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1. Introduction

Much has been learned over the years by studying string dynamics near

various kinds of "impurities." Examples include string propagation on orbifolds

[1], where one finds "twisted sectors" corresponding to fundamental strings

trapped at the orbifold singularities, and vacua with D-branes which contain

localized excitations corresponding to open strings ending on the branes.

In both of these examples, the states localized at the impurity couple to the

bulk - e.g. two open strings ending on a D-brane can fuse into a closed string

that can leave the brane. It is sometimes possible to decouple the physics of

the localized modes from bulk dynamics by taking a low energy limit, E «

ras, where ms = \j\fa1 is the string scale, associated with the tension of the

fundamental string T = l/2iraf.

Whenever this limit gives rise to an interacting theory, it corresponds to a

local quantum field theory (QFT), such as the non-abelian gauge theories found

on branes. This embedding of field theoretic dynamics into string theory led in

recent years to many insights into field theory and string theory (see e.g. [2,3]

for reviews).

The purpose of these lectures is to describe another class of impurities -

Neveu-Schwarz fivebranes [4], or equivalently singularities of Calabi-Yau mani-

folds and other spaces1. One of the striking features of the dynamics of NS5-

branes is that it can be decoupled from the bulk without taking the low energy

limit a' —> 0. The decoupled theory of iV55-branes is known as Little String

Theory2 (LST). It has the following properties:

(1) The theory is non-local. For example, upon compactification on tori, LST

exhibits T-duality.

(2) It has a Hagedorn density of states at high energies, p(E) ~ Eocexp(pjjE).

(3) The theory can be defined in six or fewer spacetime dimensions. It has

super - Poincare invariant vacua with sixteen or fewer supercharges.

1 Orbifolds are examples of such singularities, but in [1] they are in fact resolved
by a finite expectation value of a non-gravitational modulus - the B field [5]. We will
be interested below in situations where this v.e.v. is zero or at least very small.

2 A name due to [6].

(4) LST is a non-gravitational theory: there is no massless spin two particle

in the spectrum.

(5) The theory appears to have well defined off-shell Green functions, unlike

(closed) critical string theory, where it is believed that only on-shell ob-

servables can be studied.

Note that while properties (1) and (2) are reminiscent of critical string theory,

properties (3), (4) and (5) are different in the two cases.

The main purpose of these lectures is to describe in more detail some of

the above properties and the techniques that were used to study them. Most of

these results were obtained by using holography, and this is the approach that

will be followed here. In particular, I will not describe an alternative approach

to LST based on a discrete light-cone quantization (DLCQ) of the theory, which

utilizes a certain 1 + 1 dimensional sigma model [7,8,9]. For a review of that

approach and LST in general as of 1999, see [10].

There are several reasons why I think LST is of some interest. Among them:

(1) In most (compactified) supersymmetric string theories one finds moduli

spaces of vacua. For generic values of the moduli the perturbative descrip-

tion is non-singular, but one can often tune the moduli so that a singularity

appears somewhere on the compact manifold. The dynamics near the sin-

gularity is described by LST. Thus LST is part of the dynamics of rather-

conventional looking string vacua at special points in the moduli space.

Furthermore, when supersymmetry is broken, it is possible that the theory

is dynamically driven to such singular points in moduli space.

(2) LST is relevant for the study of strongly coupled gauge theories, which

can be realized on 7V55-branes wrapped around Riemann surfaces or D-

branes stretched between fivebranes (see [2] for a review). There are also

applications to matrix theory [11], which in fact provided some of the

original motivation for the construction of this theory [12,13].

(3) It was recently proposed that LST might be phenomenologically relevant

for brane world scenarios with a relatively low string scale [14].

More generally, LST appears to be a structure that is intermediate in complex-

ity between local QFT and critical string theory. It has the non-locality and
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Hagedorn spectrum characteristic of critical string theory, but not the compli-

cations associated with gravity. A better understanding of its structure might

shed light on string theory, strongly coupled gauge theory (QCD strings), holog-

raphy and other matters.

The plan of these lectures is as follows. We start in section 2 by describing

the limit in which the dynamics of iV55-branes decouples from bulk physics.

In section 3 we discuss the holographic description of this limit and some of

the properties of LST mentioned above. In particular, we exhibit some of the

observables and the physical states of the theory.

In section 4 we discuss the high energy thermodynamics of LST. We show

that the spectrum has a Hagedorn growth and compute the Hagedorn tem-

perature and the first subleading term in the entropy which shows that the

thermodynamics is unstable. In section 5 we introduce and study a class of

vacua of LST which can be analyzed in a controlled weak coupling expansion.

2. The decoupling limit of flat iV55-branes

Consider a vacuum of type II string theory which contains N parallel NS5-

branes, which are extended in the directions (x1, - • - ,x5) and are pointlike in

(x6, • • •, x9). We will initially take the fivebranes to be at the same point and will

later examine the deformations that separate them in the directions (6,7,8,9).

The presence of the fivebranes breaks the Lorentz symmetry:

5O(9,l)-> 50(5,1) x5O(4) (2.1)

^From the fivebrane worldvolume point of view, 50(5,1) is the Lorentz sym-

metry, while 50(4) is an R symmetry. The fivebranes also break half of the

super symmetry, reducing the number of unbroken supercharges from thirty two

to sixteen. In terms of six dimensional supersymmetry along the fivebranes, IIA

fivebranes preserve a chiral (2,0) supersymmetry3, while IIB fivebranes preserve

(1,1) supersymmetry.

Since iV55-branes are dynamical objects, like D-branes, one expects to find

a rich spectrum of excitations on the branes. To decouple the dynamics on the

fivebranes from the bulk, consider the limit

Qs —> 0; — — fixedms
(2.2)

Processes in which modes that live on the fivebranes are emitted into the bulk

as closed strings are suppressed in this limit, since the corresponding amplitudes

are proportional to gs and thus go to zero. At the same time, the dynamics on

the 7V55-branes does not become free in this limit. One way to see this is to

consider the low energy limit of the resulting theory and to show that it is not

free.

