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1. The Context

Here we will try to provide the context in which the study of noncommu-

tative field theories and their classical solutions assume importance.

The Importance of Open Strings: The understanding of the role of

open strings in string theory via D-branes, has proven to be a development of

overwhelming importance. This understanding was instrumental in correctly

counting black hole microstates, one of the dramatic successes of string the-

ory. One of the surprises was the manner in which a purely gravitational phe-

nomenon, like black hole entropy, was described in terms of open strings, which

at least classically don't contain closed string excitations like the graviton.

This connection between open and closed strings was sought to be further

exploited in the Matrix theory proposal for a DLCQ description of M-Theory.

But it's most striking manifestation was the AdS/CFT duality of Maldacena

relating large N gauge theories to pure closed string theories. This conjecture

is a reflection of an underlying duality between open and closed strings which

is yet to be completely understood.

Decoupling limits: In the AdS/CFT duality, one takes a certain scaling

limit of open string theories living on D-branes in which only the massless gauge

theory modes survive and are described by a (super) Yang-Mills lagrangian. The

massive open string states are effectively decoupled by taking the string scale

to infinity. This scaling limit of open string theories is conjectured to describe

pure closed strings propagating in the near horizon geometry of the D-branes.

The fact that one can gain nontrivial information from studying a simple field

theory limit of string theory has led one to examine more closely the various

decoupling limits of string theory. (Cf. Kutasov's lectures.) Taking decoupling

limits of different sorts also help one to focus more sharply on various aspects

of string theory. The idea is to retain enough complexity nevertheless being

easier to analyse than the full theory.

Noncommutativity and String Theory: In parallel with these devel-

opments, and at first sight unrelated to it, is an ambitious program initiated by

Sen which attempts, among other things, to understand closed strings in terms

of open strings. The idea is to use the formulation of open string interactions

in terms of a cubic string field theory as a complete description of string theory.

This formulation relies on a representation of open string interactions which

consists of gluing them in a fundamentally noncommutative way [1]. This de-

fines an associative but noncommutative product of string fields in terms of

which the string field action is expressed. D-branes are nontrivial classical so-

lutions of this action while closed strings could arise as some kind of quantum

excitations.

Since noncommutativity is in some sense intrinsic to string theory (not

just a property of some backgrounds) and perhaps plays a crucial role in under-

standing the notions that replace classical geometry, it is worthwhile to try and

understand it better. When one takes the conventional field theory limit of open

string theory, the remnant of the noncommutativity is the rather trivial matrix

algebra of the Chan-Paton indices. It does not involve the noncommutativity

that comes from the extended nature of the open string.

Noncommutative Field theories: One might therefore ask if there is

a limit of string theory which has the relative simplicity of keeping only a

field theoretic number of degrees of freedom yet displaying the extended nature

of a string. It turns out that the answer is yes. One can obtain a nonlocal

deformation of field theories by taking a decoupling limit of open strings in a

large magnetic field [2], [3]. The massive string modes decouple leaving a kind

of elastic dipole object.

These resulting noncommutative field theories will be the main topic of

these lectures.



Noncommutative solitons: More specifically, we will study the classical

limit of these noncommutative field theories and find finite energy soliton solu-

tions that have no counterpart in local field theories. Among the nice features

of these solitons is that they are fairly universal and more or less insensitive to

the details of the theory. They exhibit various novel features like nonabelian

enhancement of symmetry when they are coincident.

In fact, these solitons are really the D-branes of string theory manifested in

a field theory. This is somewhat surprising as it does not happen that you can

find D-branes as finite energy excitations in a conventional field theory limit of

string theory. The simplicity of noncommutative solitons implies that one can

study many properties of D-branes very explicitly in this context.

Therefore the motivation for studying these solitons will be to use them as

a simple set of probes of stringy behaviour in a well controlled manner. Much

of the applications have been in the context of issues of tachyon condensation

in open string theory. We can however also use these solitons to probe issues

of how D-branes see space time, for instance.

Finally, the field theoretic aspects of these solitons are interesting in them-

selves and might perhaps have applications in very different contexts such as in

the Quantum Hall effect.

2. Strings in a large Magnetic Field

As a prelude to studying strings in a large magnetic field, let us look at

point particles in a large magnetic field.

