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1 Introduction
The Holographic Principle was ta my knowledge first proposed by 't I^ooft,
around 1987. His argument went as follows. Take a volume in d spatial

a. box with sides L and vQlume

V = Ld

Haw mmy degrees of freedom, does one need ta describe all the physics
that could possibly takes place inside this volume? Or in other words, in
haw many different quantum states caa â  system, be that fits insid^ this
volume? Naively, and without gravity, the number of degrees of freedom, or
the number of quantum states grows like the volume^ or more precisely, the
exponent of the volume. Why?

Physics as we know it obeys, the requirement of locality^ Locality is di-
rectly linked with causality. A change in the system at one point can not
instantaneouslyaffect the system, at another points This requirement î  im-
plemented usually by introducing local degrees of freedom at (almost) every
point in space. Suppose space is a lattice with lattice distance £, with on
each site some discrete span, with ra- degrees of freedom -̂or states^ Theji the
total number of states inside the volume is

^states = m*sites = es

where the entropy S is given by

d

and c = log m.
Tidscounting does not take gravity irutaaccoxinL In particular r i t counts

states with arbitrary energies. Energy is a source of gravity, and it signif-
icantly effects the geometry if the gravitational potential is large^ 't~ ̂ ooft
argued that the maximal energy allowed for this system is equal to the mass
of â  black hole with. Schwarschild radius equal ta the-size. L-. This uxiplies
that the maximal energy obeys

GE
1 rsj I

Ld-2



Suppose that the system is described by some free massless relativistic gass
ofparticle with~ temperature 2V Then wê  have

E ~

and so

Combined with, the- gravitational bound on- the energy thi&g&ea a-maximal
entropy

/

In fact, Bekenstein has argued that there is in fact a universal maximal
entropy for a given energy E and size LL of the form

Ld~l

argnrnent is .roughly th^-t the nrnnirrmm energy fjna.iiturn Rihove th<^ ground
state is e ~ 1/L leading to EL different quanta. So based on these estimates
of the maximal entropy for aystema with- â  bounded energyT \ Hooft-argued
that the states of maximal entropy is given by a single black hole with mass
M,. = E and whose horizon, therefore coincides with the. boundary ojF the
volume.

According to. the holograpbia principle the entropy, being defined â  the
logarithm of the number of states, should not grow like the volume, but as
the area of o£ the volnme. In its most strong form the principle states that

where G denotes- Newtons^ constant, whidx throughovrt this, lectues, L wijl try
to keep explicitly present. I'll put only c and h equal to one. The holographic
entropy has- the same ficxrm in-any dimension^ Nate that Newton's- constant
has dimension of [length] d~1, and can be expressed in terms of the Plank
length as

The holographic principle suggest that there may be a description, of the
number of states as a system that is defined on the boundary with a lattice



sparing of one Plank length. This is of course a radical statement^ since it
implies that the whole notion of local degrees of freedom must be replaced by
something else,, and- ux suck cuway that the effective physics- still looks local,
and causal.

Note that the holographic principle relates microscopic physics, the.num-
ber of states, with macroscopic physics, the geometry and dimensions of a re-
gum in space and time^ One of the main points that T would like to get_across
in these lectures is that this is very analogous to the relationship between
thermodynamics and statistical mechanics. There are indeed many indica-
tions that the Einstein equations that determine the macroscopic geometry
in terms-of the energy- momentum, are effective equations very much like
the thermodynamic relations that express entropy in term of energy. The
Einstein auction

is~ just an approximation to a_ fundamental underlying theory, and is usually
seen as just the (almost) leading term in an expansion

the higher order texma axe higher ciir^^
hence less important at low energies. They are suppressed by powers of the
Planck length. The leading- term in fact is. the cosmologjcal constant term.
Strangly enough the same reasoning that would imply that the higher curva-
ture tertns_aresiippresserlr^5zoiilrl lead .to., the conclusion th^t th^ cosTnolorical
constant term is very large. Namely, one expects that all coefficients are of
order one7 hut observations now indicate that OQ_ is_ a_ finite number o£ order
lO"120.

2 Black Holes

Pure Einstein.g^vity has-a^unique spherical^: symmetric solution, the Sdbwarschild
metric. It has the form

2 2 dr2

with



where
IOTVG

For a black hole in (anti-) de Sitter space the metric has a similar form with

*/ x -, M 2A 2

The horizon of the black hole is at

h(rH) = 0

The Hawking^ temperature^ can be rJhfc«n<̂ H as fr>1 1 ows, Define

h(r)

so that the metric becomes

Now use the near horizon limit

h(r) = h! (rH){r - rH)

so that

and
t~i I T* I r**j i) IT* TT i ^"VPi I f)

,lv I / I r ^* Iv \l jk£_ / \5A. LJ I 11>

Now the local minkowski coordinates are

and so after Euclidean continuation the Euclidean time has a periodicity

a - 47r

^H ~ h'(rH)
corresponding to a Hawking temperature of

T h'(rH)

The near-horizon metric takes the form

ds2 = dudv + r2
Hd?L2

which is R2xSd-K



2.1 BLACK HOLE ENTROPY
To find the entropy of the black hole one uses the second law of thermody-
namics

TdS^dE

We have
u'( \ i d M

rd-2

and hence

where
A =

ia the area. o£ the horizon^ The entropy may alsa be obtained from, the
free energy, which is identified with the value of the classical action for the

hole. We have

where K represents, the pytrip^ir curvature. The evaluation. o£ this action
is somewhat tricky because of the inclusion of the extrinsic curvature, and
because i t has_ to be regularized^ The result is

s -am TS) ^ V o l (^)4 L 2A

Note that in this derivation we have not really made any distinction
between, zera or norb-zera rosmoiogiral constant. Fiirthermore} we have not
specified which zero of the function h(r) we identified with the horizon. In
factT bx de Sitter space there are twa possible zeroes^ One correspondi^ig to
the black hole horizon, the other to the cosmological event horizon. For both
type ..of., horizons, one ran define the temperature and entropy. FlLsay more
about the cosmological situation in one of the later lectures.



2.2 BLACK HOLES IN STRING THEORY

The metric ef a D-bpajie is

ds2 = f{v){-4t2
 +.d4}-h j l j (dr2 +r2d0l_p)

with

where
uP = 9Si

and

The horizon, is_ at r = (L Forp-= 3^thanear-horizaQ-liipit is

= R2 L2 (-dt2 + cfcrf) +

with

and
R2 =

E N T R O P Y IN STRING THEORY I hope most of you have had a ba-
sic mtrc*iuctio& m Sa you probably know that we can. describe
the string in terms of a set of string coordinates XM(<r, r ) , and a number of
fermionic coordinates ?/>M(<T, T), ea^h of which define a set of oscillators. What
may b e less, familiar is. how one miipts the number of «f.Rt.pft of a «f.riT̂ g? in
a way that exhibits the maximal entropy. For simplicity, let us focus on the
scalar coordinates^ Beach, state i& characterized by a radiation miTYibers Nn

of the nth oscillator, satisfjdng

_ ~ = N

The partition sum
Z(q) =

N

6

,N



for a- single scalar coordinate is easily computed

{N1:...,Nn,..} n \N

The degeneracies-caix be obtained- from, the partition suin via

Xhese degeneracies- can. be computed using the- fact that JZ satisfies the mag-
ical property

/

where

This~ property known^ as Triodul̂ -T invariance? is_ a- con sequence of the fact
that the partition sum may be represented as a functional integral over the
scalar coordinate defined on a torus defined hy the latice. n+TtlT^ The_integral
representation for the degeneracy can now be computed using a saddle point

One^ finds

K V6

where we useA that- the- saddle point value for T is. given by

~c~
T —i.





