second stage depends upon E,. Evaporation E.
accumulated from the soil during small values of E, can exceed that during
larger values of E,. Such relations depend primarily upon the hydraulic
functions and 6; of the soil (Jalota and Prihar, 1990). The extent to which
evaporation is reduced by mulching not only depends upon the soil hydraulic
functions but upon the value of E,. On relatively fine-textured soils when the
value of E,, is small, shallow tillage or mulching greatly reduces evaporation for
long periods of time. On the other hand, tillage or mulches do not alter
cumulative evaporation from coarse-textured soils for large values of E,.
Between these two extremes a wide range of situations exist (Jalota and Prihar,
1990).

The simplifying assumption that a zero flux condition is maintained at
depth L necessitates additional interpretation. When this condition is released,
evaporation is accompanied simultaneously by redistribution, and hence,
evaporation rates as well as the duration of the first stage are reduced. The
redistribution rates are reduced substantially in the presence of evaporation
compared with those in the absence of evaporation - the case of zero flux at z =
0 considered in section 6.3.

Solutions for evaporation considering isothermal conditions differ
markedly from those accounting for non-isothermal conditions (e.g. Hadas,
1975). Errors approaching 20% or more, especially in layered soils are commonly
made if temperature fluctuations are ignored.

Jackson et al. (1973) showed that the concept of three stages of evaporation
does not strictly hold in field conditions. Diurnal temperature fluctuations and
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other atmospheric processes induce diurnal fluctuations of evaporativity in the
field. During night-time when the air temperature is low, heat flow upward
within the topsoil is accompanied by water flow. Additionally, inasmuch as dew
causes the value of 6 to increase at the soil surface, E = E, at sunrise for a brief
time interval followed by a period later on when E < E,. Moreover, cyclic
periods of downward heat flow induces coupled downward water flow,
especially water vapor to reduce actual evaporation. The overall impact of the
temperature induced field effects causes the second (falling) stage of evaporation
to begin even before the soil water content has reached hygroscopic values
(Jackson et al., 1976).

Soil cracking and other inhomogeneities of field soils can influence
evaporation up to 50% in a mild climate. In such cases, quantitative solutions
are strongly influenced by thermal fields. For example, within cracks of
relatively small depth, water vapor flows downward owing to thermal gradients
(Hatano et al., 1988).

The time at which the third stage of evaporation begins is not well
defined by the condition E — Ein or whendE/dt — 0. A quantitative measure of
the time at which these negligibly small evaporation rates occur within a
meaningful fiducial limit is presently not feasible.

In field studies, the depth within the soil profile at which the water flux
density is zero is of major importance and relatively easy to measure. It is
commonly called the “"zero flux plane" z,. Above that depth, the soil water
content decreases owing to evaporation. Below z, any change of 8 is attributed to
redistribution. The position of z, is identical to that depth where dH/dz = 0.
Here, H = (h + z) with h simply measured using tensiometers, see Fig. 6.37.
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Figure 6.37. Total potential head H(z, t) measured in 1-day intervals during
August with a mean evaporation rate E = 3.5 mm-day™! from a soil profile

having a silty loam overlying a fine sand. Positions of the zero-flux plane
2, are denoted by arrows (Thony et al., 1979).
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Figure 6.38. The progress of the zero-flux plane position with time in a sandy
clay ferrallitic soil (Kalms et al., 1979) and in a silty loam fluvisol (Thony

et al., 1979).
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Figure 6.39. Diurnal fluctuation of the total potential head H owing to
variations of evaporation as a consequence of temperature variations

(Thony et al., 1979).
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Although the zero flux plane gradually moves downward, a general
relationship for z,(t) is not unique. Its functional shape depends upon the soil
water content distribution before evaporation starts, the soil hydraulic
characteristics and the evaporation rate. The position of z, as a function of time
for two soils, a sandy clay and a silt loam, is given in Fig. 6.38. The data were
collected for comparable evaporation rates by the same researchers using the
same kind of equipment. Diurnal variations of evaporation dominantly
influence the diurnal fluctuations of 6, see Fig. 6.39. The daily fluctuations of H
as well as those of soil temperature are clearly evident as the average value of
both increase during a 3-day period (Thony et al., 1979).

A better knowledge of the role of non-isothermal conditions is obtained
when solutions of an isothermal process are compared with those of non-
isothermal evaporation. For the latter case, coupled fluxes and the basic
equations were shown in section 5.6.2. Milly (1984) made such a comparison
using two types of boundary conditions at the soil surface: (i) a step-like change
of 6 and T and (ii) a sinusoidal variation of T. He first neglected the thermal
water vapor flux component, and next the thermal liquid flux component. The
thermal liquid flux is negligibly small in wet soils. When soils having water
contents somewhat less than saturation are subjected to the step-like boundary
condition, the thermal liquid flux does not have a dominant role near the soil
surface. And, it is acceptable to ignore the thermal liquid flux in the prediction
of the evaporation. The thermal and isothermal vapor fluxes for diurnal
variation of temperature are approximately equal and of opposite direction in
wet soil (Jackson et al., 1974). As the soil dries out, the net contribution of vapor
transport increases. Errors induced by neglecting the thermal vapor flux are of
the same order of magnitude as those for the total flux for short time periods. If
the soil surface layer is dry (k < - 105 cm), the thermal vapor flux is responsible
for increasing evaporation during the night. On the other hand, neglecting
thermal effects for a month introduces an error of only about 1% of the average
evaporation rate. Hence, isothermal theory is adequate for estimating
cumulative values of evaporation for long time periods. Detailed, non-
isothermal models offer estimates for short time predictions but are plagued
with uncertainties in the determination of the transport and the coupled
coefficients. Recent formulations of coupled heat and mass flow by Passerot de
Silans et al. (1989) are sets of equations describing the fluxes, transport
coefficients, storage coefficients, aerodynamic resistances and terms for forced
and free convection in full complexity. In addition to the classically described
fluxes in soil, atmospheric fluxes of water vapor are considered at the same
level of physical accuracy. The physics of evaporation into the atmosphere is

concisely described by Brutsaert (1982).

6.5 EVAPOTRANSPIRATION

When a plant is rooted in a soil, evaporation E from the soil surface is
accompanied by evaporation from the plant, which is commonly denoted as
transpiration Tr. Water for transpiration is extracted from the soil by the root
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system. Macroscopically, we do not describe the influx of water into individual
roots, but consider the flux averaged over a representative volume of roots as
we did with the flux of water in soil without roots. Although detailed,
microscopic studies of a single root-soil interface are highly informative, we
keep the description of transpiration here on the same scale as that of
evaporation, and hence, the root action is considered macroscopically. Influx
into a root hair has its counter part in the description of water flow in an
individual soil pore by Navier-Stokes equations. Here we use the macroscopic
description of soil water extraction by the root system as a partner in the Darcian
formulation of soil water flow. Therefore, the continuity equation (5.62) in its
one dimensional form (6.2) is complemented by the extraction term S (Whisler
et al., 1968)

?at_" - _%zi -5(z.t). (6.147)
The change of soil water content @ in time ¢ is now caused by the change of flux

g as well as the extraction of water by roots on a scale of the REV. The
dimension of § is [L®L3T"] or, simply {T!]. Transpiration Ty is given by

Ty = [} Sz t)dtdz (6.148)
where Z is the depth of the root zone. When (6.147) is combined with the Darcy-
Buckingham equation, we obtain

d6 _d JoH

> az[x(e) az] S(z,t) (6.149)
or some other expression equivalent to (5.64), (5.66) or (5.68).