Consider first the low energy limit of N iV55-branes in type IIB string-

theory. S-duality relates this to N jD5-branes; thus the low energy theory is

a six dimensional gauge theory with (1,1) supersymmetry and gauge group

U(N). The gauge coupling of the theory on the D5-branes is

1

9s
(2.3)

3 I.e. two complex supercharges in the 4 of Spin(5,l).

Using the transformation of gs and ms under S-duality one finds that the gauge

coupling on the iV55-branes is

(2.4)

Thus in the limit (2.2) the gauge coupling remains fixed. Since the gauge theory

in question is non-renormalizable, the gauge coupling gx in fact changes with

the scale, approaching zero at long distances and growing at short distances.

At energies of order ms the gauge theory description breaks down and more

data needs to be supplied to define the theory. As we will see, there are in fact

additional degrees of freedom in the theory at (roughly) that scale, and the full

density of states is much larger than that in any local QFT. At any rate, since

the dynamics at scales E < ms is not free, the full theory must be interacting.



Note that the above arguments are only valid for N > 1 fivebranes. The

low energy theory on a single 7VS5-brane is free. Indeed, we will see later that

LST is interacting only for N > 1.

The infrared dynamics of N IIA iV55-branes is more involved. One finds

in this case a non-trivial IR fixed point with (2,0) superconformal symmetry

[15]. To see that something special is happening in the IR imagine separating

the fivebranes in the (6,7,8,9) directions. In the IIB theory, one then finds

D-strings stretched between the fivebranes; their masses go to zero as the five-

branes approach each other. The resulting massless states are the off-diagonal

U(N) gauge bosons on the fivebranes.

The analogous process for IIA involves D2-branes stretched between the

fivebranes. The ends of the D2-branes are strings bound to the fivebranes.

Their tension goes to zero when the fivebranes coincide [16]. These tensionless

strings signal the interacting nature of the low energy limit of the IIA fivebrane

theory - the (2,0) superconformal field theory.

Thus, we conclude that the limit (2.2) corresponds to an interacting theory

on the iV£5-branes decoupled from the bulk. What sort of theory is it? Already

at the level of the present discussion there are a few hints of non-local/stringy

behavior. Let us mention two:

(1) T-duality: Compactify some or all of the dimensions (1,2,3,4,5) on cir-

cles. iV£5-branes are known to transform to themselves under T-duality

along their worldvolume. Since the limit (2.2) commutes with T-duality,

inversion of the radius of a single circle (R —> l/m2
sR) exchanges the IIA

and IIB LST's, while inversion of an even number of radii is a symmetry

of the theory.

(2) The theory contains strings with tension T = l/2na', which can be inter-

preted as fundamental strings bound to the fivebranes. In the IIB case4,

these strings can be constructed in the low energy gauge theory as instanton

solutions, which are extended (say) in (0,1) and localized in (2,3,4,5). The

tension of these strings is proportional to the instanton action, l/g%, which

indeed (2.4) is the fundamental string tension. Of course, this construction

gives rise to long strings, and it is not clear what are the properties of short

strings which actually govern the dynamics, but it suggests that LST is a

theory of strings. Later we will see further evidence that supports this.

It is instructive to compare the decoupling limit (2.2) with the limits stud-

ied in D-brane physics. Usually, to decouple the physics of D-branes from the

bulk one considers the low energy limit

E
> 0; gs = fixed

ms
(2.5)

and the decoupling from the bulk is the standard low energy decoupling of QFT

from gravity. In contrast, the limit (2.2) for D-branes gives rise in general to

a free theory on the branes, since gs determines both the open and the closed

string couplings.

A limit for N D-branes which is more analogous to (2.2) is

E
gs —> 0; A = gsN = fixed; — = fixed

ms
(2.6)

A similar construction can be performed in the IIA case.

The open string coupling A is fixed; hence the theory on the D-branes remains

interacting. Since gs —> 0, the closed string sector decouples, despite the fact

that a low energy limit has not been taken. The resulting theory is an open

string theory without closed strings; it has some things in common with LST

although there are differences as well.

3. A holographically dual description of LST

The construction described in the previous section is useful for establishing

the existence of LST, but it does not provide efficient techniques for studying

the theory. To proceed, we will use a holographically dual description proposed

in [17] (see also [18,19]). This duality is a generalization of the AdS/CFT

correspondence [3]; it postulates that LST is equivalent to ten dimensional

string theory in the background of the fivebranes, in the limit (2.2). In this

section I will describe the fivebrane geometry and will briefly discuss the duality

of [17].



The geometry, dilaton and NS £-field around N iV55-branes in type II

string theory are [4]:

ds2 =

p — n i l 4 -

Hijk = -eij

Na\ (3.1)

where // = 0,1,2, • • •, 5 are worldvolume coordinates and i,j, k, I — 6,7,8,9 are

transverse ones.

To take the limit (2.2) one must send r —> 0 at the same rate as gs. Defining

r = gsexpa we have in this limit

ds2 — dxndx^ 4- Not [da2 -f dfto)
(3.2)

and we suppress the B-field (3.1). String propagation in this geometry corre-

sponds to an "exact conformal field theory" [4]:

5'1 xlR+x SU(2)N (3.3)

IR5'1 is the worldvolume of the fivebranes. IR^ is the real line labeled by </> =

y/Na'a. The dilaton goes like (3.2):

(3.4)

The last factor in (3.3) describes the angular three-sphere in (3.2). The JB-field

(3.1) is precisely such that the CFT on the three-sphere, whose radius is

^sphere = (3.5)

is described by a level N WZW model. We see that the number of fivebranes

N determines the slope of the linear dilaton, Q, and the level of 517(2) current

algebra. More precisely, since (3.3) is a background for the superstring, the

worldsheet theory contains ten free fermions: T/^, /X = 0 , 1 , 2 , — , 5 , the super-

partners of xM; 1JJ1, i — 3, -f-, —, the superpartners of the SU(2) currents J%\

and ^ , the superpartner of </>. The total level N of the SU(2) current algebra

receives a contribution of TV - 2 from the worldsheet bosons, and 2 from the

fermions <0Z, which transform in the adjoint of the total SU(2) current algebra.

The total central charge of the worldsheet theory (3.3) is

(3.6)

which is the correct value for the superstring.

The background (3.3) is thus expected to be holographically dual to the

LST on the fivebranes. We next discuss some features of this duality. First

note that while the string coupling (3.4) vanishes far from the fivebranes (i.e.

as <f) —> oo), it diverges as one approaches the branes (0 —> —oo, or r —> 0 in

(3.1)). The A^55-branes have the remarkable property that quantum effects

near the branes cannot be turned off no matter how small the string coupling

is far from the branes [4]. This makes it clear that LST is not a free theory5,

as argued above, but it raises the question whether one can analyze the physics

of the string background (3.3), (3.4) perturbatively. We will return to this

question below.