August 2000

ooo
<N

On the Holographic Principle in

a Radiation Dominated Universe

r t ERIK VERLINDE
<N
^vi Joseph Henry Laboratories Princeton University
!> Princeton, New Jersey 08544
o
r—I

00
ooo
4J2 Abstract

<L) The holographic principle is studied in the context of a n + 1 dimensional radiation domi-
'Ti nated closed Friedman-Robertson-Walker (FRW) universe. The radiation is represented by a
.£H conformal field theory with a large central charge. Following recent ideas on holography, it is
^ argued that the entropy density in the early universe is bounded by a multiple of the Hubble
^3 constant. The entropy of the CFT is expressed in terms of the energy and the Casimir energy

via a universal Cardy formula that is valid for all dimensions. A new purely holographic
bound is postulated which restricts the sub-extensive entropy associated with the Casimir
energy. Unlike the Hubble bound, the new bound remains valid throughout the cosmological
evolution. When the new bound is saturated the Friedman equation exactly coincides with
the universal Cardy formula, and the temperature is uniquely fixed in terms of the Hubble
parameter and its time-derivative.



1. Introduction

The holographic principle is based on the idea that for a given volume V the state of
maximal entropy is given by the largest black hole that fits inside V. 't Hooft and Susskind
[1] argued on this basis that the microscopic entropy S associated with the volume V should
be less than the Bekenstein-Hawking entropy

of a black hole with horizon area A equal to the surface area of the boundary of V. Here the
dependence on Newton's constant G is made explicit, but as usual h and c are set to one.

To shed further light on the holographic principle and the entropy bounds derived from
it, we study in this paper the standard cosmology of a closed radiation dominated Friedman-
Robertson-Walker (FRW) universe with general space-time dimension

The metric takes the form

2 2 2 2 (2)

where R(t) represents the radius of the universe at a given time t and dQ^ is a short hand
notation for the metric on the unit n-sphere Sn. Hence, the spatial section of a (n+l)d closed
FRW universe is an n-sphere with a finite volume

V = Vol(Sn)Rn.

The holographic bound is in its naive form (1) not really applicable to a closed universe, since
space has no boundary. Furthermore, the argumentation leading to (1) assumes that it's
possible to form a black hole that fills the entire volume. This is not true in a cosmological
setting, because the expansion rate H of the universe as well as the given value of the total
energy E restrict the maximal size of black hole. As will be discussed in this paper, this will
lead to a modified version of the holographic bound.

The radiation in an FRW universe is usually described by free or weakly interacting mass-
less particles. More generally, however, one can describe the radiation by an interacting
conformal field theory (CFT). The number of species of mass-less particles translates into the
value of the central charge c of the CFT. In this paper we will be particularly interested in
radiation described by a CFT with a very large central charge. In a finite volume the energy
E has a Casimir contribution proportional to c. Due to this Casimir effect, the entropy S is
no longer a purely extensive function of E and V. The entropy of a (l + l)d CFT is given by
the well-known Cardy formula [2]

(3)



where Lo represents the product ER of the energy and radius, and the shift of ~ is caused by
the Casimir effect. In this paper we show that, after making the appropriate identifications for
Lo and c, the same Cardy formula is also valid for CFTs in other dimensions. This is rather
surprising, since the standard derivation of the Cardy formula based on modular invariance
only appears to work for n = 1. By defining the central charge c in terms of the Casimir
energy, we are able to argue that the Cardy formula is universally valid. Specifically, we will
show that with the appropriate identifications, the entropy S for a n + 1 dimensional CFT
with an AdS-dual is exactly given by (3).

The main new result of this paper is the appearance of a deep and fundamental connection
between the holographic principle, the entropy formulas for the CFT, and the FRW equations
for a radiation dominated universe. In n + 1 dimensions the FRW equations are given by

2 _ IGKG E 1

n(n-l)V R2 {)

where H = R/R is the Hubble parameter, and the dot denotes as usual differentiation with
respect to the time t. The FRW equations are usually written in terms of the energy density
p — E/V) but for the present study it is more convenient to work with the total energy E and
entropy S instead of their respective densities p and s = S/V. Note that the cosmological
constant has been put to zero; the case A ^ O will be described elsewhere [3].

Entropy and energy momentum conservation together with the equation of state p —
E/nV imply that E/V and p decrease in the usual way like R~(n+1\ Hence, the cosmological
evolution follows the standard scenario for a closed radiation dominated FRW universe. After
the initial Big Bang, the universe expands until it reaches a maximum radius, the universe
subsequently re-collapses and ends with a Big Crunch. No surprises happen in this respect.

The fun starts when one compares the holographic entropy bound with the entropy for-
mulas for the CFT. We will show that when the bound is saturated the FRW equations and
entropy formulas of the CFT merge together into one set of equation. One easily checks on
the back of an envelope that via the substitutions

2TTL0 =* —ER
n

the Cardy formula (3) exactly turns into the n + 1 dimensional Friedman equation (4). This
observation appears as a natural consequence of the holographic principle. In sections 2 and
3 we introduce three cosmological bounds each corresponding to one of the equations in (6)
The Cardy formula is presented and derived in section 4. In section 5 we introduce a new
cosmological bound, and show that the FRW equations and the entropy formulas are exactly
matched when the bound is saturated. In section 6 we present a graphical picture of the
entropy bounds and their time evolution.



2. Cosmological entropy bounds

This section is devoted to the description of three cosmological entropy bounds: the
Bekenstein bound, the holographic Bekenstein-Hawking bound, and the Hubble bound. The
relation with the holographic bound proposed by Fischler-Susskind and Bousso (FSB) will
also be clarified.

2.1. The Bekenstein bound

Bekenstein [4] was the first to propose a bound on the entropy of a macroscopic system. He
argued that for a system with limited self-gravity, the total entropy S is less or equal than a
multiple of the product of the energy and the linear size of the system. In the present context,
namely that of a closed radiation dominated FRW universe with radius i?, the appropriately
normalized Bekenstein bound is

S < SB (7)

where the Bekenstein entropy SB is defined by

SB = —ER. (8)
n

The bound is most powerful for relatively low energy density or small volumes. This is due to
the fact that SB is super-extensive: under V —> XV and E —> XE it scales like SB —> A1+1/n5s.

For a radiation dominated universe the Bekenstein entropy is constant throughout the
entire evolution, since E ~ R~l. Therefore, once the Bekenstein bound is satisfied at one
instance, it will remain satisfied at all times as long as the entropy S does not change.
The Bekenstein entropy is the most natural generalization of the Virasoro operator 2TTLQ to
arbitrary dimensions, as is apparent from (6). Indeed, it is useful to think about SB not
really as an entropy but rather as the energy measured with respect to an appropriately
chosen conformal time coordinate.

2.2. The Bekenstein-Hawking bound

The Bekenstein-bound is supposed to hold for systems with limited self-gravity, which
means that the gravitational self-energy of the system is small compared to the total energy
E. In the current situation this implies, concretely, that the Hubble radius H~l is larger than
the radius R of the universe. So the Bekenstein bound is only appropriate in the parameter
range HR < 1. In a strongly self-gravitating universe, that is for HR > 1, the possibility of
black hole formation has to be taken into account, and the entropy bound must be modified
accordingly. Here the general philosophy of the holographic principle becomes important.