Because the combination of the two processes (evaporation E and
transpiration TR) is not simply separable, we consider their sum unique and use
the term evapotranspiration ET

E; =E+T,. (6.150)
In section 6.5.2.2 we shall learn that neither ET> Tr nor ET > E is a generally
applicable condition, even if Er > Tg and Er > E occur very frequently. :

Evapotranspiration has its deterministic elements in the evaporative
demand of the atmosphere and in the transport processes of heat and water
vapor from soils and plants through the sublayers which are next to the
evaporative surfaces and through plant canopies to the outer atmosphere. The
transport processes of heat and water vapor are treated in evapotranspiration
principally in two groups of theories. In the first group, the entire plant canopy
is considered a single, homogeneous layer characterized by bulk resistances
which reflect all molecular transfers through boundary layers as well as
turbulent transport. This consideration yields Penman-Monteith equations or
their equivalent.

In the second group, the micro climate of the canopy is studied with
turbulence within and above the canopy described using multi-layered models.
This second approach, not fully covered here owing to its complexity and
extensiveness, is considered more as a research topic while the first approach is
commonly and extensively used in practice. Quantitative descriptions of
individual phenomena and an objective explanation of the dynamics of
evapotranspiration can be achieved with the second approach. An appreciation
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for the second approach is available in review papers (e.g. Thom, 1975, and
Raupach, 1988).

We first limit our discussion to transpiration only in order to explain
some of its special features, and subsequently in the following section, treat the
more complex topic of evapotranspiration.

6.5.1 Transpiration
6.5.1.1 Transport of Water in Plants

Water extracted from soil by the plant root system is partitioned by the plant
into that metabolized into plant tissue and that transpired into the atmosphere.
The ratio of the mass of water extracted from the soil to that of the dry organic
matter of the plant is denoted as the transpiration coefficient (or ratio). The
transpiration coefficient for cultivated plants ranges from 300 to 900, and that for
trees of the temperate zone from 150 to 700 (Penka, 1985). Water is the main
constituent of plant tissues. Although the percentage of water in hydrophytes is
about 80 to 85% and that in cultivated plants about 70 to 80%, the water content
of individual cells or particular plant parts deviates greatly. The metabolically
most active plant parts and young tissues contain about 90% water in relation to
dry organic matter, leaves of cultivated plants 70 to 90%, wood of trees about 50
to 60% and seeds as little as 5 to 10% (Penka, 1985, and Slatyer, 1967). The water
content in individual parts of the cell usually follows the sequence, cell wall <
protoplasm < vacuole. Detailed studies of plant composition and transpiration
[e.g. Slatyer (1967 and 1973) and Penka (1985)] lead to the conclusion that about
95% or even more of the water extracted from soil is transpired and flows
through the soil-root-stem-leaves-atmosphere system. Water transpired
through the tissues of the stem is relatively small. The concept, Soil-Plant-
Atmosphere-Continuum (SPAC), describes the water flux through the above
system.

According to SPAC, the driving force of the water transport is the
gradient of the water potential. Resistances at the soil-root and leaf-atmosphere
interfaces and those inside the plant, soil and atmosphere influence the actual
fluxes, see Fig. 6.40. The analogy between water flux in the SPAC and current in
an electrical resistance network illustrated in the figure was first suggested by
Gradmann in 1928 and further elaborated by van den Honert in 1948 according
to Molz (1981).

The water potential in plant tissues is defined analogously to that in soils.
The total plant water potential is usually partitioned into two components: (i)
turgor or turgor pressure pr identified with a pressure potential and osmotic
pressure po. Hence, as illustrated in Fig. 6.41,

V =pr+po. (6.151)
Inasmuch as the cell volume is not constant, its reference value is taken as that
volume at zero turgor (pr = 0). An increase of turgor is accompanied by an
increase of cell volume and a decrease of po to ¥ = 0 at full turgor. A decrease of
turgor owing to dehydration causes the cells to shrink and at a certain threshold
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Figure 6.40. a. Schematic demonstration of the concept of soil-plant-atmosphere-
continuum (SPAC) with the most important of the hydraulic resistances
in the individual parts of SPAC. b. Profiles of the total potential head y in
the SPAC according to Philip (1957e): 1. normal transpiration, 2.
temporary wilting and 3. permanent wilting. Points along the
transpiration path are A. a definite distance in the soil away from plant
roots, B. surfaces of root hairs and of absorbing epidermal cells, C. the
cortex, D. the endodermis, DE. vessels and tracheids in xylem, E. leaf
veins, F. mesophyll cells, FG. intercellular space and stomatal cavity, GH.
stomatal pore, HJ. laminar sublayer, if present, JK. turbulent boundary
layer and KL. the free atmosphere. DPDw denotes the value of at incipient
plasmolysis of root cells.
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Figure 6.41. Relationship between turgor pressure pr, osmotic pressure po and
water potential y in an idealized osmotic cell (Hofler 1920, after Slatyer,
1967).

value is macroscopically observable as the wilting of leaves. Complete wilting
occurs at pr = 0 with po occurring in a broad range from 0.5 to 20 MPa (Slatyer,
1967). The total potential y at permanent wilting can manifest a broad range of
values that depend upon the species and stage of development of the plant, the
actual water stress resistance of the plant and the local environmental
conditions. This extreme decrease of pr is accompanied by irreversible
morphological changes inside of the cells. Some plant physiologists still denote
the absolute value of the water potential of plants as the diffusion pressure
deficit DPD = - yor [= (po - p1))-

Although the above description of SPAC may appear mechanistically
restrictive, regarding processes within and between cells of living organisms, it
does not exclude detailed descriptions of metabolic systems which regulate
resistances, permeabilities of cell membranes, etc. Resistances, especially those
in roots and leaves which vary with transpiration rate, can also be included. A
full description of these mechanisms not presented here can be found in the
literature on physiology of water regimes in plants.