As is familiar from the AdS/CFT correspondence, on-shell observables in

the "bulk" theory - string theory on (3.3) - correspond to off-shell observables

in the "boundary" theory - the LST corresponding to ./V iV55-branes. More

precisely, off-shell observables in LST correspond to non-normalizable observ-

ables in string theory on (3.3), whose wavefunctions are supported near the

"boundary" at 0 —> oo. This can be explained as follows (in analogy with the

AdS case).

Consider (say) a scalar field on the manifold (3.3). As (j) —> oo, its wave-

function \&(0, rc^) (assuming for simplicity a profile constant on the angular S3)

behaves as:

Y^X<t>eik^x" (3.7)

5 For N > 2 fivebranes. Note that for N = 1, the bosonic 5(7(2) current algebra
has formally a negative level, iV — 2 = — 1, and the construction breaks down.



where

C (3.8)

C is a constant which depends on the mass of the scalar field and on N. Choos-

ing the positive root of (3.8), we see that the mode (3.7) is non-normalizable

and thus the coefficients C& do not fluctuate - they are not integrated over in

the process of integrating over all field configurations in the path integral [20].

Thus, we can think of the C^ as fixed sources. The string partition sum with

the fixed boundary conditions (3.7) as <j> —* oo, ^bulk(C/c)7 can be interpreted

as the generating functional of off-shell Green functions in the six dimensional

LST via:

= (exp (3.9)

where 0(kfX) is the off-shell observable which couples to the source C^. More

qualitatively, modes that are non-normalizable in the "near-horizon" geometry

(3.3) are nothing but bulk modes in the full geometry (3.1); they are supported

at finite r. Thus, they are not part of the LST but rather are fixed background

sources (in the limit (2.2)), which couple to the brane modes via couplings like

(3.9).

Similarly, normalizable modes in the geometry (3.3) correspond to states in

LST, since in the full geometry (3.1) they correspond to modes localized at the

fivebranes (i.e. at r —> 0). To illustrate all this, we next give an example each

of off-shell observables and states in LST, as described in the holographically

dual picture.

S.I. Example 1: Chiral operators in LST

As discussed above, the low energy limit of IIB LST is a U(N) gauge theory

with (1,1) supersymmetry. This theory contains four scalar fields in the adjoint

of SU(N), X \ i — 6,7,8,9, which parametrize the locations of the N fivebranes

in (6, 7,8,9). The gauge invariant off-shell operators

TrXilXh ••-X1"; n = 2,3,4,- --N

9

(3.10)

where we only take the completely symmetric and traceless combination in

(^i, • • •, in)t
 a r e lowest components of short multiplets of supersymmetry. Writ-

ing the 50(4) symmetry in (2.1) as

SO(4) ~ SU(2)L x SU(2)R (3.11)

the operators (3.10) transform in the spin (n — l,n — 1) representations. In

string theory on (3.3) these chiral operators are described as follows. The

SU(2)L X SU(2)R symmetry on (3.11) corresponds to the left and right moving

SU(2) symmetries in the SU(2)M WZW model in (3.3). Physical primaries of

this symmetry are Vy,m,rh with the same spin (2j — 0,1,2, • • •, N - 2) under

both 5/7(2)'s. (ra,ra) are the eigenvalues of (J3, J3).

The lowest lying observables have the form (in the —1 picture)

(3.12)

where a, (3 = 0,1,2, • • • 9 and £ap is a polarization tensor satisfying the usual

physical state conditions. One can show that (3.10) correspond to6

(3.13)

where I/J stands for the three fermions associated with the SU(2) WZW and

the brackets mean that ip, which has spin 1 under SU(2)L, is coupled with Vj

into a spin j + 1 combination (and similarly for the right movers). Thus, the

non-normalizable operators (3.13) transform as

lj + l); 2j=0,l,2,---,N-2 (3.14)

in exact agreement with what was found for (3.10) above. Applying the space-

time supercharges gives the other members of the supermultiplets. Thus, the

sets of short representations of supersymmetry in LST and in string theory on

(3.3) agree.

We set k^ to zero for simplicity.
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3.2. Example 2: Normalizable states

A large set of normalizable states is obtained by considering vertex opera-

tors of the form

e{~%+iX)+ (3.15)

on IR^. Recall that the vertex operators are related to the wavefunctions (3.7)

by a factor of gs, which here is a function of cf) (3.4). Thus, (3.15) actually

corresponds to a wavefunction

(3.16)

which is (5-function) normalizable, and thus gives rise to states in LST. Since

A is arbitrary, there is in fact a continuum of such states. To compute their

masses, consider the states (3.12) as an example. The mass shell condition

reads:

kpk* - /?(/? + Q) = 0 (3.17)

Plugging in p = — ̂  + iA, we find

Na!
(3.18)

Thus, we find a continuum above the gap ms/y/N. The gap is given by a

natural scale in LST; looking back at (2.4), we see that it is related to the 't

Hooft coupling of the low energy super Yang Mills theory (for IIB fivebranes).

3.3. The strong coupling problem

As we have seen before, the background (3.3) has the property that the

string coupling depends on </>; it goes to zero as (j) —> oo and diverges as (j) —> -oo.

In this subsection we would like to discuss the physical origin of this behavior

and its implications. The strong coupling region (j) —• — oo corresponds to the

vicinity of the brane. This corresponds to the low energy region in the theory

on the branes [18].

The low energy behavior of LST is different for IIA and IIB fivebranes.

In the IIB case, the low energy limit is a six dimensional U{N) gauge theory,

which is weakly coupled in the IR. Thus, in the limit (f> —> — oo, the dual string

theory on (3.3) should reproduce the weakly coupled gauge theory on the branes.

Since one does not expect to find two different weakly coupled description of

the same physics, the "bulk" description should either be strongly coupled, or

exhibit large curvatures (or both). Since in our case the curvature of (3.3) is

small, it is natural to find that the string coupling is growing in the infrared

region.

In the IIA case the infrared limit of LST is somewhat different. As discussed

earlier, one finds in this case a non-trivial superconformal field theory with chiral

(2,0) supersymmetry, the (2,0) theory. Thus, it is not obvious that one should

run into any strong coupling problems in the dual description.