It follows directly from the Friedman equation (4) that

HR $1 # SB $ ( n - 1 ) ^ (9)

Therefore, to decide whether a system is strongly or weakly gravitating one should compare
the Bekenstein entropy SB with the quantity

SBH . ( n - 1 ) ^ . (10)

When SB < SBH the system is weakly gravitating, while for SB > SBH the self-gravity is
strong. We will identify SBH with the holographic Bekenstein-Hawking entropy of a black
hole with the size of the universe. SBH indeed grows like an area instead of the volume, and
for a closed universe it is the closest one can come to the usual expression A/4G.

As will become clear in this paper, the role of SBH 1S n ° t to serve as a bound on the total
entropy, but rather on a sub-extensive component of the entropy that is association with the
Casimir energy of the CFT. The relation (6) suggests that the Bekenstein-Hawking entropy
is closely related to the central charge c. Indeed, it is well-known from (l + l)d CFT that
the central charge characterizes the number of degrees of freedom may be even better than
the entropy. This fact will be further explained in sections 5 and 6, when we describe a new
cosmological bound on the Casimir energy and its associated entropy.

2.3. The Hubble entropy bound

The Bekenstein entropy SB is equal to the holographic Bekenstein-Hawking entropy SBH
precisely when HR = 1. For HR > 1 one has SB > SBH and the Bekenstein bound has to
be replaced by a holographic bound. A naive application of the holographic principle would
imply that the total entropy S should be bounded by SBH- This turns out to be incorrect,
however, since a purely holographic bound assumes the existence of arbitrarily large black
holes, and is irreconcilable with a finite homogeneous entropy density.

Following earlier work by Fischler and Susskind [5], it was argued by Easther and Lowe [6],
Veneziano [7], Bak and Rey [8], Kaloper and Linde [9], that the maximal entropy inside the
universe is produced by black holes of the size of the Hubble horizon, see also [10]. Following
the usual holographic arguments one then finds that the total entropy should be less or equal
than the Bekenstein-Hawking entropy of a Hubble size black hole times the number NH of
Hubble regions in the universe. The entropy of a Hubble size black hole is roughly HVH/4G,

where VJJ is the volume of a single Hubble region. Combined with the fact that NH = V/VH
one obtains an upper bound on the total entropy S given by a multiple of HV/4G. The
presented arguments of [6, 8, 9, 7] are not sufficient to determine the precise pre-factor, but
in the following subsection we will fix the normalization of the bound by using a local version
of the Fischler-Susskind-Bousso formulation of the holographic principle. The appropriately



normalized entropy bound takes the form

S<SH for HR>1 (11)

with

SH = (n-l)^. (12)

The Hubble bound is only valid for HR > 1. In fact, it is easily seen that for HR < 1 the
bound will at some point be violated. For example, when the universe reaches its maximum
radius and starts to re-collapse the Hubble constant H vanishes, while the entropy is still
non-zero.1 This should not really come as a surprise, since the Hubble bound was based on
the idea that the maximum size of a black hole is equal to the Hubble radius. Clearly, when
the radius R of the universe is smaller than the Hubble radius H~~l one should reconsider the
validity of the bound. In this situation, the self-gravity of the universe is less important, and
the appropriate entropy bound is

S <SB for HR < 1 (13)

2.4. The Hubble bound and the FSB prescription.

Fischler, Susskind, and subsequently Bousso [12], have proposed an ingenious version of the
holographic bound that restricts the entropy flow through contracting light sheets. The FSB-
bound works well in many situations, but, so far, no microscopic derivation has been given.
Wald and collaborators [13] have shown that the FSB bound follows from local inequalities
on the entropy density and the stress energy. The analysis of [13] suggests the existence a
local version of the FSB entropy bound, one that does not involve global information about
the causal structure of the universe, see also [11]. The idea of to formulate the holographic
principle via entropy flow through light sheets also occurred in the work of Jacobson [14],
who used it to derive an intriguing relation between the Einstein equations and the first law
of thermodynamics. In this subsection, a local FSB bound will be presented that leads to a
precisely normalized upper limit on the entropy in terms of the Hubble constant.

According to the original FSB proposal, the entropy flow S through a contracting light
sheet is less or equal to A/AG, where A is the area of the surface from which the light sheet
originates. The following infinitesimal version of this FSB prescription will lead to the Hubble
bound. For every n—1 dimensional surface at time t + dt with area A + dA one demands that

* * (14)

*To avoid this problem a different covariant version of the Hubble bound was proposed in [11].



where dS denotes the entropy flow through the infinitesimal light sheets originating at the
surface at t + dt and extending back to time i, and dA represents the increase in area between
t and t + dt. For a surface that is kept fixed in co-moving coordinates the area A changes as
a result of the Hubble expansion by an amount

dA = (n-l)HAdt, (15)

where the factor n — 1 simply follows from the fact that A ~ Rn~l. Now pick one of the two
past light-sheets that originate at the surface: the inward or the outward going. The entropy
flow through this light-sheet between t and t + dt is given by the entropy density s = S/V
times the infinitesimal volume Adi swept out by the light-sheet. Hence,

(16)

By inserting this result together with (15) into the infinitesimal FSB bound (14) one finds that
the factor Adt cancels on both sides and one is left exactly with the Hubble bound S < SH
with the Hubble entropy SH given in (12). We stress that the relation with the FSB bound
was merely used to fix the normalization of the Hubble bound, and should not be seen as a
derivation.

3. Time-evolution of the entropy bounds.

Let us now return to the three cosmological entropy bounds discussed in section 2. The
Friedman equation (4) can be re-written as an identity that relates the Bekenstein-, the
Hubble-, and the Bekenstein-Hawking entropy. One easily verifies that the expressions given
in (8), (10), and (12) satisfy the quadratic relation

S2
H + (SB - SBHf = S2

B. (17)

It is deliberately written in a Pythagorean form, since it suggests a useful graphical picture
of the three entropy bounds. By representing each entropy by a line with length equal to its
value one finds that due to the quadratic Friedman relation (17) all three fit nicely together
in one diagram, see figure 1. The circular form of the diagram reflects the fact that SB is
constant during the cosmological evolution. Only SH and SBH depend on time.

Let us introduce a conformal time coordinate via

Rdrj = (n-l)dt (18)

6



Fig. l . A graphical representation of the Bekenstein entropy SB, the Hubble entropy SH
and the Bekenstein-Hawking entropy SBH- The angle rj corresponds to the conformal time
coordinate. The value of each entropy is represented by an actual distance: SB is constant,
while SJJ and SBH change with time.

and let us compute the //-dependence of SBH and SH- For SBH this easily follows from:
SBH = (n — l)HSBH = (n — l)R~1SH- For SH the calculation is a bit more tedious, but with
the help of the FRW equations, the result can eventually be put in the form

dSH

drj

drj

— SBH,

(19)

These equations show that the conformal time coordinate 77 can be identified with the angle
77, as already indicated in figure 1. As time evolves the Hubble entropy SH rotates into the
combination SB — SBH and visa versa. Equation (19) can be integrated to

SH = SB sin 77

SBH = SB(l - cosrj) (20)

The conformal time coordinate 77 plays the role of the time on a cosmological clock that only
goes around once: at 77 = 0 time starts with a Big Bang and at 77 = 2?r it ends with a Big
Crunch. Note that 77 is related to the parameter HR via

HR = cot ^ (21)

So far we have not yet included the CFT into our discussion. We will see that the entropy of
the CFT will 'fill' part of the diagram, and in this way give rise to a special moment in time
when the entropy bounds are saturated.