The action for (nonrelativistic) point particles reads as

S = I dt[ - m ^ x /

The conjugate momentum IIM to xM is

(2.1)

(2.2)

In the limit where the energy u

become simply

the canonical commutation relations

TD
(2.3)

Thus at energies much less than the cyclotron frequency ^p-, when one is in

the lowest Landau level, one effectively has noncommuting coordinates. This is

why the physics of the quantum hall effect displays some features of noncom-

mutativity.

Now write the action for an open string in a constant magnetic field. We

assume that the open string ends on a p brane in some of whose worldvolume

directions the magnetic field is switched on.

5 = - L f d2a (g^dOiX»daXu - 2ma'B^da (2.4)

The additional term involving B is really a boundary term which couples to

the charges at the end of the open string like a constant magnetic field.

It leads to boundary conditions in the directions along the brane which are

mixed.

( V W + 2malBlludtX
v) |aE = 0. (2.5)

One can write down the Green's functions on the disc worldsheet with these

boundary conditions. What we will need is the particular case when the X's

are at on the boundary of the disc (parametrised by r).

>= - ')2^ ln(r - r') (2.6)

Here

g
'By

g-27ra'B

)2= - (2W)
(2.7)

are usually called the open string metric and the noncommutativity parame-

ter [3]. The open string metric is what determines the mass shell condition for



open string states. 0 is called the noncommutativity parameter since the above

OPE essentially implies that

Note that 0 has dimensions of length2.

There is one more ingredient, namely that the effective coupling of open

string modes is also rescaled by a factor that depends on the magnetic field.

We will not need the exact expression until later.

The noncommutativity parameter leads to an extra term in the OPE of

vertex operators elk x:

\ J \ / V / \ J ^^ . . .

(2.9)

The additional term e-
l
2

Q^k^^k^ can be understood in position space as giving

a nonlocal interaction which is expressed in terms of the Moyal product.

In general, there will be such a phase factor for all vertex operators implying

that the effect of the magnetic field on the effective action in spacetime is

completely captured by replacing all local products by the Moyal products, if

we additionally remember to make all metric contractions with the open string

metric.

We can now take the equivalent of the limit of a large magnetic field,

namely take a'\B\ > 1. Here |J3|2 = B[lvBp(Tg^gvo. We will in addition

demand that this limit is taken keeping the open string metric G^v and Q^v

finite. This requires taking the string scale to infinity (a' -> 0). In the absence

of the magnetic field this would mean decoupling all the massive string modes

giving a field theory of the zero mode (if we keep the coupling constant finite).

With the magnetic field, as we have seen the only effect is to replace local

products with the moyal product. The terms involving massive modes (both

open and closed) then decouple for the same reason as in the case without a

magnetic field. The lowest string modes then interact via a nonlocal deforma-

tion of ordinary field theory.

3. Scalar Noncommutative Solitons

With these motivations we will start our study of semiclassical noncommu-

tative field theories. The simplest example is a theory of a single scalar field in

2 -f 1 dimensions with noncommutativity in the two spatial directions. We will

parametrize the spatial R2 by complex coordinates z, z. The energy functional

= - ^ I*d2z(dz<t>d-z<t> +
J J

(3-1)

where cPz = dxdy. Fields in the action are multiplied using the Moyal star

product (which reads in complex form as),

*g) (z, z) = e > 2)g(z', z')\z=z (3.2)

Note that since f f * g = f fg, the moyal product drops out of the quadratic

term in the action.

Before we look for classical solutions to this action, let us recall that the

scalar theory without noncommutativity does not have any lump solutions.

This is actually true for any bounded potential in spatial dimension greater

than one, and follows from a simple scaling argument of Derrick [4]. If (/>o(x)

be an extremum of the energy functional (3.1) (with 9 = 0), then consider the

energy of the field configurations (j)\(x) =

(3.3)

= 3 / d°x ( l

Since (j>o{x) is an extremum, we require dE
d^\\=\ = 0. that is,

dDx Q(£> - = 0

. For spatial dimension D > 2, for a potential bounded from below by zero,

the only way this can be true is for the kinetic and the potential terms to

separately vanish. There are therefore no nontrivial configurations. Note that

this argument fails once one includes higher derivative terms.