To see what is going on, recall that type IIA string theory can be thought

of as an eleven dimensional theory, M-theory, compactified on a circle of radius

i?n, which is related to the eleven dimensional Planck scale In and the string

scale ms and coupling gs via

msRn = l6
nmi = g, (3.19)

The eleven dimensional theory contains membranes and fivebranes (the M2 and

Af5-branes), which preserve half of the supersymmetry; the IIA iVS'S-branes are

M5-branes located at points on the circle. Thus, to study them using holography

we should construct the background around TV coincident M5-branes. Taking

the limit (2.2), which corresponds to Ru,lu —* 0 with ms fixed, one finds the

eleven dimensional metric

2 - W-Tds2 = H(dx dr2

where

= £ Nl3
n

(3.20)

(3.21)

x\\ is a coordinate on the circle; it is periodic with period 2TTRH. In the limit

r -» oo, the background (3.20) goes over to (3.3). The radius of the xu circle

goes to zero and one finds the linear dilaton behavior discussed above. As
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r —• 0 only one term in the sum over n in (3.21) (say n = 0) contributes, and

the metric reduces to the near-horizon background of N coincident M5-branes

in eleven dimensions. This background, AdS7 x 54, is known to be dual to

the (2,0) superconformal field theory via AdS/CFT [3]. If N is large, it can

be studied using eleven dimensional supergravity; otherwise one needs the full

M-theory, which is not understood for these backgrounds.

Thus, we see that the growth of the coupling and associated breakdown of

string perturbation theory as <f> —» —oo in the background (3.3) have slightly

different origins in the IIA and IIB cases. However, regardless of the origin

of this problem, one can ask what is the dual description of LST good for

in view of its existence? We have already seen two examples of applications

of the formalism. Since off-shell observables correspond to non-normalizable

wavefunctions supported in the region 0 —» oo, we can classify the observables

of LST by analyzing such wavefunctions; since the coupling is small at large

0, perturbative string theory is suitable for this. Also, any normalizable states

that are supported in the weakly coupled asymptotic region, like those described

in section 3.2, can be studied using the formalism.

Correlation functions of the observables discussed above are in general dif-

ficult to analyze. Since the string coupling goes to zero as <j) —> oo, disturbances

on the boundary have to propagate to finite 0 in order to interact. Thus, to

compute correlation functions in LST one needs information about the strong

coupling region. E.g. for IIA fivebranes, one has to understand M-theory in

the background (3.20), (3.21) which seems difficult7.

There are actually some situations in which the strong coupling problem

can be avoided. In the next section we describe an example of such a situation,

which is in fact of independent interest, the high energy density behavior of

LST.

7 For large N and energies much lower than ms one can use classical eleven di-
mensional supergravity to compute correlation functions. See [21] for details.

4. High energy thermodynamics of LST

At very high energy density one expects the thermodynamics of fivebranes

to be dominated by black brane states. Thus, in this section we will ana-

lyze the thermodynamics of near-extremal fivebranes and deduce from it the

entropy-energy relation. We will find that the density of states has the Hage-

dorn behavior

V £ [ ^ j ] (4.1)
One of our main purposes is to compute 0H &nd a.

4.1. Thermodynamics of near-extremal fivebranes

The supergravity solution for N coincident near-extremal 7V5'5-branes in

the string frame is [22]:

ds2 = _ 1_lA\dt2+ 1 +
Na'

e =

(4.2)

(4.3)

r = ro is the location of the horizon, dy\ denotes the flat metric along the

fivebranes, and dVt\ is the metric on a unit three-sphere, as before. The solution

also involves a non-zero NS B^ field which we suppress. The configuration

(4.2), (4.3) has energy per unit volume

E 1

(2n)5ar
92s

where
r2

(4.4)

(4.5)

The first term in (4.4) is the tension of extremal iVS'S-branes and can be ignored

for the thermodynamic considerations below (it is a ground state energy). \i

measures the energy density above extremality and gs is the asymptotic string

coupling, which goes to zero in the decoupling limit.
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The near-horizon geometry is obtained by sending ro,#s —* 0 keeping the

energy density \x fixed. Changing coordinates to r = r$cosher and Wick rotating

t —> it to study the thermodynamics, one finds

In general in string theory the free energy is related to the string partition sum

ds2 = tanh2 adt2 + Not da2 -f

/xcosh a

This background corresponds to the worldsheet CFT

H^/U(l) x SU(2)N x R5,

where

+

+
3 SU(2)N

(4.6)

(4.7)

(4.8)

(4.9)

is the Euclidean AdSs CFT which plays an important role in the AdS-CFT

correspondence; the coset H^/U(l), parametrized by (a,t) in (4.6), is a semi-

infinite cigar [23]. The background (4.8) describes the high energy density

thermodynamics of fivebranes; it should be compared to (3.3), which is dual to

the zero temperature theory.

The absence of a conical singularity at the tip (a = 0 in (4.6)) requires the

circumference of the cigar to be

(5H = 27rViVa7. (4.10)

Thus, Euclidean time lives on a circle of radius y/Na'', and the temperature of

the system is TJJ = 1/PH- I*1 particular, the temperature is independent of the

energy density /i, which determines the value of the string coupling at the tip

of the cigar (4.7).

The fact that the temperature is independent of the energy means that the

entropy is proportional to the energy. Therefore, the free energy is expected to

vanish8,

S-I3E = O. (4.11)

via

(4.12)

where Zstr ing is the single string partition sum, given by a sum over connected

Riemann surfaces [25]. The string path integral should be performed over ge-

ometries in which Euclidean time is compactified on a circle of radius R = /3/2TT

(asymptotically). For high energies one expects the thermodynamics to be

dominated by the black brane geometry (4.2), (4.6) and thus the free energy is

proportional to the partition sum of string theory in the background (4.8).

The string partition sum Zstr-mg can be expanded as follows:

-'string — (4.13)

where exp(^o) ^s the effective string coupling in the geometry (4.6) and Z)x the

genus h partition sum in the background (4.8). Although the string coupling

varies along the cigar (see (4.7)), it is bounded from above by its value at the

N
e2*0 = - . (4.14)

Therefore, it is natural to associate (4.14) with the effective coupling in (4.13).

We see that the string coupling expansion in the background (4.8) provides an

asymptotic expansion of the free energy in powers of l//x.