4. Casimir energy and the Cardy formula

We now turn to the discussion of the entropy of the CFT that lives inside the FRW
universe. We begin with a study of the finite temperature Casimir energy with the aim to
exhibit its relation with the entropy of the CFT. Subsequently a universal Cardy formula will
be derived that expresses the entropy in terms of the energy and the Casimir energy, and is
valid for all values of the spatial dimension n.

4.1. The Euler relation and Casimir energy.

In standard textbooks on cosmology [15, 16] it is usually assumed that the total entropy
S and energy E are extensive quantities. This fact is used for example to relate the entropy
density s to the energy density p and pressure p, via Ts = p + p. For a thermodynamic
system in finite volume V the energy E(S, V), regarded as a function of entropy and volume,
is called extensive when it satisfies E{\S, XV) = \E(S,V). Differentiating with respect to A
and putting A = 1 leads to the Euler relation1

The first law of thermodynamics dE = TdS — pdV can now be used to re-express the deriva-
tives via the thermodynamic relations

(23)

The resulting equation TS = E + pV is equivalent to the previously mentioned relation for
the entropy density s.

For a CFT with a large central charge the entropy and energy are not purely extensive.
In a finite volume the energy E of a CFT contains a non-extensive Casimir contribution
proportional to c. This is well known in (1 + 1) dimensions where it gives rise to the familiar
shift of c/24 in the LQ Virasoro operator. The Casimir energy is the result of finite size
effects in the quantum fluctuations of the CFT, and disappears when the volume becomes
infinitely large. It therefore leads to sub-extensive contributions to the total energy E. Usually
the Casimir effect is discussed at zero temperature [17], but a similar effect occurs at finite
temperature. The value of the Casimir energy will in that case generically depend on the
temperature T.

We will now define the Casimir energy as the violation of the Euler identity (22)

Ec=n(E + pV-TS) (24)
1We assume here that there are no other thermodynamic functions like a chemical or electric

potential. For a system with a 1st law like TdS = dE + pdV + fidN + $>dQ the Euler relation reads



Here we inserted for convenience a factor equal to the spatial dimension n. From the previous
discussion it is clear that Ec parameterizes the sub-extensive part of the total energy. The
Casimir energy will just as the total energy be a function of the entropy S and the volume V.
Under S —> XS and V —> XV it scales with a power of A that is smaller than one. On general
grounds one expects that the first subleading correction to the extensive part of the energy
scales like

EC(XS, XV) = X^^EdS, V) (25)

One possible way to see this is to write the energy as an integral over a local density expressed
in the metric and its derivatives. Derivatives scale like A"1/71 and because derivatives come
generally in pairs, the first subleading terms indeed has two additional factors of A"1/™. The

total energy E(S, V) may be written as a sum of two terms

E(S, V) = EE{S, V) + l-Ec(S, V) (26)

where the first term EE denotes the purely extensive part of the energy E and Ec represents
the Casimir energy. Again the factor 1/2 has been put in for later convenience. By repeating
the steps that lead to the Euler relation one easily verifies the defining equation (24) for the
Casimir energy

4.2. Universality of the Cardy formula and the Bekenstein bound

Conformal invariance implies that the product ER is independent of the volume V, and
is only a function of the entropy S. This holds for both terms EE and Ec in (26). Combined
with the known (sub-)extensive behavior of EE and Ec this leads to the following general
expressions

where a and 6 are a priori arbitrary positive coefficients, independent of R and S. The factors
of 4?r and 2TT are put in for convenience. With these expressions, one now easily checks that
the entropy S can be written as

S = ^JEC{2E - Ec). (27)

If we ignore for a moment the normalization, this is exactly the Cardy formula: insert ER = Lo

and EcR = c/12, and one recovers (3). It is obviously an interesting question to compute
the coefficients a and b for various known conformal invariant field theories. This should be
particularly straightforward for free field theories, such as d = 4 Maxwell theory and the
self-dual tensor theory in d — 6. This question is left for future study.



Given the energy E the expression (27) has a maximum value. For all values of E,
and R one has the inequality

s < ^L

This looks exactly like the Bekenstein bound, except that the pre-factor is in general different
from the factor 2TT/n used in the previous section. In fact, in the following subsection we
will show that for CFTs with an AdS-dual description, the value of the product ab is exactly
equal to n2, so the upper limit is indeed exactly given by the Bekenstein entropy. Although
we have no proof of this fact, we believe that the Bekenstein bound is universal. This implies
that the product ab for all CFTs in n + 1 dimensions is larger or equal than n2. Only then it
is guaranteed that the upper limit on the entropy is less or equal than SB-

The upper limit is reached when the Casimir energy Ec is equal to the total energy E.
Formally, when Ec becomes larger that E the entropy S will again decrease. Although in
principle this is possible, we believe that in actual examples the Casimir energy Ec is bounded
by the total energy E. So, from now on we assume that

Ec < E (28)

In the next subsection we provide further evidence for this inequality.
From now on we will assume that we are dealing with a CFT for which ab = n2. In the

next section I will show that this includes all CFTs that have an AdS-dual description.

4.3. The Cardy formula derived from AdS/CFT

Soon after Maldacena's AdS/CFT-correspondence [18] was properly understood [19, 20]
it was convincingly argued by Witten [21] that the entropy, energy and temperature of CFT
at high temperatures can be identified with the entropy, mass, and Hawking temperature
of the AdS black hole previously considered by Hawking and Page [22]. Using this duality
relation the following expressions can be derived for the energy and entropy2 for a D = n + 1
dimensional CFT on R x Sn:

(29)

s =

E =

c
12
c
12

V
I"

n
4TTL

2These expressions differ somewhat from the presented formulas in [21] due to the fact that (i) the
D+l dimensional Newton constant has been eliminated using its relation with the central charge, (ii)
the coordinates have been re-scaled so that the CFT lives on a sphere with radius equal to the black
hole horizon. We will not discuss the AdS perspective in this paper, since the essential physics can
be understood without introducing an extra dimension. The discussion of the CFT/FRW cosmology
from an AdS perspective will be described elsewhere [3].
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The temperature again follows from the first law of thermodynamics. One finds

i)£)- (30)

The length scale L of the thermal CFT arises in the AdS/CFT correspondence as the curvature
radius of the AdS black hole geometry. The expression for the energy clearly exhibits a non-
extensive contribution, while also the temperature T contains a corresponding non-intensive
term. Inserting the equations (29,30) into (24) yields the following result for the Casimir
energy

en V
Ec = 12

Now let us come to the Cardy formula. The entropy 5, energy E and Casimir energy Ec are
expressed in c, L and R. Eliminating c and L leads to a unique expression for S in terms of
E, Ec and R. One easily checks that it takes the form of the Cardy formula

9 r>

S = ^/Ec(2E-Ec) (32)

In the derivation of these formulas it was assumed that R >̂> L. One may worry therefore
that these formulas are not applicable in the early universe. Fortunately this is not a problem
because during an adiabatic expansion both L and R scale in the same way so that R/L is
fixed. Hence the formulas are valid provided the (fixed) ratio of the thermal wave-length and
the radius R is much smaller than one. Effectively this means, as far as the CFT is concerned,
we are in a high temperature regime. We note further that with in this parameter range, the
Casimir energy Ec is indeed smaller than the total energy E.