As a first approximation to a simplified but realistic cross-section of a cell
(Fig. 6.42a, b), we show mechanistic models of water transport in series of cells,
see Fig. 6.42¢c, d and e. The first model in the series of cells considers the simple
transport from vacuole to vacuole (Fig. 6.42c) as was originally proposed in a
quantitative study by Philip (1958a). Although this series is realistic for water
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Figure 6.42. Left: Sketches of a. young and b. adult cells from higher plants
(Briggs et al., 1961, after Slatyer, 1967). Right: Models of water transport in
cells, c. from vacuole to vacuole, d. with contribution of cell walls and e.
with contribution of cytoplasm of the cell walls (Molz, 1981).

flow in young cells, it includes a contradiction for adult cells. That is, inasmuch
as the cell walls parallel to the direction of flow do not contribute to the total
flux, only the perpendicular walls are permeable. Transport in cells is included
in the next model given in Fig. 6.42d. In the most complex model, Fig. 6.42¢,
water transport in cytoplasm realized through plasmodesmata in the walls
(cytoplasm pathway) is accompanied by parallel transport in the walls (apoplasm
pathway). The main fluxes do not exclude the coexistence of water exchange
between the cell wall and the vacuole. Molz (1981) conducted quantitative
studies primarily focused on water transport in roots. In spite of the above
simplifications, these models provide quantitative insights into the water
regime of plants, especially when further developments included the effects of
diffusible solutes.

Water enters the plant primarily through the most active part of young
roots and root hairs. Hence, if L is the length of the roots, dL/dt is primary
information on the proportion of active roots. The cross section of a young root
given in Fig. 6.43 allows visualization of the pathway of water entering a root.
Water enters the root through root hair cells and through the epidermis of
young roots. Its path through the cortex is the location of greatest hydraulic
resistance. With this resistance regulated by the plant itself, Molz (1981)
concluded from his models that it takes about a half hour for the root cortex to
respond fully to a boundary condition change at the endodermis. Thereafter,
with quasi-steady fluxes being apparent, water potential gradients in the cortex
were greater than those in the neighboring soil. Hence, we should correct the
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Figure 6.43. Cross section of a young root (Kramer 1959, after Slatyer, 1967).
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Figure 6.44. Left: Cross section of a leaf (Meyer and Anderson, 1952, after Slatyer,
1967). Right: Closed and opened aperture of stoma and gas exchanges in
the open stoma.

original graph of Philip in Fig. 6.40b. Water, after passing the cortex and
endodermis, enters the xylem of the root which has a very small hydraulic
resistance. Aging of a root is accompanied by cutinization and suberization with
cork eventually completely replacing cortex in the roots of woody species. The
hydraulic resistance of those aging tissues drastically increases.
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From the root xylem water enters the stem xylem where it easily and
continuously flows at a very small resistance. Xylem can be considered the main
“river bed" of water transport in plants.

The dominant locality of transpiration is the leaf. A schematic cross
section is in Fig. 6.44. The surface of a leaf is constituted by an epidermis having
its outer cell walls thickened and lined with cutin and further covered by a
"crusty” often waxy cuticle. This epidermal outer surface has a large hydraulic
resistance. In the epidermis, micro holes or pores called stomata exist at a

density of 50 to 500 mm-2 (Slatyer, 1967). Stomata occur on both surfaces of the
leaf of cultivated plants, but they may occur more commonly on the lower
surfaces of tree leaves. The shape, opening and closure of each stoma is
regulated by its two kidney-shaped guard cells. With the turgor in the leaf cells
transferred to the guard cells, a decrease of turgor deforms the guard cells to
initiate closure of the stoma. An increase of turgor functions an opposite way to
open the stoma. The aperture of each stoma forms a pathway for diffusive
transfer of water vapor. However, the function of the guard cells including
stomatal opening and closure is not a simple process that reacts only to cell
turgor and simply to plant water stress, see Zeiger (1983). Sensors below each
stoma react to concentration of CO; in the air, radiation, temperature etc. For
example, the presence of toxic gases in the air causes stomatal closure.
Potassium ion concentration and proton transport across the membrane of
guard cells play a dominant role regarding the dynamics of opening and closing
of stomatal apertures (Raschke,1975). The proton transport is accompanied
further by biochemical reactions.

The actual transformation of water from the liquid to the vapor phase
takes place within two domains of the leaf, see Fig. 6.40a. The first domain is
that of the outer epidermal wall through which water vapor flows through its
cuticle with great difficulty owing to its resistance 7. being constant and of very
large value. The upper part of the mesophyll cells is the second domain where
water vapor flows through the air-filled space below and through stomata to the
atmosphere. Inasmuch as the resistance rs is determined by the area of the
stomatal aperture, its value is not constant. Water vapor moves readily through
stomata regardless of them being fully open or nearly completely closed. Even
when they are closed, the flux through them is roughly equal to the flux
through the cuticle. The total resistance to vapor transport by the leaf 7y, is

.11 (6.152)

L§3 Ts T
where rs is the stomatal resistance and 7, the cuticle resistance which does not
change substantially. The primary self-regulating mechanism of transpiration by
a plant is realized through rs. With a gradual closing of the stomata, rs increases
and transpiration decreases. Transpiration does not stop however, even if the
stomata close completely. And, if the transpiration flux exceeds the influx into
the roots, the plant tissues loose water and turgor. If the loss of turgor continues
beyond a critical threshold value, wilting occurs. Wilting can occur even if the
soil is fully moist when the evaporative demand of the atmosphere is large and
the influx to the roots is lower than the transpiration loss. Often during a hot
summer midday, plants having large leaf areas (e.g., the sugar beet) temporarily
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wilt. Subsequently, in the evening hours when the extreme air conditions cease
and the transpiration rate decreases, turgor in the leaf tissues returns. When
extreme air conditions prevail or when the soil remains relatively dry for
several days, the loss of turgor in cells accompanied by irreversible changes in
the plant finally causes permanent wilting. Stomata apertures also provide
pathways into the plant for CO; needed for photosynthesis and the growth of
plant tissues. Hence, a correlation between transpiration and crop yields exist
and is frequently documented. Some authors claim that the priority for
receiving CO» necessary for photosynthesis indeed regulates stomatal aperture.

6.5.1.2 Potential and Actual Transpiration

Analogous to potential evaporation Ep, potential transpiration Trp is defined as
the loss of water from plant tissues to the atmosphere according to the
evaporative demands of the atmosphere with the stomata fully opened.
Additionally, it is understood that water movement from the soil to the plant
roots does not limit the process. With atmospheric conditions including the
energy source and radiation controlling the phase change of water, energy
regulates the process for a given stomatal density. The term unstressed
transpiration is also used for Tgp.