We now seek finite energy (localized) solitons of (3.1) for nonzero 9. Since

no solutions exist for 9 = 0 (3.3) , we begin our search in the limit of large

noncommutativity, 9-^oo. It is useful to non-dimensionalize the coordinates

z-^zy/0, z-tzy/0. As a result, the * product will henceforth have no 0; i.e.

it will be given by (3.2) with 0 = 1. Written in rescaled coordinates, the

dependence on 9 in the energy is entirely in front of the potential term:

(3.4)

In the limit 9—»oo, with V held fixed, the kinetic term in (3.4) is negligible in

comparison to V ((/>), at least for field configurations varying over sizes of order

one in our new coordinates.

Our considerations apply to generic potentials V(<j>), but we will, for defi-

niteness, mostly discuss those of polynomial form

(3.5)
2 ^ 3 J

3.1. Solutions in the 9 = oo Limit

After neglecting the kinetic term, the energy

is extremised by solving the equation

(3.6)

= 0. (3.7)

For instance, for a cubic potential one has to solve an equation of the form

If V{(j>) were the potential in a commutative scalar field theory, the only solu-

tions to (3.7) would be the constant configurations

0 = Ai,

7

(3.9)

where A; G {Ai, A2, • • •, A&} are the various real extrema of the function V(x).

The derivatives in the definition of the star product allow for more interesting

solutions of (3.7).

In order to find all solutions of (3.7) we will exploit the connection between

Moyal products and quantization. Given a C°° function f(q,p) on R2 (thought

of as the phase space of a one-dimensional particle), there is a prescription

which uniquely assigns to it an operator Of(q,p), acting on the corresponding

single particle quantum mechanical Hilbert space, %. It is convenient for our

purposes to choose the Weyl or symmetric ordering prescription

Of(q,p) =

where

and

/(*) = J<Pxeilk<«+k'rif(q,p),

(3.10)

(3.11)

(3.12)[q,p\ =i.

With this prescription, it may be verified that

±-Jdpdqf(q,p)=TrnOf, (3.13)

and that the Moyal product of functions is isomorphic to ordinary operator

multiplication

OrOg=Ofi<g. (3.14)

In order to solve any algebraic equation involving the star product, it is

thus sufficient to determine all operator solutions to the equation in H. The

functions on phase space corresponding to each of these operators may then be

read off from (3.10). We will now employ this procedure to find all solutions of

(3.7).

It is easy to see that O = A»P is a solution to V'(O) = 0, if P is an

arbitrary projection operator on some subspace of H. and if A, is an extremum

of V(x). The energy of this solution is, using (3.13) ,

E = (3.15)



Thus the energy is finite if P is projector onto a finite dimensional subspace of

H.

In fact, you can convince yourself that the most general solution to (3.7)

takes the form

where {Pj} are mutually orthogonal projection operators onto one dimensional

subspaces,

PiPj = SijPj- TrnPi = 1, (3.17)

with a,j taking values in the set {A;} of real extrema of V(x).

From now on we will restrict ourselves to a potential with one nontrivial

minimum A other than the one at the origin.

We have a huge infinity of solutions of the form \P. To see what they mean,

let us translate them into position space. It will be convenient for this purpose

to choose a particular basis in V.. Let \n) represent the energy eigenstates of the

one dimensional harmonic oscillator whose creation and annihilation operators

are defined by

(3.18)a =
q + ip

V2 '
Note that a\n) — ̂ Jn\n — 1) and a)\n) — 1). Any operator may be

written as a linear combination of the basis operators |m)(n|'s, which, in turn,

may be expressed in terms of a and a) as

\m)(n\ =:
ml n\

(3.19)

where double dots denote normal ordering. We will first describe operators

of the form (3.16) that correspond to radially symmetric functions in space.

As a^a w y , operators corresponding to radially symmetric wavefunctions are

functions of a^a. From (3.19), the only such operators are linear combinations

of the diagonal projection operators |n)(n| = ^ : a)ne~a aan :. Hence all

radially symmetric solutions of (3.7) correspond to operators of the form O —

A]Pan |n)(n|, where the numbers an can take values 0 or 1.