Henceforth, we will assume that the CFT that describes the radiation in the FRW universe
will have an entropy given by (32) with the specific normalization of 2TT jn. Note that if we
take n = 1 and make the previously mentioned identifications ER = Lo and EcR = c/12
that this equation exactly coincides with the usual Cardy formula. We will therefore in
the following refer to (32) simply as the Cardy formula. To check the precise coefficient
of the Cardy formula for a CFT we have made use of the AdS/CFT correspondence. The
rest of our discussions in the preceding and in the following sections do not depend on this
correspondence. So, in this paper we will not make use of any additional dimensions other
than the ones present in the FRW-universe.

11



5. A new cosmological bound

In this section a new cosmological bound will be presented, which is equivalent to the
Hubble bound in the strongly gravitating phase, but which unlike the Hubble bound remains
valid in the phase of weak self-gravity. When the bound is saturated the FRW equations and
the CFT formulas for the entropy and Casimir energy completely coincide.

5.1. A cosmological bound on the Casimir energy

Let us begin by presenting another criterion for distinguishing between a weakly or strongly
self-gravitating universe. When the universe goes from the strongly to the weakly self-
gravitating phase, or vice-versa, the Bekenstein entropy SB and the Bekenstein-Hawking
entropy SBH are equal in value. Given the radius /?, we now define the 'Bekenstein-Hawking'
energy EBH as the value of the energy E for which SB and SBH are exactly equal. This leads
to the condition

£ <33»
One may interpret EBH as the energy required to form a black hole with the size of the entire
universe. Now, one easily verifies that

E < EBH for HR < 1

E > EBH for HR>1. (34)

Hence, the universe is weakly self-gravitating when the total energy E is less than EBH and
strongly gravitating for E > EBH>

We are now ready to present a proposal for a new cosmological bound. It is not formulated
as a bound on the entropy 5, but as a restriction on the Casimir energy Ec- The physical
content of the bound is the Casimir energy Ec by itself can not be sufficient to form a
universe-size black hole. Concretely, this implies that the Casimir energy Ec is less or equal
to the Bekenstein-Hawking energy EBH> Hence, we postulate

Ec < EBH (35)

To put the bound in a more conventional notation one may insert the definition (24) of the
Casimir energy together with the defining relation (33) of the Bekenstein-Hawking energy.
We leave this to the reader.

The virtues of the new cosmological bound are: (i) it is universally valid and does not
break down for a weakly gravitating universe, (ii) in a strongly gravitating universe it is
equivalent to the Hubble bound, (iii) it is purely holographic and can be formulated in terms
of the Bekenstein-Hawking entropy SBH of a universe-size black hole, (iv) when the bound
is saturated the laws of general relativity and quantum field theory converge in a miraculous
way, giving a strong indication that they have a common origin in a more fundamental unified
theory.

12



The first point on the list is easily checked because Ec decays like R"1 while EBH goes
like R~n. Only when the universe re-collapses and returns to the strongly gravitating phase
the bound may again become saturated. To be able to proof the other points on the list of
advertised virtues, we have to take a closer look to the FRW equations and the CFT formulas
for the entropy an entropy.

5.2. A cosmological Cardy formula

To show the equivalence of the new bound with the Hubble bound let us write the Friedman
equation as an expression for the Hubble entropy SH in terms of the energy E, the radius
R and the Bekenstein-Hawking energy EBH- Here, the latter is used to remove the explicit
dependence on Newton's constant G. The resulting expression is unique and takes the form

SH = —RyJEBH (2E - EBH) (36)
ft

This is exactly the Cardy formula (32), except that the role of the Casimir energy Ec in CFT
formula is now replaced by the Bekenstein-Hawking energy EBH> Somehow, miraculously,
the Friedman equation knows about the Cardy formula for the entropy of a CFT!

With the help of (36) is now a straightforward matter to proof that when HR > 1 the new
bound Ec < EBH is equivalent to the Hubble bound S < SH- First, let us remind that for
HR > 1 the energy E satisfies E > EBH- Furthermore, we always assume that the Casimir
energy Ec is smaller than the total energy E. The entropy S is a monotonically increasing
function of Ec as long as Ec < E. Therefore in the range

Ec <EBH<E (37)

the maximum entropy is reached when Ec = EBH- In that case the Cardy formula (32) for S
exactly turns into the cosmological Cardy formula (36) for SH- Therefore, we conclude that
SH is indeed the maximum entropy that can be reached when HR > 1. Note that in the
weakly self-gravitating phase, when E < EBH-> the maximum is reached earlier, namely for
Ec — E. The maximum entropy is in that case given by the bekenstein entropy SB- The
bifurcation of the new bound in two entropy bounds is a direct consequence of the fact that
the Hubble bound is written as the square-root of a quadratic expression.

5.3. A limiting temperature

So far we have focussed on the entropy and energy of the CFT and on the first of the two
FRW equations, usually referred to as the Friedman equation. We will now show that also
the second FRW equation has a counterpart in the CFT, and will lead to a constraint on the
temperature T. Specifically, we will find that the bound on Ec implies that the temperature

13



T in the early universe is bounded from below by

£ <38»
The minus sign is necessary to get a positive result, since in a radiation dominated universe the
expansion always slows down. Further, we assume that we are in the strongly self-gravitating
phase with HR > 1, so that there is no danger of dividing by zero.

The second FRW equation in (5) can now be written as a relation between EBH-, SJJ and
TJJ that takes the familiar form

EBH = n(E + pV-THSH) (39)

This equation has exactly the same form as the defining relation Ec = n(E + pV — TS) for
the Casimir energy. In the strongly gravitating phase we have just argued that the bound
Ec < EBH is equivalent to the Hubble bound S < SH> It follows immediately that the
temperature T in this phase is bounded from below by T#. One has

T>TH for HR > 1 (40)

When the cosmological bound is saturated all inequalities turn into equalities. The Cardy
formula and the defining Euler relation for the Casimir energy in that case exactly match the
Friedman equation for the Hubble constant and the FRW equation for its time derivative.

6. The entropy bounds revisited.

We now return to the cosmological entropy bounds introduced in sections 2 and 3. In
particular, we are interested in the way that the entropy of the CFT may be incorporated in
the entropy diagram described in section 3. For this purpose it will be useful to introduce a
non-extensive component of the entropy that is associated with the Casimir energy.

The cosmological bound Ec < EBH can also be formulated as an entropy bound, not
on the total entropy, but on a non-extensive part of the entropy that is associated with the
Casimir energy. In analogy with the definition of the Bekenstein entropy (8) one can introduce
a 'Casimir' entropy defined by

Sc = —ECR. (41)
n

For d = (1 + 1) the Casimir entropy is directly related to the central charge c. One has
Sc = 2TTC/12. In fact, it is more appropriate to interpret the Casimir entropy Sc as a

14



JBH

Fig.2. The entropy S and Casimir entropy Sc fill part of the cosmological entropy diagram.
The diagram shows: (i) the Bekenstein bound S < SB is valid at all times (ii) the Hubble
bound S < SH restricts the allowed range of rj in the range HR > 1, but is violated for
HR < 1, (Hi) the new bound Sc < SBH is equivalent to the Hubble bound for HR > 1, and
remains valid for HR < 1.

generalization of the central charge to rc+1 dimensions than what is usually called the central
charge c. Indeed, if one introduces a dimensionless 'Virasoro operator' Lo = ^SB and a new
central charge ^ = ^-Sc-, the rc + 1 dimensional entropy formula (32) is exactly identical to
(3).