Let us now assume that the soil water content 8 suddenly decreases.
Concomitantly, values of both h and unsaturated hydraulic conductivity K
drastically decrease. In such a case, the evaporative flux is maintained by the
gradient of the water potential y increasing - the cell water potential
continually decreases and is accompanied by a loss of cell turgor. Inasmuch as
the regulating mechanism of stomatal dynamics is not uniquely controlled by
the water potential, we can not precisely define the critical value of guard cell
turgor at which the stomata start to close. This critical value also depends upon
plant type, its variety, its susceptibility to water stress and upon the local
environmental conditions - quality and intensity of light, CO2 concentration
and surface temperature of leaves. We must also remember that transpiration
has an important cooling effect on the plant. If we hold all conditions constant
except the evaporative demand of the atmosphere, the critical value of turgor
pressure hp when stomata start to close depends upon the value of the potential
transpiration TRrp, see Fig. 6.45. After this critical value is reached, the decreasing
cross sectional area of the stomata causes a rise of the stomatal resistance rs and
hence, a rise of the leaf resistance. With the transpiration rate being reduced, the
actual transpiration Tra < Trp. With further extraction of soil water, the
unsaturated hydraulic conductivity decreases substantially and the
compensating increased soil water potential gradient causes a drastic decrease of
plant water potential and a sufficient decrease of turgor to initiate complete
closure of stomatal apertures. The greatly reduced transpiration rate allows the
cell turgor in the leaf to decrease to such an extent that wilting is clearly evident,
see the range of wilting in Fig. 6.45. The whole process depends upon the value
of Trp, see Fig. 6.45. Close to saturation (6/6s —1), when redox conditions in the
soil reduce the root activity of cultivated plants, Tra < Trp in the range RO. For
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a range of 6/6s very often between field capacity and 6 corresponding to hp in
the range of -500 to about -3000 hPa, Tr4 = Tgp. If the earlier-mentioned factors
are kept constant, the value of hp associated with decreased availability of soil
water depends upon the evaporative demand of the atmosphere characterized
by Tgp in Fig. 6.45. From model studies of Federer (1982) whose results appear in
Fig. 6.45, we recognize that the density of the root system is not negligible. The
shift of hp and the dependence of Tr4 upon meteorological conditions
demonstrated by Denmead and Shaw (1962) are illustrated in Fig. 6.46.

Up to now we have dealt only with average values of transpiration.
However, as was already mentioned earlier in the section on evaporation, the
evaporative conditions of the atmosphere manifest large diurnal amplitudes. A
detailed analysis of factors which contribute to diurnal fluctuations can be found
in Brutsaert (1982). Such atmosphere characteristics occurring during the day
and night cause fluctuations of leaf water potential, see Fig. 6.47. In the root, the
amplitude of the water potential is smaller than that in the leaf and occurs later
manifesting a lag or shift of phase. In the root zone, diurnal amplitudes of soil
water potential driven by atmospheric demand are negligible, except perhaps at
shallow soil depths where large daily temperature fluctuations occur.

(]
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Figure 6.47. Scheme of diurnal changes in leaf and root water potential y
together with soil water potential in a sequence of days without

precipitation (Slatyer, 1967).

Having now used the microscopic approach to describe water flow within
the plant and its path within the SPAC, we now return to (6.148) to macroscopic
formulations frequently used to model transpiration in soil hydrology or plant
production. Two different kinds of extraction terms S can be grouped together.
In the first group, the value of potential transpiration is related to the
maximum value of soil water extraction S.4x by roots extending within the
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profile to a root zone depth z, by Trp/z; = Spax. This relation is subsequently
reduced schematically in a fashion similar to that in Fig. 6.45, or by some
deterministic function of root length or related plant parameter. Using a
formulation belonging to this first group, Feddes et al. (1978) suggested:

S =0 02h>h, (6.153a)
S=S,. h2h>hy (6.153b)
h - hy J
S=S,, by 2 h> (6.153¢c)
(hD - hw D hW
$=0 he2h (6.153d)

Here, inasmuch as Suux is assumed constant, any change of S is caused by a
decrease of 6 beyond the limits of 1 shown above. The threshold value h;j is
related to the gas diffusion coefficient of the soil to avoid anaerobiosis. The
corresponding 6/ 6s varies roughly between 0.85 and 0.95 and depends upon both
soil texture and soil structure. The broad range of possible values of hp was
shown in Fig. 6.45. Pressure head of wilting hyw will be discussed in the next
section. Later on, instead of Sy..x being constant with depth, Sy was assumed to
decrease linearly with depth (Prassad, 1988) or exponentially with depth (Novék,
1987). Inasmuch as Sy,.x depends upon the development of the root system, we
suggest that it is entirely appropriate to describe Smax(z, £).

In the second group, the resistance to water flow is considered at the soil-
root interface or within the roots. The water flux in the plant is computed and
related to Tgrp by an iterative procedure. Inasmuch as direct measurement of
resistances of plant water flow and xylem water potentials is difficult, plant
hydraulic characteristics are frequently obtained from values of plant
parameters adjusted to match directly measured or computed Tgp.

Combining both of the above approaches, Novdk (1987) derived and
experimentally confirmed Sax(z) as being

S (2) = TRP[—-———“”"’( @z/ Z')}
1-exp(-a)
where @ is an empirical constant usually of order 10° for well-developed root
systems and leaf canopies. The above relation, nearly identical to the
distribution patterns of active roots in the soil profile, is valid for h > hp when

transpiration reaches its potential value. When h < hp, formulations (6.153)
apply. Instead of the linear relation between S and k within the range hp S h <
hw, a smooth curve is sometimes introduced even though it does not
necessarily lead to greater accuracy. Generally, when h < hp, S(z) reflects roughly
h{z). Consequently, the soil depth manifesting hy.x is the position of the greatest
value of 5(z).

In the above discussion we have shown that transpiration as well as S(z,
t) are strongly influenced by stomatal resistance. If formulated as functionally
dependent upon leaf water potential and solar flux, stomatal resistance can be
modeled to an external control of transpiration. A review of this type of
modeling is given by Lynn and Carlson (1990).

(6.154)
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6.5.1.3 Wilting Point

We have already shown that if the rate of soil water extraction by plant roots is
insufficient to meet a reduced transpiration rate, the plant is wilting. If the plant
does not regenerate its turgor and biological activity after a rewetting of the soil,
we define such 6 as the soil water content of wilting. Resuming the discussion
of flow of water within plants, we recognize that the soil water content of
wilting is not the same for different plants. Even if we restrict our consideration
to a particular cultivar, the soil water content of wilting depends upon the
developmental stage of the plant, its water stress susceptibility and the
evaporative conditions of the atmosphere. Moreover, the composition and
concentration of the soil solution plays a role. An increased soil solution
concentration increases the soil water content of wilting through a decrease of
the total soil water potential. The increased value of K and D owing to an
increased soil solution concentration may also influence the value of the soil
water content of wilting provided that there are no other solution effects linked
to soil structure and transport across cell membranes.

Because the soil water content of wilting separates soil water into two
categories (one useful and available to plants and one that is not) practitioners
introduced the concept of the wilting point 8w especially for the production of
cultivated crops. The "point” is indeed nothing more than an average of soil
water content of wilting values which are closely correlated with the permanent
wilting percentage.