The leading term in the free energy (4.12), (4.13) goes like

(4.15)

See [24] for a related discussion in the low energy gravity approximation.

and corresponds to a free energy that goes like the energy (Zo is proportional to

the volume of the fivebrane). This term is expected to vanish (see (4.11)), and

therefore we conclude that the spherical partition sum in the background (4.8)

should vanish. The fact that this is indeed the case follows from the results of

[26]; we will not discuss it further here.

To compute 1/ JJL corrections to the free energy we have to examine string

loop effects in the background (4.8). We next turn to the one loop correction

Zx (see (4.13)).
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4.2. The leading \j\x correction to classical thermodynamics

As discussed above, one expects the entropy-energy relation to take the

form (4.1)

S(E) = /3H £ + a log | + O (^\ , (4.16)

where A is a dimensionful constant (a UV cutoff) which we will not keep track

of below. Consider the canonical partition sum

= r dEp{E)e-0E.
Jo

(4.17)

Near the Hagedorn temperature one might expect Z(/3) to be dominated by the

contributions of high energy states;9 if this is the case, one can replace p(E) by

(4.1) and find,

Z(0) ~ I dEEae^IJ-

The free energy (4.12) is thus given by

The energy computed in the canonical ensemble is

dp

thus the free energy (4.19) can be written as

- # F ~ ( a + 1) log £7.

(4.18)

(4.19)

(4.20)

(4.21)

Comparing to the expansion (4.12) - (4.14) we see that the leading term in the

free energy arises from the torus (one loop) diagram in the background (4.8),

since it scales as //*, like Z\ in (4.13).

9 We will see that this assumption is valid slightly above the Hagedorn temperature,
but is not valid slightly below it.

The torus partition sum in the background (4.8) is in fact divergent, since

it is proportional to the infinite volume of the cigar, associated with the region

far from the tip, <j> —> oo. As is standard in other closely related contexts, we

will regulate this divergence by requiring that

(4.22)

In the fivebrane theory, this can be thought of as introducing a UV cutoff. This

makes the partition sum finite, but the bulk of the amplitude still comes from

the region far from the tip of the cigar. For the purpose of computing this "bulk

contribution" one can replace the cigar by a long cylinder with (j> bounded on

one side by the UV cutoff (4.22) and on the other by the location of the tip of

the cigar. Combining (3.4) and (4.14) we find that

Thus, the length of the cut-off cylinder is

1 _ /x 1
H = <fo/V - 7T log 77 = -7T 4- const.

(4.23)

(4.24)

Since we are only interested in the energy dependence, we suppress in (4.24) a

large energy independent contribution. Any contributions to the torus partition

sum from the region near the tip of the cigar can also be lumped into this

constant. Note the minus sign in front of logE in (4.24). The length L^ is of

course positive; the minus sign simply means that L^ decreases as E grows.

To recapitulate, for the purpose of calculating the bulk contribution to the

torus partition sum, we can replace the background (4.8) by

x S1 x SU{2)N x ]R5. (4.25)

The linear dilaton direction is regulated as in (4.23). The circumference of the

S1 is (5H (4.10).

The background (4.25) is easy to analyze since it is very similar to that

describing flat space at finite temperature (see e.g. [27,28,29]). The bosonic
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fields on the worldsheet are seven free fields, one of which (Euclidean time) is

compact, and a level N — 2 517(2) WZW model. The worldsheet fermions are

free and decoupled from the bosons; their partition sum, and in particular the

sum over spin structures, is the same as in the flat space analysis, which we

briefly review next.

Collecting all the contributions to the thermal torus partition sum in the

background (4.25) we find,10

±
f
F r 2

(4.26)

The modular integral runs over the standard fundamental domain F. Z^-2 is

the partition sum of level N -2 SU(2) WZW n (see for example [30]),

N-2 JV-2

m=0 ra=0

where q — exp(2?rir) and

] T [1 4- ra 4- 2nA0]4n(1+m+Arn). (4.28)

We note for future reference that Z^-2 is real and positive.

/i, i/ denote the spin structure for left and right moving worldsheet

fermions, respectively. 5^ = (±, —, -f, —) are signs coming from the usual GSO

projections for IIA and IIB superstrings at zero temperature; n, m are winding

numbers of Euclidean time around the two non-contractible cycles of the torus.

The soliton factor Sp(n,m) is given by

Sp(n,m) = a2
47TO/T2

(m2 + n2\r\2 - 2r\mn). (4.29)

10 We follow the conventions of [29], which should be consulted for additional details.
We also drop the subscript H on (3H , and will reinstate it later.

11 We choose the A series modular invariant; the D and E series modular invariants
can also be studied and correspond to other vacua of LST [17].

U^n, m) are additional signs that are associated with finite temperature. Their

role is to implement the standard thermal boundary conditions, that spacetime

bosons (fermions) are (anti-)periodic around the Euclidean time direction. One

can show [29] that this requirement together with modular invariance leads to:

1
Ui(n,m) = - (-1 + ( - l ) n + (~l

(4.30)
\n+m\

(-1)" - (-l

The terms with \x — 1 in (4.26) vanish because of the presence of fermionic zero

modes for the (+, -f) spin structure, or equivalently since ^i(0,r) = 0.

The torus partition sum (4.26) can be rewritten in a way that makes it

manifest that the coefficient of PV^L^/A is positive,

d2T / i \T/21

E

1

O-Sp(n,m)

(4.31)

It is not difficult to check that the integral (4.31) is convergent at r2 —> oo, the

only region where a divergence could occur.

To exhibit the interpretation of (4.31) as a sum over the free energies of

physical string modes one can proceed as follows [25,27,28]. Using the modular

invariance of the integrand and the covariance of (?2, m), one can extend the

integral from the fundamental domain to the strip

~\<r<\; r 2 > 0 , (4.32)

while restricting to configurations with n = 0 in (4.31). This leads to
7/2 1

2(r)xi =

OO

E
m— — oo

Js r2 118

(4.33)
o-Sfi(0,m)
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The integral over T\ projects on physical states (i.e. those with Lo = Lo)> while

T2 plays the role of a Schwinger parameter. Because of the Jacobi identity

^ ( 0 , r ) - ^ ( 0 , r ) + ^ ( 0 , r ) = 0, and the fact that U2(0,m) = (-)m , f/3(0,ra) =

1/4(0, m) — 1, the sum over m in (4.33) can be restricted to odd integers. It

is not difficult to check in this representation too that the integral over r2 is

convergent.