The Casimir entropy Sc is sub-extensive because under V —> XV and E —> XE it goes
like Sc —> X1"1^nSc- In fact, it scales like an area! This is a clear indication that the Casimir
entropy has something to do with holography. The total entropy S contains extensive as well
as sub-extensive contributions. One can show that for Ec < E the entropy S satisfies the
following inequalities

Sc < S < SB (42)

where both equal signs can only hold simultaneously. The precise relation between S and its
super- and sub-extensive counterparts SB and Sc is determined by the Cardy formula, which
can be expressed as

S2 + (SB - Sc)2 = S2
B. (43)

This identity has exactly the same form as the relation (17) between the cosmological entropy
bounds, except that in (17) the role of the entropy and Casimir entropy are taken over by
the Hubble entropy SJJ a n d Bekenstein-Hawking entropy SBH- This fact will be used to
incorporate the entropy S and the Casimir entropy Sc in the entropy diagram introduce in
section 3.

The cosmological bound on the Casimir energy presented in the section 4 can be formulated
as an upper limit on the Casimir entropy Sc* From the definitions of Sc and EBH it follows
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directly that the bound Ec < EBH is equivalent to

Sc < (44)

where we made use of the relation (33) to re-write EBH again in terms of the Bekenstein-
Hawking entropy SBH- Thus the bound puts a holographic upper limit on the d.o.f. of the
CFT as measured by the Casimir entropy Sc•

In figure 2 we have graphically depicted the quadratic relation between the total entropy S
and the Casimir entropy Sc in the same diagram we used to related the cosmological entropy
bounds. From this diagram it easy to determine the relation between the new bound and
the Hubble bound. One clearly sees that when HR > 1 that the two bounds are in fact
equivalent. When the new bound is saturated, which means Sc = SBH-> then the Hubble
bound is also saturated, it. S — SH- The converse is not true: there are two moments in the
region HR < 1 when the S = SH, but Sc ^ SBH- In our opinion, this is an indication that
the bound on the Casimir energy has a good chance of being a truly fundamental bound.

7. Summary and conclusion

In this paper we have used the holographic principle to study the bounds on the entropy
in a radiation dominated universe. The radiation has been described by a continuum CFT in
the bulk. Surprisingly the CFT appears to know about the holographic entropy bounds, and
equally surprising the FRW-equations know about the entropy formulas for the CFT. Our
main results are summarized in the following two tables. Table 1. contains an overview of
the bounds that hold in the early universe on the temperature, entropy and Casimir energy.
In table 2. the Cardy formula for the CFT and the Euler relation for the Casimir energy are
matched with the Friedman equations written in terms of the quantities listed in table 1.

CFT-bound

T>TH

S<SH

Ec < EBH

FRW-definition

TH = -H/2TTH

SH = (n-l)HV/4G

EBH = n(n~l)V/STrGR2

Table 1: summary of cosmological bounds
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CFT-formula

S = ^y/EC(2E-Ec)

Ec = n(E + PV- TS)

FRW-equation

SH = 2^EBH(2E - EBH)

EBH = n(E + pV-THSH)

Table 2: Matching of the CFT-formulas with the FRW-equations

The presented relation between the FRW equations and the entropy formulas precisely holds
at this transition point, when the holographic bound is saturated or threatens to be violated.
The miraculous merging of the CFT and FRW equations strongly indicates that both sets of
these equations arise from a single underlying fundamental theory.

The discovered relation between the entropy, Casimir energy and temperature of the CFT
and their cosmological counterparts has a very natural explanation from a RS-type brane-
world scenario [23] along the lines of [24]. The radiation dominated FRW equations can be
obtained by studying a brane with fixed tension in the background of a AdS-black hole. In
this description the radius of the universe is identified with the distance of the brane to the
center of the black hole. At the Big Bang the brane originates from the past singularity. At
some finite radius determined by the energy of the black hole, the brane crosses the horizon.
It keeps moving away from the black hole, until it reaches a maximum distance, and then it
falls back into the AdS-black hole. The special moment when the brane crosses the horizon
precisely corresponds to the moment when the cosmological entropy bounds are saturated.
This world-brane perspective on the cosmological bounds for a radiation dominated universe
will be described in detail in [3].

We have restricted our attention to matter described by a CFT in order to make our
discussion as concrete and coherent as possible. Many of the used concepts, however, such
as the entropy bounds, the notion of a non-extensive entropy, the matching of the FRW
equations, and possibly even the Cardy formula are quite independent of the equation of state
of the matter. One point at which the conformal invariance was used is in the diagrammatic
representation of the bounds. The diagram is only circular when the energy E goes like Rr1.
But it is possible that a similar non-circular diagram exists for other kinds of matter. It would
be interesting to study other examples in more detail.

Finally, the cosmological constant has been put to zero, since only in that case all of the
formulas work so nicely. It is possible to modify the formalism to incorporate a cosmological
constant, but the analysis becomes less transparent. In particular, one finds that the Hubble
entropy bound needs to be modified by replacing H with the square root of H2 — A/ra. At this
moment we have no complete understanding of the case A ^ 0, and postpone its discussion
to future work.
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Abstract

We consider a brane-universe in the background of an Anti-de Sitter/Schwarschild geometry.
We show that the induced geometry of the brane is exactly given by that of a standard
radiation dominated FRW-universe. The radiation is represented by a strongly coupled CFT
with an AdS-dual description. We show that when the brane crosses the horizon of the AdS-
black hole the entropy and temperature are simply expressed in the Hubble constant and its
time derivative. We present formulas for the entropy of the CFT which are generally valid,
and which at the horizon coincide with the FRW equations. These results shed new light on
recently proposed entropy bounds in the context of cosmology.



1. Introduction
Recently the holographic principle was studied in a Friedmann-Robertson-Walker (FRW)

universe filled with a conformal field theory (CFT) with a dual anti-de Sitter (AdS) descrip-
tion [1], see also [2-7]. An interesting and surprising relationship was found between the FRW
equations controlling the cosmological expansion and the formulas that relate the energy and
entropy of the CFT. The aim of the present paper will be to shed further light on this co-
incidence by studying the CFT/FRW-cosmology from a Randall-Sundrum type brane-world
perspective [8,9].

Brane cosmology has previously been studied from an AdS/CFT perspective in [10,11].
Following these papers we describe the CFT dominated universe as a co-dimension one brane,
with fixed tension, in the background of an AdS'-black hole. In this description the movement
of the brane turns out to be exactly described by the standard Friedmann equation in which
the size of the universe directly corresponds to the distance of the brane to the center of the
black hole. The brane starts out inside the black hole, it passes through the horizon and
keeps expanding until it reaches a maximal radius, after which it re-contracts and falls back
into the black hole. From the AdS'-perspective there are two special moments, one in the
early and one in the late universe, when the brane crosses the horizon. The main goal of this
paper is to show that at those moments the entropy density on the brane takes a special value
given in terms of the Hubble constant and Newtons constant. Furthermore, at these times
the Friedmann equation turns into an equation that expresses the entropy density in terms
of the energy density and exactly coincides with a generalized form of the Cardy formula for
the entropy of the CFT.