Wilting point is now defined in soil science as the soil water content at a
soil water potential of -1.5 MPa (or equivalently as the logarithm of the pressure
head expressed in cm, pF = 4.18). Inasmuch as this value is usually reached as
the soil becomes progressively drier, the wilting point is that 6 which is related
to the pressure head on the drainage branch of the soil water retention curve.
The pressure plate method is commonly used to measure 6w at -1.5 MPa.
Because soil structure does not significantly influence the value of 6w, soil
samples need not have to be the volume of a REV. Desiccator methods were
previously employed to estimate 6w using a relative partial pressure of water
vapor either above a saturated solution of K;SO4 or above 3% H;SOy4 at a
temperature of 20°C.

With the concept of continuous water flow in SPAC accepted, it would
appear more appropriate to relate the soil water content of wilting to the
dynamic characteristics of soil water quantified by values of the unsaturated
hydraulic conductivity K or soil water diffusivity D. However, measuring soil
water potentials in the vicinity of the root system is much easier than
measuring K and D to ascertain critical flux conditions. Assessing critical flux
conditions offers a real challenge to our understanding of SPAC. For example, if
we assume that D = 10 em?min! is a critical minimal value for avoiding
wilting of plants, this value is never attained in the whole range of soil water
contents in confined vertisols having small values of EC with ESP > 15%
(Kutilek, 1973).

The definition of wilting point based upon biological experiments
requires a standardized observation of the permanent wilting of an indicator
plant (e.g. barley).
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Soil texture can be used as an indicator of the wilting point. In 1924,
Solnat suggested that 6w = (silt + clay)/2.4, where (silt + clay) is the percentage of
particles < 0.01 mm (Kutilek, 1978).

6.5.2 Potential Evapotranspiration

Just as we defined potential evaporation and potential transpiration, we assume
an unlimited supply of evaporating surfaces with water in the definition of
potential evapotranspiration. However, before proceeding, we must first clear
up some specific terminology.

The reference value denoted as the potential evapotranspiration Ep is
often taken to be the evaporation from a plant stand of densely covered short
cut grass freely supplied with water. Penman (1963) and his colleagues (see e.g.
Monteith, 1981) have used the term potential transpiration inasmuch as
evaporation from the soil is truly negligible for a densely populated grass. We
note that Penman's (1948) original derivation described evaporation from a free
water surface or any surface freely covered by water (e.g. a plant canopy
immediately following rainfall). On the other hand, Thornthwaite (1948) coined
the term potential evapotranspiration. The terminology is further confused by
some authors who prefer to speak of evaporation from vegetation. Inasmuch as
the soil surface is frequently not completely shadowed by a plant canopy, we
prefer the term potential evapotranspiration. An unambiguous definition of
Erp in practice is only achieved by reporting the method of its computation or
the procedure by which it was measured.

6.5.2.1 Computational Methods for Estimating E1p

Provided that steady state fluxes and conditions are maintained, evaporation
from any surface can be obtained from three basic equations using the so-called
turbulent diffusion theory. From latent heat transport from the surface with
roughness for water vapor z, to the atmospheric surface layer position z,, the

evaporation rate E [kg-m?2s7] is

E=p,D,(e,~¢,), (6.155)
the turbulent flux of heat Q4 [W-m-?] is

QA = pACth (To —'Ta) (6.156)
and the partitioning of the net radiation R [W-m] at the evaporative surface is

R=Q.+Q,+xE. (6.157)

These equations express the similarity between turbulent heat and water vapor
transport where Dy is the turbulent transfer coefficient [m-s-!] which is assumed
to be identical for latent and sensible heat transfer, y the latent heat of
vaporization [J'kg 1], Qs the flux of heat into the soil [W-m-2), T, [°C] the
temperature of the surface at the scalar roughness for sensible heat zo4, T, [°C]
the temperature of the atmospheric surface layer at z,, ¢, the specific heat of air
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at constant pressure [J'’kg1'K'!], pa the density of air [kg'm™] and ¢, and ¢,
[kg-kg?] the specific humidity at z, and z, , respectively.

Values of T, and e, are not routinely measured at standard micro
meteorological stations owing to the difficulty of their observation. For the
purpose of estimating Erp, their measurement is eliminated by the following
procedure. The functional dependence of the saturated vapor pressures at the
surface eg,(T) and eg, (T) are known. Using a Taylor series expansion leads to the
major approximation of Penman (1948)

e, = €5, +(T,-T,)9, (6.158)
where eg, is the air saturated vapor pressure at the temperature of the surface at
2o, €g, the air saturated vapor pressure at the temperature of the surface z, and

¢a is the derivative d ¢;/dT at T,. The specific humidity e is related to the vapor
pressure ¢* by e = 0.622 e*/(RaT,pa) where Ry is the Universal gas constant for
air (Ry = 287.04 J-kg'1:K'1). Substitution of (6.157) into (6.155) and combining the
result with (6.156) and (6.157) yields an equation for the potential
evapotranspiration (Novdk and Hurtalov4, 1987)

Ep = 0.(R-Qs)*pac,Difes —¢1) (6.159)

Gt X0

Note that (eg, —e;) is equivalent to the saturation deficit at elevation z,. Equation
(6.159) is comparable to Penman's (1948) equation which is traditionally written
as

9 Y
Ep=—22—-H,+ E 6.160
I AR R A (6160
where E4 is the "drying power of the air" (i.e. a function of wind velocity and
saturation deficit of the air) and 7y the psychometric constant [Pa-K"1] in (6.160)
defined by

(6.161)

where p4 is the air pressure [Pa] and My and M4 are values of the molecular
mass of water vapor and air, respectively. Hg = (R - Qs) comprises the radiative
flux minus the soil heat flux as well as heat storage in the vegetation and photo
synthetically used energy according to Penman which are often neglected.

The net radiation R is either measured or computed according to
standard methods (FAO, 1977). Although the integral of Etp usually yields a
negligible value of the heat flux into the soil Qs for a day, its diurnal values
should be estimated for periods shorter than a day. A major problem is
estimating the turbulent transfer coefficient D;. And, the difficulty is not
normally overcome by using Penman's empirical definition of E4 = f(u)d where
f(u) is a wind velocity function and d the saturation deficit ( eg, ~e]) [Pa].