It is not difficult to translate these operators back to position space [5].

One finds

\n)(n\ = _Ly>*e=£Ln(^-)e-*(**«+*.«t) (3.20)

where Ln(x) is the nth Laguerre polynomial. The field <j>n(x, y) that corresponds

to the operator On = \n){n\ is, therefore,

1
pn(r2=x2+y2) = d2ke^Ln(^-)e-ik-x = 2(-l)"e- r Ln(2r2).

(3.21)

Note that 4>o{r2) is the simple gaussian 2e~r . In summary, (3.7) has an infinite

number of real radial solutions, given by

(3.22)
n = 0

where (f)n(r
2) is given by (3.21) and each an takes values either 0 or 1. These

solutions will have finite energy if only a finite number of the an are nonzero,

as is evident from (3.15).

We also see from (3.15) that the action at 0 — oo has a large symmetry

O(j) —» UOfiU^', where U is any unitary operator acting on %. This £/(oo) global

symmetry generates new nonradially symmetric solutions out of the radially

symmetric ones. The most general projection operator O — AP, of rank &, is

unitarily related to a projection operator which is diagonal (in the SHO basis),

that is of the form A(^^:T0
1 \i >< i\). And the corresponding solutions are

all degenerate in energy. In fact, their energy E = ^f^V(A) is k times the

energy of the minimal energy soliton k — 1. This suggests an interpretation as

k solitons which will become clearer as we proceed.

It is remarkable that the energy of the soliton is completely insensitive to

the value of the scalar potential at any point except <f> = A. Thus the mass of

the soliton is unchanged if the height of the barrier in V((j)) (between <f> — A

and </> = 0, see Fig. 4.) is taken to infinity while V(A) is kept fixed. This is true

even though </>o(r), the solitonic field configuration corresponding to A|0)(0|,

decreases continuously from </> = 2A at r — 0 to (j) = 0 at r = oo! It is also

striking that the form of the solutions themselves are remarkably universal too,

more or less independent of the details of the potential.

10



3.2. Stability and Moduli Space at 0 — oo

Because of the [/(oo) symmetry it suffices to examine the stability of radial

solutions of the form
k-1

(3.23)
n=0

to small fluctuations. Since any [/(oo) rotation does not change the energy of

our solution (3.23), it is sufficient to study the stability to radially symmetric

fluctuations. These are most conveniently parameterized as deformations of

the eigenvalues. The energy for an arbitrary radially symmetric state (/)(r2) =

E5T=oc^n(r2) i s

* n=0

The solutions with cn G {A,0} are manifestly local minima of E, as A and 0

are minima of the function V(x). Thus the solution of the form (3.23) (and all

solutions unitarily related to it) are stable to small fluctuations. (If any of the

cn took the value of a local maximum of V(x), then it is equally easy to see

that while the corresponding 0(r2) would be a solution to (3.7) it is not stable

to small radial fluctuations.)

The stability of the gaussian soliton A0o(r2) may qualitatively be under-

stood as follows. Since A0O(^2) = 2Ae~r is a Gaussian of height 2A, far away

from the origin, <t>o(x) = 0, but near x = 0, it is in the vicinity of the second

vacuum. In other words, the static solution corresponds to a bubble of the

"false" vacuum. The area of the bubble is of order one (or 6 in our original

coordinates), the non-commutativity scale. In a commutative theory such a

bubble would decay by shrinking to zero size. Noncommutativity prevents the

bubble from shrinking to a spatial size smaller than \/Q. In order to decay, 0O

actually has to scale to zero - but that process involves going over the hump in

the potential and so is classically forbidden.

The [/(oo) symmetry of (3.7) results in there being an infinite number of

zero modes for a given solution with energy 27rkV(X). This infinite dimen-

sional moduli space can be mathematically characterised as follows. The rank

k hermitian projection operators on V, (or equivalently, the A;-dimensional hy-

perplanes in %) form a manifold known as the Grassmannian Gv(k,l-L), which

can also be described as the coset space

U(oo)
U(ifc) xU(oo-Jfe) '

(3.24)

where U(oo) acts on the entire space, while U(oo-ft) acts only on the orthogonal

complement of a A:-dimensional hyperplane.
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