We begin by presenting the brane description of a CFT-dominated cosmology in section 2.
The dimension d = n + 1 of the brane-universe will be taken to be arbitrary, but its relation
with the dimension D = d-\-l of the AdS space is of course fixed. In section 3 we argue that
the radiation on the brane can be identified with the CFT dual to the AdS-sp&ce and use this
fact to fix the normalization of Newtons constant and derive the FRW equations. The entropy
density and temperature of the CFT at the moment that the brane crosses the horizon are
calculated in section 4. We find that these quantities have a simple expression in terms of
the Hubble constant and its time-derivative. In section 5 we derive the entropy formulas for
the CFT and show the correspondence with the FRW equations. Finally, sections 6 and 7
contain some concluding remarks.

2. Brane cosmology
We consider an (n-f-l)-dimensional brane with a constant tension in the background of

an (n + 2)-dimensional AdS'-Schwarzschild black hole. Following the AdS /CFT prescription
[12,13] we regard the brane as the boundary of the AdS-geometiy. An important difference is,
however, that now the location and the metric on the boundary are, at least partly, dynamical.
The movement of the brane is described by the boundary action



Here K = /C/ is the trace of the extrinsic curvature, K is a parameter related to the tension
of the brane, GJV is the (n + 2)-dimensional bulk Newton constant, g is the determinant of
the induced metric and dM denotes the surface of the brane. The equation of motion of the
brane that follows from this Lagrangian is

induced

This equation implies that dM is a surface of constant extrinsic curvature.
The bulk action is given by the (n+2)-dimensional Einstein action with cosmological term.

The Ac/5-Schwarzschild metric provides a solution of the bulk equations of motion and can
be written in the following form,

ds2
n+2 = j±-jda2-h(a)dt2 + a2dnl, (3)

where
167rGiv

nVol(S»)" v J

In these equations, L is the curvature radius of AdS. The pre-factor u;n+1 is chosen such that
M is the mass of the black hole as measured by an observer who uses t as his time coordinate.

Our aim is to find the spherically symmetric solutions corresponding to a homogeneous
and isotropic induced metric on the brane. Let us parameterize the location of the brane
by giving a as a function of the AdS-time t. Equivalent ly, we may introduce a new time
parameter r and specify the functions

a = a(r), t = t(r). (6)

We will choose the time parameter r such that the following relation is satisfied,

(da\2 _, Jdt\2
 1

W)\Tr
This condition ensures that the induced metric on the brane takes the standard Robertson-
Walker form,

* . (8)

We note that the size of the (n+l)-dimensional universe is determined by the radial distance,
a, from the center of the black hole.

The extrinsic curvature, /Cy, of the brane can be straightforwardly calculated and ex-
pressed in term of the functions a(r) and t(r). One then finds that the equation of motion (2)
translates into

— = — (9)
dr h(a)' K }
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Future singularity

Horizon =C|L X^ < 1—Brane worldline

Past singularity

Figure 1: Penrose diagram of an Ad£n+2-Schwarzschild black hole with the trajectory of the brane.
The brane originates in the past singularity, expands to a certain size and subsequently falls into
the future singularity as it re-collapses. The dots indicate the moments when the brane crosses the
black hole horizon.

In the following we will tune the (n+l)-dimensional cosmological constant to zero by setting
K, = 1/L. Combining (9) with (7) leads to an equation that looks suspiciously like the
Friedmann equation for a radiation dominated universe,

2 = 1
a2

(10)

In this equation, H = a/a is the Hubble 'constant' and the dot denotes differentiation with
respect to the cosmological time r. For future purpose, we also give the equation for the time
derivative of jfiT,

H = 1 (n + l)ton+1M
~ a2 2

which is simply obtained by differentiating (10).

(11)

3. CFT on the brane
We now want to identify the equation of motion (10) with the (n + l)-dimensional Fried-

mann equation. In particular, we will argue that the radiation can be identified with the finite
temperature CFT that is dual to the AdS'-geometry. To do so, we interpret the last term on
the r.h.s. as the contribution of the energy density p of the CFT times the (n+l)-dimensional
Newton constant GN- In the brane-world scenario the relation between the Newton constant
GJV in the bulk and the Newton constant GN on the brane is given by

(12)



One possible way to derive this fact is to add a small amount of stress energy on the brane
and determine how it effects the equation of motion. This same relation is, as we will discuss,
also consistent with the identification of the radiation with the dual CFT.

In [14] it was argued that the energy, entropy and temperature of a CFT at high tem-
peratures can be identified with the mass, entropy and Hawking temperature of the AdS
black hole [15]. The CFT lives on a space-time which, after Euclidean continuation, has the
topology of S1 x Sn and whose geometry is identified with the asymptotic boundary of the Eu-
clidean AdS-bl&ck hole. We remind the reader that the standard GKPW prescription [12,13]
of the AdS/CFT correspondence [16] only fixes the conformal class of the CFT metric. It
thus specifies only the ratio of the radius of the n-sphere to the Hawking temperature but
does not fix the overall scale of the boundary metric. One is therefore free to re-scale the
metric as one wishes. It is important to note, however, that such a rescaling does also affect
the energy and temperature of the CFT.

To make this more precise, let us consider the asymptotic form of the AdS'-Schwarschild
metric. We have

\L2

lim
a—>-oo

—T ds 2

a
(13)

from which we see that the CFT time is equal to the AdS time t only when the radius of the
spatial sphere is set equal to L. Therefore, if we want the sphere to have a radius equal to
say a, the CFT time will be equal to at/L. The same factor a/L then appears in the relation
between the energy E and the black hole mass M. One thus finds that the energy for a CFT
on a sphere with radius a, of volume

V = anVol(Sn),

is given by

E = M-. (14)
a

Note that the total energy E is not constant during the cosmological expansion, but decreases
like a"1. This is consistent with the fact that for a CFT the energy density,

E

scales like a~(n+1). Inserting the relation (14) combined with (12) into the equation of motion
(10) leads to

2 1 167rGiv

a2 n(n — 1)

This is the standard Friedmann equation with the appropriate normalization for both terms.
By differentiating once with respect to r and using the fact that p = nH(p + p), one derives
the second FRW equation,



which is equivalent to (11). An observer on the brane, who knows nothing about the AdS-
bulk gravity, just notices the normal cosmological expansion. The brane description contains
more information, since it also knows about the size of the AdS-h\&ck hole.

The movement of the brane in the AdS-b\&ck hole background is depicted in the Penrose
diagram in figure 1. The diagram represents the full geodesically complete black hole geometry
including the asymptotic region a -> oo. If one wants to take the brane as the real boundary,
one has to cut away the part to the right of the brane. We see that the brane indeed starts
inside the black hole at the past singularity and then, as it expands, it moves away from
a = 0. At late times it does the opposite. The points where the brane crosses the black
hole horizon will play a central role in the following discussion and have been marked in
the figure. These moments are clearly distinguished from the Ac/S'-perspective, even though
nothing special happens to the induced geometry on the brane. So what do these moments
mean for an observer on the brane?