We are now ready to determine the parameter a in (4.16), (4.21). Using

the relation (4.12) between the free energy T and the string partition sum, as

well as (4.21), we see that Z\ should be proportional to \ogE. This is indeed

the case in (4.33) since the length L^ goes like — logE (see (4.24)). Combining

these relations we find that

a 1 = —
4Q

7/2

118'

m=—oo u=

(4.34)

We see that a -f 1 is negative, as stated above.12 Physically, it is clear that

it is counting the free energy of the perturbative string modes which live in

the vicinity of the black brane. An interesting point which was mentioned in

[31,32] is that a is an extensive quantity - it is proportional to the volume of the

fivebrane V5, in contrast, say, to the one particle free energy in critical string

theory, where the analogous quantity is of order one.

The integral (4.34) appears in general to be rather formidable and we do

not know whether it can be performed exactly. In the remainder of this section

we will compute it in the limit N —> 00, where the computation simplifies.

For large iV the partition sum corresponding to the three-sphere, ZN-2(T),

simplifies significantly. Indeed, for N >̂ 1 (4.27) can be approximated as

(4.35)

12 Of course, since the r.h.s. of (4.34) is proportional to V5 which is assumed to be
very large, we can neglect the +1 on the left hand side.

Returning to the evaluation of a, (4.34), we have

i 24

V(r)
(4.36)

At this point it is useful to recall that the inverse temperature (3 in (4.36) is in

fact the Hagedorn temperature of LST, (4.10). In the large N limit, PH ~ yf~N

becomes large (or, equivalently, the Hagedorn temperature is small in string

units) and the exponential term in (4.36) suppresses the amplitude, unless r2

is large as well (of order N). Therefore, the r integral in (4.36) is dominated

by the large r2 region, which corresponds to the free energy of the supergravity

modes. To compute the integral we recall the asymptotic forms of the d and rj

functions at large r2 (see e.g. [33])

n = —00

00

0 3 ( 0 , T ) =

0 4 ( 0 , r ) =

*"2 = 1

(4.37)

n= — oo
00

n=l

Plugging in (4.36) and using the definition of the modified Bessel function

we find

SVb ^ ^27^(2^ + l ) 2 ^ - 7 / 4

a + 1 = -
fe,p=0

l)(2fc + l))~-4.08 = -01V5.

(4.39)
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Note that, as expected, a\ is positive. Of course, as is clear from (4.36), we

can write a + 1 as —aiV§ with a\ a positive constant for all JV, but in general

a\ receives contributions from massive string modes and is thus given by a

complicated modular integral. The large N behavior of a\ is simpler and is

given by (4.39).

The fact that a goes like TV"5/2 for large N was found in a different way

in [31], by analyzing the deformation of the classical solution (4.6) at one string

loop. Our analysis determines the coefficient of iV~"5//2, and in particular its

sign, which is important for the thermodynamics.

In the discussion above, the fivebrane was assumed to be effectively non-

compact. It is interesting to study the thermodynamics of fivebranes wrapped

around compact manifolds, and in particular the dependence of a on the size

and shape of the manifold. As an example of the sort of dependence one can

expect, consider compactifying the fivebrane on (51)5 where all five circles have

the same radius R. It is sufficient to consider the case R > \fa' since smaller

radii give rise to the same physics due to T-duality.

As is standard in string theory, the effect of this is to replace the contri-

bution of the non-compact zero modes on Rb by the momentum and winding

sum on (S1)5:

(4.40)
(47r2a'T2)5/2

Consider for simplicity the limit TV —> oo discussed above. As mentioned after

eq. (4.36), since the Hagedorn temperature is very low, the modular integral

is dominated in this case by r2 ~ N. If the radius R is much larger than

y/Na'', the sum over momenta on the r.h.s. of (4.40) can be approximated

by an integral and gives the same contribution as in the non-compact case

(namely the l.h.s. of (4.40)). For R ~ y/Na' one has to include a few low lying

momentum modes - this is a transition region. For yfa' < R <^ y/Na' one

can neglect all contributions of momentum (and winding) modes just like one

is neglecting the contributions of oscillator states. Thus, we get in this case

2Q \4ir2a'

°° /3
2(2A:+1)2 (p+l)2r

• 1024 V e 4-'-2 ~^~
k,p=0

~

-1/2

- -3.693.

(4.41)

Interestingly, we find that for small fivebranes a is independent of the number

of fivebranes N in the N —> oo limit. Note also that in this case it is important

to keep the +1 on the l.h.s. of (4.41), since a is of order one.

To summarize, the power a that appears in the high energy density of

states (4.1) exhibits an interesting dependence on the size of the spatial mani-

fold that the fivebranes are wrapping. For manifolds of size much larger than

the characteristic scale of LST, y/Na', a is proportional to the volume of the

manifold, while for sizes much smaller than this charateristic scale, it saturates

at a finite value, which is independent of N (for large iV), (4.41). If the density

of states (4.1) is due to strings confined to the fivebranes, then these strings

belong to a new universality class, with typical configurations not exceeding the

size y/Na'. It would be interesting to understand this universality class better

(see also [31]).

4*3. Comments on the near-Hagedorn thermodynamics of LST

The main result of our discussion so far is that the thermodynamics cor-

responding to non-extremal fivebranes is unstable. The temperature-energy

relation has the form (4.20), with a given by (4.36) or for large N by (4.39),

(4.41). Since it is negative, the temperature is above the Hagedorn temperature,

and the specific heat is negative. This raises two immediate questions:

(1) What is the thermodynamics for temperatures slightly below the Hagedorn

temperature?

(2) What is the nature of the instability above the Hagedorn temperature?

Consider first the behavior well below the Hagedorn temperature, /? >̂ /?//. In

this regime, the thermodynamics is expected to reduce to that corresponding
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to the extreme IR limit of LST, which is the (2,0) six dimensional SCFT for

type IIA LST, or six dimensional (1,1) SYM for IIB. From the point of view

of the holographic description, this regime corresponds to the strong coupling

region of the near-horizon geometry of the fivebranes, and thus should not be

visible in the perturbative theory on the cigar (4.6).

What happens as the temperature approaches T# from below? One might

expect that due to the Hagedorn growth in the density of states (4.1), the high

energy part of the spectrum dominates as (3 —> /3#, and the partition sum is

well approximated by (4.18). What actually happens depends on the value of

a. as we discuss next.