In Penman's original equation and in subsequent modifications, the use
of a wind velocity function is probably appropriate in order to obtain Etp for

integral values of a day or even somewhat longer periods. On the other hand,
for diurnal (say hourly) computations the variation of atmospheric stability
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plays an important role. Expressions of D; which account for atmospheric
stability to solve the problem are discussed in detail by Brutsaert (1982). When
atmospheric stability plays a role, we have

2E =w(R-Q;) + x(1-w)E, (6.162)
where w = ¢,/ (¢, + ) on a diurnal basis and the drying power function E4 may
be written in terms of atmospheric Monin-Obukhov (1954) similarity theory,

-1
E4 = ku.ples,~e,) [m(fa-‘-d"—v]- w,(z"dw )] (6.163)

Zop L

where von Karman's constant k = 0.4, u,= (1,/p)!}/2 is the frictional velocity, 1,
the surface shear stress, dy, the displacement height for water vapor and e, and

es, are the specific humidity of the air and the saturation specific humidity at
the air temperature, respectively (Brutsaert, 1982, and Katul and Parlange, 1992).
The stability correction function y, depends upon (z - dyp) /L with L being the

Obukhov length defined by

3

L= e
kg|H, /(oc,T,)]
where Hy, = (Q4 + 0.61 Tuc,Ep) is the specific flux of the virtual sensible heat at

the surface. The value of , is obtained from the mean horizontal wind speed v
defined by the surface layer model of Monin-Obukhov as

v= %[m[z;d")-wm(zzd“ )] (6.165)

where d, is the momentum displacement height, z, the surface roughness and
Vm the momentum stability correction function. For unstable conditions (L < 0),

(6.164)

(1+2)'(1+2%) y 4
v, =ln|—7->F—-+~ 1 -2tan” x + 2tan™'x, (6.166)
(1+x,) (1+xf)
and
2
v, = 21n(1+2x (6.167)

where x = (1 - 16y)1/4,y = (z- d,)/L and x, = (1 - 162,/L)!/4. For stable conditions
(L>0),

Ve =V¥u= -5In zzdo). (6.168)

The scalar roughness z,, can be substantially smaller than z,. Some suggestions
are given by Brutsaert (1982) for possible parameterizations of zoy. An iterative
scheme is required to actually solve for Erp. With values of y;, and v, set equal
to zero for the first iteration, (6.165) is solved for a first estimate of u, and (6.163)
for E4. Next a first estimate of L in (6.164) is made using E, from (6.162) and the
surface energy balance to obtain Q4. Next, the stability correction functions are
included in (6.165) and (6.163). This system of calculations are repeated until the
value of E, converges. Usually convergence is achieved in only a few iterations.
Katul and Parlange (1992) and Parlange and Katul (1992) tested this formulation
of Penman's equation for a wet bare soil and found it to be remarkably accurate

(4
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during the day even under conditions with strong, dry winds passing over a wet
land surface such that Q4 < 0 (i.e. L > 0) and xE, > (Rp - Qs)- In these extreme
conditions, sometimes called an oasis problem or effect as found in arid regions
(e.g. western United States or Australia), it is crucial to account for atmospheric
stability to ultimately ascertain the total daily evapotranspiration.

At least two other approaches should be mentioned here regarding
evapotranspiration equations. Thornthwaite (1948) proposed an empirical
equation based upon air temperatures and an air temperature dependent
empirical heat index. The equation provides integral monthly values of Erp and
its use is restricted to mild climatic zones. Efforts to obtain daily data from the
equation appear to be useless. A second approach is that of Priestley and Taylor

(1972). They proposed a simplified version of the Penman equation to calculate
potential evapotranspiration
¢A (R —QS )
Ep = a| ———= 6.169
) -

for extended wet surface conditions with symbols used in (6.159) and (6.160)
such that Q4 > 0. The empirical coefficient ¢ falls between 1 and (¢, + 9)/ ¢, and
is best estimated according to Priestley and Taylor with a value of 1.26.
Inasmuch as this model will break down when there is strong local advection as
described above, prudence should be exercised.

6.5.2.2 Structure of Evapotranspiration

The ratio of the two components of evapotranspiration, transpiration Tr and
evaporation from soil E is called the structure of evapotranspiration
(Budagovskij, 1969). This ratio has a diurnal rhythm - during the day the plant
canopy is intensively transpiring, and during the night transpiration practically
ceases while evaporation from the soil plays a more important role. During the
season, the structure of Erp depends upon the leaf area index @ which is the
ratio of the total area of leaves and other green parts of plants related to the
reference area of the soil. Methods for measuring @ are described in the
literature on photosynthesis. The value of @ is also seasonally dependent and
usually has a range 0 < @ < 10. An example of the seasonal evolution of w(t) of
wheat is given in Fig. 6.48. We should note that @ of wheat reaches very high
values compared to those of other cultivated plants, especially row crops.
Quantifying the canopy density with a value of @ is important in order to
convert the evapotranspiration from a densely populated crop with complete
canopy cover to that from a frequently observed incomplete canopy cover.
Ritchie (1972) found that the ratio of radiation R, above a canopy to that at the
soil surface Rg below the canopy has the exponential form

%- = exp(-a w) (6.170)

S
with a = 0.398. Novéak (1981) applying the procedures of Budagovskij (1969)
based upon a set of equations describing the transport of water vapor and heat in
the canopy obtained similar relationships and distinguished the contributions
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Figure 6.48. The seasonal dependence of leaf area index @ measured for wheat in
Slovakia (Novdk, 1981).
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Figure 6.49. The ratio Trp/E1p and Ep/Etp as related to leaf area index @ in Fig.
6.48. Trp is potential transpiration, Erp potential evapotranspiration and
Ep potential evaporation from the soil only (Novdk, 1981).

of transpiration Trp and evaporation from soil Ep (see Fig. 6.49) as

Trp = Eppexp(-a o) (6.171)
and

E, = Epp[1-exp(-aw)]. (6.172)
We note in Fig. 6.50 that the ratio Trp/ETp is closely related to @ for various
plants. Moreover, the constant value of the coefficient « is probably not
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Figure 6.50. The dependence of Trp/Etp upon leaf area index of various plants.
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Data collected from the literature by (Novdk, 1981). Trp is potential
transpiration and Etp potential evapotranspiration.
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Figure 6.51. The diurnal variation of separated potential terms — Ep is soil
evaporation and TRrp is transpiration (Novdk, 1981).
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Figure 6.52. The seasonal behavior of separated potential terms for a chernozem
on loess in Slavakia. Ep is soil evaporation and Trp is transpiration
separated from evapotranspiration Etp for wheat (Novdk, 1981). All terms
represent potential values.

universally applicable. Daily values of E, Tg and Er strongly depend upon the
plant's ontogenesis stage. With an increase of @ the daily sum of Ep decreases
and the maximum peak shifts to the afternoon hours [phase shift of the quasi-
sinusoidal curve Ep(t)]. At about @2 1 condensation of water vapor occurs at the
soil surface and the length of this occurrence is extended as @ increases. This
increase is manifested when Ep < 0 (see Fig. 6.51) and even when Erp < Tgp
during a summer midday. An illustration of the seasonal separation of
evaporation and transpiration for wheat in Slovakia is given in Fig. 6.52. In this
case of wheat, integral values for the entire vegetative period manifest values of
Trp/E1p =0.78 and Ep/Erp =0.22.