4- Entropy and temperature at the horizon
Let us now consider the points at which the brane crosses the horizon. The horizon of the

AdS-black hole is located at radius a = a#, where a# is the largest solution to the equation
h(a) = 0, i.e.

air LonA-iM

7f + i - - ^ - = o. (17)

From this equation and the equation of motion (10), one immediately concludes that the
Hubble constant at the horizon obeys

and hence H = ±1/L depending on whether the brane is expanding or contracting.
Next, let us consider the entropy density. According to [14], the entropy of the CFT is

equal to the Bekenstein-Hawking entropy of the AdS'-black hole, which is given by the area
of the horizon measured in bulk planckian units. The total entropy may thus be expressed as

where VH is the area of the horizon,

VH = an
HVol(Sn).

Note that the area of an n-sphere in AdS equals the volume of the corresponding spatial
section for an observer on the brane. The total entropy S is constant during the cosmological
evolution but the entropy density,

S



of course varies with time. It equals

where we made use of the relation (12). What makes the moments that the brane crosses the
horizon special is that the entropy density is given by a simple multiple of the Hubble constant
H. At the horizon V = VH and hence the entropy density on the brane is s = 1/4GJV- Now,
using the relation (12) and the fact that H = 1/L one finds that the entropy density equals

TJ

s = (n - I ) — — , a,ta = aH. (20)
40jV

The significance of this relation will be further discussed below.
Also the temperature turns out to have a special value at the horizon. The Hawking

temperature measured by an observer who uses t as his time coordinate is [10,14]

TH = * M , (21)

where the prime denotes differentiation with respect to a. Since the CFT time differs from t
by a factor a/L the CFT-temperature T will differ from the Hawking temperature TJJ by the
same a-dependent factor,

T = TH~. (22)
a

Using the explicit form of h'(au) and using the fact that h{ajj) — 0, we eventually find

Now, from the derivation of the brane equation of motion, it follows that the quantities H2

and —h(a)/a2 only differ by a constant and therefore, at the horizon where h(ajj) — 0, we
have that H = —/i/(a^)/2aj?y. This can be used to show that the temperature at the horizon
may be expressed in the Hubble constant H and its time derivative H as

TT

r a t a = a H . (24)



5. Entropy formulas and FRW equations
The above relations between the entropy density and temperature on the one hand, and

the Hubble constant, its time derivative and Newtons constant on the other are valid only
when the brane crosses the horizon. However, since the entropy density, temperature and
energy density all vary in a precisely prescribed manner as a function of the radius a, these
relations imply a set of entropy formulas that remain valid at all times.

Before making this point clear, let us first briefly discuss some basic thermodynamics. The
first law of thermodynamics,

TdS = dE + pdV,

can after some straightforward manipulations be rewritten in terms of the entropy and energy
densities s and p as

, (25)

where we used dV = nVda/a. The combination (p + p — Ts) is in most standard textbooks
on cosmology [17,18] assumed to vanish, which is equivalent to saying that the entropy and
energy are purely extensive. But let us now compute it for the CFT. The energy density is
given by

ML , N
9 = a^Vol(S*r (26)

For our purpose, it is convenient to rewrite p in terms of the horizon radius an using h(an) = 0.
This gives

aH L

The pressure follows from p through the equation of state p = p/n. Combined with (19) and
(23), one gets

= -1, (28)
L a1

where the quantity 7 is given by

7 = ^ ^ . (29)

Equation (28) may be regarded as the definition of 7. Physically one can think of 7 as describ-
ing the response of the energy density under variations of the radius a or, more precisely, the
spatial curvature I/a2 . It thus represents the geometrical Casimir part of the energy density.

We are now ready to present the main entropy formula for CFT's with an AdS dual.
In [1] an entropy formula was already derived and expressed in terms of the total energy and
entropy. Here we will give the local version in terms of densities. From the given expressions
for the entropy density 3, energy density p and 7, one finds that s may be expressed as



As noted in [1], this formula resembles the Cardy formula of a (l + l)-dimensional CFT but
is valid for all spatial dimensions n.

The formulas (28) and (30) are valid at all times. It will be interesting, however, to study
these formulas at the special time when the brane crosses the horizon. First we note that at
that time the Casimir quantity 7 equals

Let us now consider the entropy formula (30). By making the identifications (20) and (31) one
sees that this formula exactly reproduces the Friedmann equation! Similarly, one finds that
equation (28) reduces to the second FRW equation for H by making the same substitutions
for s and 7 and replacing the temperature T by the r.h.s. of (24). In fact, the equations (28)
and (30) are equations of state of the CFT and in principle have an interpretation that is
independent of gravity or cosmology. It seems therefore rather surprising that the Friedmann
equation knows about the thermodynamic properties of the CFT.

6. Euclidean brane cosmology
In principle one can use the present setup to calculate the correlation functions of operators

in the CFT/FRW cosmology, in particular the stress energy tensor, using the same methods as
in the standard AdS/CFT setup. This would for example give information about fluctuations
in the energy density in the early universe. As described above, the brane starts out as a
point in the past singularity of the black hole. The presence of this singularity may lead
to problems in performing these calculations in Minkowski signature. On the gravity side
a singularity is associated with the UV properties of the theory, i.e. to very high energies.
However, through the UV/IR-connection [19] known from AdS/CFT, on the field theory side
this in fact corresponds to the IR, i.e. to very low energies. As it is the CFT that describes
the matter in the universe, this seems strange since conventionally one associates the UV with
the early universe.

To calculate correlation functions one can circumvent this problem by analytically con-
tinuing to the Euclidean setup. So let us briefly discuss how to describe the Euclidean FRW
universe as a brane in an Euclidean Ac/S'-Schwarzschild background. Going through the calcu-
lation in a similiar way as performed above, one arrives at the following Friedmann equation

a2
(32)

From this one easily deduces that the universe, when regarded in Euclidean time, undergoes
a reverse evolution, starting out very big, collapsing to a minimal size and subsequently re-
expanding. This is depicted in figure 2. From the CFT point of view, this means that the
universe starts in the far UV, then cools down to a certain minimum temperature after which
it re-heats. Note that in this case, the brane does not cross the horizon at all.

8



Brane worldline

Figure 2: Diagram of Euclidean AcLS -̂̂ -Schwarzschild with the trajectory of the brane. The horizon
is represented by the dot in the middle of the diagram; only the region a > ajj is drawn. The brane
originates at spatial infinity, collapses to a certain miminal size and subsequently re-expands. It
remains outside of the black hole horizon during the entire evolution.

7. Conclusion
In [1] it was argued that the discovered relation between the FRW equations and the

entropy formulas sheds light on the meaning of the holographic principle in a cosmological
setting [20]. Indeed, it was suggested that the values for s and T on the horizon should
be regarded as bounds on these respective quantities. Although we still have no proof of
this fact, we would like to present some further arguments in favor of this. At the moment
when the brane crosses the horizon, the quantity 7 is essentially equal to the inverse Newton
constant. This means that the response of the energy density to a variation of the curvature
is comparable to that of the Einstein action itself. Namely, from (28) and (31) one finds

( 3 3 )

The right hand side also gives the contribution of the spatial curvature in the equation of mo-
tion. Clearly, when this is the case one should reconsider the validity of the usual formulation
of gravity, since quantum effects (the Casimir energy density) are of the same order as the
spatial curvature. This suggests that a classical description of the geometry of the universe
may no longer be well defined and one has to go over to a different, more fundamental for-
mulation of the theory. We have indeed noticed that, at the transition points, the laws that
govern the gravitational evolution and the entropy and energy expressions for the CFT, that
describes the radiation, merge in a surprising way. This indicates that both sets of equations
have a common origin in a single underlying fundamental theory.
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