Consider first the case of large V5 (R > y/Naf in the discussion at the end

of section 3). In this case, |a| is large, and the contribution to the partition

sum of the high energy part of the spectrum, (4.18), goes rapidly to zero as

P —> PH- The integral over E is dominated by states with moderate energies,

whose contribution to the partition sum is analytic at /?#. It is clear that the

mean energy remains finite as we approach the Hagedorn temperature from

below, and that thermodynamic fluctuations are suppressed (by a factor of the

volume V5). Since the Hagedorn temperature is reached at a finite energy, it

corresponds to a phase transition.

As V5 decreases, a decreases as well, until it reaches the value (4.41). The

fluctuations in energy in the canonical ensemble increase with decreasing a. To

see that, consider the case R <C y/Na' in the discussion at the end of section

3. Since - 5 < a < — 4 in that case, the expectation values {En) with n > 4 in

the canonical ensemble diverge as

— a — n — 1 (4.42)

In such situations, one is instructed to pass to the microcanonical ensemble, in

which the energy is fixed and the temperature is defined by

0 = ^ = ^ + 1 + ... (4.43)

The perturbative evaluation of /? in (4.43) gives a temperature above the Hage-

dorn temperature. This of course does not imply that LST cannot be defined at

temperatures below T#; instead, it means that to study the theory at such tem-

peratures one must compute S(E) to all orders in 1/E, include non-perturbative

corrections, and solve the equation (4.43) to find the energy E corresponding

to a particular j3 > /?#. From the form of the leading terms in S(E) it is clear

that the solution of this equation will correspond to finite E. We are led again

to the conclusion that the Hagedorn temperature is reached at a finite energy

and thus is associated with a phase transition.

Since the study of the non-extremal fivebrane geometry in the previous

sections is perturbative in 1/E, it is not useful for studying the regime (3 >

(3H> Nevertheless, it seems clear that the specific heat is positive there (this

is certainly the case for the infrared theory on the fivebranes). Furthermore,

since the energy - temperature relation is such that the Hagedorn temperature

is reached at a finite energy, we are led to the second question raised in the

beginning of this section: what is the nature of the high temperature phase of

LST?

The perturbative analysis of the near-extremal fivebrane, which is valid for

P slightly below pH, predicts that the thermodynamics is unstable. Usually,

in such situations the instability is associated with a negative mode in the

Euclidean path integral (a tachyon). Examples include the instability of flat

space at finite temperature in Einstein gravity [34], and the thermal tachyon

that appears above the Hagedorn transition in critical string theory. The one

loop instability found above leads one to believe that a similar negative mode

should appear in LST above the Hagedorn temperature.

In [35] it was shown that there is a natural candidate for this, a mode that

lives near the tip of the cigar and is classically massless. It is likely that one

loop corrections give a tachyonic correction to the mass of this state above the

Hagedorn temperature, but this has not been proven and we will not discuss

the detailed properties of this state here.
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5. Weakly Coupled Little String Theory

In the previous section we saw that the high energy thermodynamics of

LST can be analyzed reliably using the holographically dual description, since

at large energy density the strongly coupled region on IR^ is eliminated, and

the coupling never exceeds (4.14), a value that can be made arbitrarily small by

increasing the energy density. In this section we will describe another situation

where something similar happens at zero temperature, by studying the theory

away from the origin of its moduli space of vacua.

Recall that the theory of N fivebranes contains four scalars in the adjoint

of U(N), X1, i = 6,7,8,9, parametrizing motions in (6,7,8,9). IIA fivebranes

have one more scalar X11, which is compact, but we will not discuss it here.

The moduli space of vacua of LST is 1R4N/SN for IIB and (R4 x 51)7V/5iv for

IIA. The origin corresponds to coincident fivebranes; other points are labeled

by relative separations of the fivebranes.

The four scalars X% can be parametrized by two complex N x N matrices,

A = X8 + iX9

B = X6 + iX7
(5.1)

Consider a point on the moduli space where

(B) =rodiag(l, e^r, e^r, • - •, e ~
(5.2)

This corresponds to fivebranes symmetrically distributed around a circle of ra-

dius ro in the (6,7) plane. The gauge invariant characterization of this vacuum

is
/TV £?-^\ ivN /C\ Q\

with all other v.e.v.'s of the operators (3.10) set to zero. Since for a single

fivebrane the worldvolume dynamics is trivial, in order to get a non-trivial

result in the limit (2.2), we have to tune ro —> 0 as we take the limit. E.g., in

the IIB case the masses of D-strings stretched between 7V55-branes

.2
lW

9s
(5.4)

must be kept finite in the limit. This leads one to consider the double scaling

limit

gs -> 0; roms -> 0 (5.5)

with Mw (5.4) held fixed.

Distributing the branes on a circle as in (5.2) breaks the 50(4) R-symmetry

50(4) -> 50(2) x ZN (5.6)

We will next show that is also eliminates the strong coupling singularity at

<j) -> -oo discussed above.

The first thing we have to understand is how to describe the vacuum (5.3)

in the holographically dual theory. In section 3.1 we found the vertex operators

corresponding to the gauge invariant operators (3.10). It is not difficult to see

that
?N , . n/.+n7.+ T/' ~,.~ I " f * 1 - \ \ A \ f5 7)

Adding the vertex operator (5.7) to the worldsheet action is equivalent, via the

prescription (3.9), to adding the operator Tr BN to the action of LST. In order

to turn on a v.e.v. of Tr BN instead, as in (5.3), we have to use the same vertex

operator but replace the charge 0 in (3.12) by

(5.8)

Thus, to describe the vacuum (5.3) we must study the worldsheet Lagrangian

C = AG c.c. (5.9)

where we explicitly wrote the worldsheet supercharges which are needed to

turn a (—1, —1) picture vertex operator to a (0,0) picture one (the appropriate

picture for a term in the worldsheet Lagrangian). A is a coupling related to

ro- The precise relation will be (indirectly) determined below. £0 is the free

Lagrangian describing string propagation on (3.3). Since the coupling A breaks

27 28



explicitly the SU(2)L X SU(2)R symmetry, it is convenient to analyze its effect

by rewriting the background (3.3) as

JN (5.10)

where SU(2)/U(1) is an N — 2 minimal model, and Sl a circle of radius

Denoting the coordinate along the circle by Y, one can show that the interaction

in (5.9) can be written as

SC = c.c (5.11)

This interaction is familiar in CFT as the N = 2 Liouville interaction. Thus,

we find that to describe the vacuum (5.3), we must replace the infinite cylinder

R0 x S1 in (5.10) by the TV = 2 Liouville model. Note that:

(1) The fact that the interaction (5.9), (5.11) preserves N = 2 superconformal

invariance is related to the fact that spacetime supersymmetry remains

unbroken along the moduli space of LST.