6.5.3 Actual Evapotranspiration Exy

Let us first recall that potential evapotranspiration occurs only when the
surfaces are wet, and when they are not wet, we indeed have actual
evapotranspiration, because there is a limited quantity of water reaching the
evaporating soil and plant surfaces. The term actual evapotranspiration Et4 is
introduced, ET4 < ETp.
The general procedure for transforming the potential evapotranspiration
ETp to the actual evapotranspiration Et4 follows several steps to theoretically
compute the real Er4 at a particular location.
1. Erp is computed for the reference short green grass with wet
surfaces and adequate water supply without advection.
2. This reference Erp is transformed using specific site related
values influenced by slope, land use and albedo.
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3. The site related Erp is adjusted to the particular type of
vegetation including its stage of development.

4. The value of Ergq is obtained by reducing the value of the site
related ETp to account for the limited supply of water derived
from the soil profile. This reduction is achieved empirically by

applying relations like (6.152) or by introducing actual resistances
which reduce the flux through the SPAC system.
When steps 2 and 3 are omitted, we have the development presented by
Monteith with the final result often being named the Penman-Monteith
equation. Here, with the stomatal resistance rg being introduced, the Penman-
Monteith equation for Etg4 is

ﬁ(ﬂ) + _p"c"d
= Y\X /) X4 (6.173)

En = "
o, + y(1+—i)
L9

where 74 [s'm™1] is the aerodynamic resistance against the turbulent transfer of
water vapor from the evaporating surface to the atmosphere. Its values are in
the range 10 < r4 < 300. This equation describes the actual evapotranspiration of
a particular reference plot owing to an extension of Penman's equation by
Monteith (1981). It represents the entire canopy as a "big leaf” (Lynn and
Carlson, 1990) and is still in agreement with the integral single layer concept of
Penman.

Deterministic models of stomatal resistance (see Lynn and Carlson, 1990)
can also be applied for estimating Er4. Alternatively, soil water models which
empirically describe water absorption by plant roots expressed by (6.153) allow
calculations of ET4 or ETa/ETp.

The bulk stomatal (or surface) resistance rg in (6.173) is generally
considered a “fitting" parameter in land surface simulation models or a
diagnostic water stress index of plant canopies (e.g. Brutsaert, 1982). Recently,
many complicated models of rs have been proposed for drying land surfaces,
especially in the context of atmospheric modeling, but for practitioners in the
field, rs is generally unknown. Because it is so difficult in practice to obtain a
field scale measure of rs to assess the aridity of a region, we mention here
models based upon ideas of Bouchet (1963) concerning potential evaporation
and the drying of the land surface. In these approaches (e.g. Brutsaert and
Stricker, 1979, and Morton, 1983) the aridity of the region is assessed from
atmospheric measurements. Bouchet basically suggested that as an initially wet
surface dries, the decrease in actual evaporation corresponds to an equivalent
increase in potential evaporation. When the land surface is wet

E(actual) = E,(potential) = E, (sutfaceiswet). (6.174)
As the water supply to the surface becomes limiting (E < E; ) for the same
amount of energy available for evaporation,

E-Ep =¢q, (6.175)
such that g1 becomes available and increases Ep. Bouchet proposed that

E, =4, +Ep, (6.176)
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in order that the complementary relationship

E+E, = 2E, (6.177)
assures that g; does not alter the available energy and that no external energy
suddenly enters the region.

Brutsaert and Stricker (1979), adopting the Penman equation for potential
evaporation Ep and the Priestley-Taylor equation for E, , solved (6.177) for E.
The primary restriction of this model is that the Priestley-Taylor model is only
valid when there is no local advection. Parlange and Katul (1992a and b) showed
that in order to conserve energy whenever Q, <0 (Q, =R-Qs-2zE p) the
Priestley-Taylor formulation of E, must be adjusted by taking
A Ep, = [YEp, (Priestley-Taylor) + 1Q,, |]. Parlange and Katul tested this model
using 20-minute time step measurements and found it to be extremely accurate,
though more work is needed before it becomes more widely accepted and
verified. The advantage, of course, is that rs does not have to be specified.

Inasmuch as all models or estimates have to be first verified against
directly measured data, we shall briefly discuss the measuring techniques of
evapotranspiration in the field. The methods can be grouped into three classes:
(i) soil water balance, (ii) plant measurement and (iii) micro meteorological
methods.

6.5.3.1 Soil Water Balance

The basic water balance of an elementary area where horizontal fluxes are
negligible is

Epo=1+Q, +4W (6.178)

where | is the cumulative infiltration from irrigation and rain equal to
precipitation if surface runoff is eliminated, Qv the vertical flux at the base of
the soil profile (when the groundwater table is very deep, Qv < 0 and usually
represents the vertical drainage component) and AW the difference in water
storage for a given period of time At (t; - t;) from which E74 is evaluated.
Measuring the water content distribution within the soil profile 6(z, t) at times
t1 and ¢; allows the magnitude of AW to be ascertained using

AW = [*0(z,t)dz - [} 6(z.t,)dz (6.179)
where Z is the depth of the bottom of the soil profile where Qv is evaluated. The
principle of the zero flux plane Z; is used if Z; > z, where z, is the rooting depth.
The determination of the zero flux plane (where Qv = 0) was previously
explained and illustrated in Fig. 6.37. If tensiometers are installed and the soil
hydraulic functions known, the flux across the plane at Z can be computed.

In spite of the relative simplicity of the soil water balance method, soil
heterogeneity, described in Chapter 8, plays an important role in the strategy of
selecting observation sites (Vachaud et al, 1983) and defining field scale
hydraulic properties based upon evaporation measurements (Parlange et al.,

1992 and 1993).
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In order to integrate the diverse distribution of vertical and potentially
horizontal fluxes occurring at the microscale, lysimeters are frequently used to
measure Qy at the bottom of the soil profile. The term indicates that the
measurement of soil leaching was the original aim of lysimeters. Nowadays, the
term identifies a container filled with soil covered with natural or cultivated
vegetation. The water percolating through the soil is collected either
gravimetrically or through a suction plate which is maintains a negative soil
water pressure head & identical to that in the field next to the lysimeter. Because
gravitational drainage from a lysimeter of finite length differs from that in the
field and disturbs the natural development of h(z), the depth of the lysimeter
should be as great as possible. To achieve the same internal structure of the
porous system as in the natural soil, it is desirable to place a monolithic block of
field soil into the container. Lysimeters containing soil whose natural structure
has been disturbed have limited applicability.

Lysimeters are either weighable or non weighable. Weighable lysimeters
provide information about the change of water storage W for any time period
even in the absence of percolating water, while non weighable lysimeters yield
only the water percolating from the soil column. Instead of directly measuring
the weight of a lysimeter, weight changes are sometimes determined from fluid
displacements in a larger surrounding container in which the lysimeter is
“floating”. These floating lysimeters can be instrumented to observe the force
required to keep them centered within the larger container within which they
float. These observations provide additional information regarding the shear
stress of the wind as it passes through and over the vegetative canopy.

6.5.3.2 Plant Surface Measurements

These measurements neglect the soil water evaporation component of
evapotranspiration. In forests, the sap flow in the tree trunk is measured. The
time required for either a heat pulse or a radioactive tracer pulse to travel along
the trunk is measured by an appropriate technique. A similar approach is also
applied to trace the flux of water within the xylem of cultivated plants.