(2) The interaction (5.11) grows as <j> —> — oo. One can show that it resolves

the strong coupling singularity discussed in section 3. We will see this

directly momentarily.

To study N — 2 Liouville theory, it is convenient to use a dual description of

this background. It was argued in [36] that N — 2 Liouville is equivalent via

strong-weak coupling duality on the worldsheet to CFT on the cigar, H% /U(l),

which was discussed in section 2. The parameter TV which enters the definition

of N — 2 Liouville (5.11) via Q is mapped under the duality to the level of the

underlying SL(2) current algebra.

I will not describe the duality or the evidence for it here, but rather will

use it to conclude that the vacuum (5.2), (5.3) is dual to

•<N (5.12)

Note that the unbroken R-symmetry 50(2) x ZN of the vacuum (5.3) is manifest

in the description (5.12). The SO(2) symmetry corresponding to rotations in

the (8,9) plane is realized as the U{1) translation symmetry around the cigar.

The rotation symmetry in the (6,7) plane, which is broken to Z/v by the v.e.v.

of £, corresponds to winding number around the cigar. This quantum number

is not conserved, since winding can slip off the tip of the cigar. The Z^ orbifold

in (5.12) leads to a Z^ remnant of it (since it allows fractional windings G Z/N).

The radius of the circle on which the fivebranes lie, TQ in (5.2), is related to

the value of the string coupling at the tip of the cigar, gcigar- The precise relation

can be determined by noting that D-branes stretched between fivebranes, whose

mass is given by (5.4), correspond in (5.12) to D-branes at the tip of the cigar,

whose mass is ms/gc\geir. This implies that

</cigar — T T ~ ^O.1«5J
1V±W

Thus, the theory is weakly coupled when Mw » rns] as Mw decreases, we

recover the original strongly coupled theory described holographically by (3.3).

The weakly coupled nature of the theory (5.12) for Mw >> ms allows one

to determine the spectrum in a wide range of energies 0 < E < < Mw ? and to

compute various off-shell correlation functions of the observables discussed in

section 3. Interactions can be turned on gradually by increasing gc\z&T (5.13).

Two and three point functions as well as the resulting spectrum were analyzed

in [36]. We will next illustrate the resulting structure by discussing an example.

Consider the operator Tr BN(x). The dual vertex operator (5.7) can be

written in terms of the background (5.12) as

Tr BN(x) a,m (5.14)

where <£, <p are the standard bosonized ghosts needed for the —1 picture, Vj;m,m

is a Virasoro primary on the cigar carrying p units of momentum and w units

of winding, with

m — O(P + WN) ; m = — -{p - wN) .
Z 2

(5.15)

In the case (5.14), p — 0 while w — 1 {i.e. m = m = N/2). The worldsheet

scaling dimension of V ;̂m,m is

m2 - j{j + 1)
A = A =

N (5.16)
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Requiring that (5.14) be physical gives rise to the mass-shell condition

= — (j - m + l){j + m) (5.17)

To compute the two point function of TV B (k^) we use the correspondence

(3.9):

(TV BN(klt)TrBN(-k(l)) = {e-*-*eik»x"Vj.,m>me-'-*e-ik»*''Vji-.m,-m)

(5.18)

The only non-trivial part of the correlator on the r.h.s. is (VV). It was com-

puted in [37]:

• m)

where

- j - m)T(fn - j)
(5.19)

(5.20)

The two point function (5.19) has a series of poles; these can be interpreted as

contributions of on-shell states in DSLST, which are created from the vacuum

by the operator (5.14). The masses of these states can be computed by using

the relation (5.17) between j and M2 ~ —fcMA;M. The locations of the poles are

given by

\m\=j + n- n = l ,2 ,3 , . . . (5.21)

These values of m and j belong to the principal discrete series representations

of SL(2). The corresponding states can be thought of as bound states that

live near the tip of the cigar [38]. Such bound states are to be expected since

winding modes around the cigar feel an effective attractive potential towards

the tip - their energy decreases as they approach the tip and shrink.

For the particular case (5.14), m = m = iV/2, and the masses of these

states are given by

N + 1 > In > 1 ,
(5.22)

The second line in (5.22) comes from a unitarity constraint on j which must

be imposed, -1/2 < j < (N - l)/2. Note that all the masses in (5.22) are

non-negative; For n = 1 one finds massless states, which correspond to the

eigenvalues of the scalar matrix B.

A few comments are in order here:

(1) By analyzing the behavior of the two point function (5.18), (5.19) one can

check that the residues of the poles corresponding to the states (5.22) are

positive, in agreement with the unitarity of the theory.

(2) In addition to the discrete spectrum given by (5.22), one also has the

continuum discussed in section 3 (3.18). One can show that the continuum

starts right above the heaviest state (5.22). Thus the spectrum of states

that can be created from the vacuum by the operator (5.14) is a finite

discrete set, followed by a continuum (similar to the spectrum of bound

states and scattering states in quantum mechanics).

(3) One can repeat the above discussion for other observables as well. The

resulting picture is similar; one always finds a finite set of discrete states

which live near the tip of the cigar, followed by a continuum of states which

propagate in the semi-infinite throat [36].

(4) Since there is a Hagedorn growth in the number of observables (corning

from oscillator states on (5.12)), one finds a Hagedorn density of states in

LST. But the exponent (3H (4.1) does not grow like y/N as expected from

(4.10). Instead one gets /?# ~ l/m5. This is not particularly surprising

since (4.10) is the expected behavior for high energies E » M\y, whereas

the present analysis is only valid in the intermediate regime ms « E «

(5) Three point functions of the off-shell observables discussed above can be

computed as well using the results of [37]. One finds a similar analytic

structure to that exhibited by the two point functions. There are poles as-

sociated with external legs going on-shell; their locations correspond again

to the spectrum (5.22). The residues of these poles describe the scatter-

ing amplitudes of the physical states; they seem to have sensible physical

properties. See [36] for details.
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