The porometer method is more fully developed. With the flux of water
measured on individual leaves, the stomatal resistance rs is obtained from an
appropriate calibration. The canopy resistance 7. (r. = rs/ @) is calculated from rs
and the leaf area index w. Models of evapotranspiration include values of r; as
directly measured information.

Integral values of evapotranspiration are also estimated from remote
sensing. Values of Eta are obtained from a surface energy model which has
inputs of measured surface temperatures based upon infrared (IR) images. The
sensible heat flux Q4 can be calculated from Monin-Obukhov similarity using

Q4 z-d, [Z-dh]
T,-T, = Inf = |~ o 1
T, = pc,,{“[ |- 5 (6.180)

where Ts is obtained from IR remote sensing of surface temperature, T, is taken
in the surface layer of the atmosphere, z,y is the heat roughness length, doy the
sensible heat displacement height (often taken equal to d,) and y; the sensible
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heat stability correction function taken equal to the value of y;, defined earlier.
Actual evapotranspiration is solved once more from the energy balance (yE =
R - Qs - Q4) in an iterative scheme where once again y,, and yj are initially set
equal to zero, E is estimated from the energy balance and a first estimate of L can
then be obtained. The system is repeated with the iterative values of v, and v,
until the value of E converges.

Alternatively, temperatures of a reference plot (where Erp exists) with an
optimal water supply are monitored and used for evaluating Eta of a vegetative
cover under natural conditions for which temperatures are monitored.

6.5.3.3 Micrometeorological Methods

These methods are used to estimate the value of ET4 from directly measured
atmospheric data above the land surface.

In eddy covariance methods, the use of fast response sensors permits
measured vertical wind speed fluctuations w’ to be correlated with measured
temperature and humidity fluctuations T’ and ¢°, respectively. Hence, average
values of the flux of water vapor during short time intervals (e.g. one hour or

less) are obtained where E = pw'q' and Q4 = pc, w'T . The fluctuations for the
measurement time period (e.g. T’) are defined by T'=T-T, where Tis the mean

value over the time period of interest and the condition T' = 0 holds. For
further study of eddy covariance methods, see Stull (1988) or Qarratt (1992).

The Bowen ratio 8 (= Q4/xE) is applied in order to partition the energy
budget and from it, E74 is estimated. Note the Bowen ratio is the ratio of the
sensible and latent heat fluxes. It is obtained by measuring temperature and the
partial vapor pressure at two heights together with the atmospheric pressure
assuming the transport of heat and water vapor are identical.

Aerodynamic methods are based upon Monin and Obukhov (1954)
similarity theory which provides a good description of the mean boundary layer
surface layer flow (in the turbulence sense). The main theory is given here for
completeness. The flux of momentum, sensible heat and water vapor can be

given by
o= %[ln(z;d" J— y/,,,(z ’Ld" )] (6.181)
QA z_do I:z—dh] [zr—dh]
-T = 1 - —_ — o 182
T,-T ku,pcp{n[z,—da Vi L + Vi L (6.182)
and

E z-d, |_ z-d, 2,-d,
9-4=% “p {m[m] Wv[_L ]"' W,[—-L ]} (6.183)

where the subscript r refers to a reference height near the surface and d, is the
displacement height for heat. These three equations can be iteratively solved
simultaneously when atmospheric surface layer measurements of wind speed,
temperature and humidity are available,
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As it follows from this brief presentation, the majority of difficulties in
the estimation of ET4 is in fact the direct measurement of water vapor fluxes
into the atmosphere is not simple in practice and that reliable flux meters have
not yet been developed. However, this is not only the case for atmospheric
fluxes but for the direct measurement of soil water fluxes as well as we discuss
in the next chapter.

PROBLEMS

1. Derive the solution z(h) of steady infiltration into a homogeneous soil profile
if K(h) is described by (5.38) for m = 1 and for m = 2. Follow a procedure
analogous to that in the derivation of (6.5). Hint: Insert A =b -a/g into
the denominator of the integral.

2. Derive the implicit equation for h in a crust-topped profile (Fig. 6.4) if K(h) is
described by (5.39) and the crust (layer 2) is fully saturated.

3. What is the least value of Ly in Fig. 6.4 when the value of dh/dz = 0 just
below the crust. L1 is the thickness of subsoil 1 between the crust and the
ground water level GWL. Is the solution also valid for a homogeneous
soil without a crust with Ly the depth of the GWL and ¢, < Ks1?

4. Modify (6.12) for soil 1 with air-entry value h41 when you solve steady
infiltration into a crust-topped profile.

5. Assuming steady infiltration, what is the elevation of the water level in each
of the two piezometers — one inserted in the soil profile at the top and the
other at the bottom of the zone of saturation in Fig. 6.5?

6. Determine the soil water content 6(x) at 2-cm intervals along a soil column
during horizontal infiltration at time f; = 100 min. based upon the
following measurements of 6(x) at time #; = 25 min.:

x (cm) 0 2 4 6 8 10 12 14

6 (cm*cm?®) 0.507 0505 0.497 0470 0408 0312 0.185 0.082
Values of 65 and the initial soil water content 6; are 0.507 and 0.082,
respectively.

7. Using the Green and Ampt approximation, derive the value of m in the
relation A = mKg where A is the parameter in (6.67).

8. For Green and Ampt's approximate solution of vertical infiltration, derive
the validity of

gli;nl 9o (t)=Ks.

9. For a constant rainfall rate, derive the value of the ponding time ¢, for
infiltration when infiltration for DBC is described by Green and Ampt's
approximation. Proceed analogously to the derivation of (6.93).

10. Derive the value of ks in Green and Ampt's approximation (6.53) when you
use: a. (5.38) or b. (5.39) for K(h).

11. Is (6rc)1 < or > (OFc)z if field capacity is measured on the same soil once at 8,
second time at 6 and 8;; > 6;?

12. Sketch the change of soil water content 6 versus time for the two
redistribution processes (a. and b. demonstrated in Fig. 6.31) when 6 is
measured at z,1 > zf
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13. With the GWL being 180 cm below the soil surface of two different soil
columns, find the difference in maximum evaporation rate E,, from the
two columns. Column A is a homogeneous profile of a loamy soil
characterized by (5.39) with ¢ = 0.02 cm™ and Ks = 20 cm-d"l. Column B is a
profile of the same loamy soil having an interlayer of sand [characterized
by (5.39) with ¢ = 0.08 cm™ and Ks = 200 cm-d™!] extending from 80 to 110
cm below the soil surface.

14. Estimate the actual evapotranspiration rate at 6/8s = 0.5 if potential
evapotranspiration is 5 mm-d! for which the critical pressure head of
decreased availability hp (Fig. 6.45) is related to 6/6s = 0.7 and the wilting
point is at 6/ 6s = 0.35. Assume linear relationships.



