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Elementary excitations of a d-wave
superconductor

(A) $=0 Cooper pairs, phase fluctuations

Negligible below T, except near a T=0
superconductor-insulator transition.

(B) §=1/2 Fermionic quasiparticles

W, : strongly paired fermions near (7,0), (0,7)
have an energy gap A, ~ 30-40 meV

¥, , : gapless fermions near the nodes of the
superconducting gap at (£K,*K) with K =0.391x

(C) §=1 Bosonic, resonant collective mode

ﬂ Represented by @, , a vector
&= field measuring the strength of
antiferromagnetic spin

- fluctuations near Q = (77, 7)
Damping is small at 7=0

I' =0at7=0

pure

(Theory generalizes to the cases with
incommensurate Qand I' . #0 )




Constraints from momentum conservation

T

T

W, : strongly coupled to @, but do not damp @,
as longas A, <2 Ay

WY, ,: decoupled from @,




I. Zero temperature broadening of
resonant collective mode ¢, by

impurities: comparison with neutron
scattering experiments of Fong et al
Phys. Rev. Lett. 82, 1939 (1999).
Theory: proximity to a magnetic
ordering transition

Intrinsic inelastic lifetime of

nodal quasiparticles ', , (Valla et
al Science 285, 2110 (1999) and
Corson et al cond-mat/0003243)
Theory: proximity to a quantum phase
transition with a spin-singlet fermion
bilinear order parameter

Independent low energy quantum field
‘ theories for the @, and the ¥, ,




[. Zero temperature broadening of resonant

collective mode by impurities

impurities 7,

Analogy with deformation of quantum
coherence by a dilute concentration of

Magnetic impurities in a Fermi liquid

Quasiparticle scattering rate

( nimpjzade(EF)
Emp (8) ~ 9 nimp
P(E;)

E>>T,

E<<Ty




Main result for collective spin resonant
mode in two dimensions

Effect of arbitrary localized deformations
(“impurities”) of density n;

Each impurity is characterized
by an integer/half-odd-integer S

2
he {CS +0(Ares H
J

‘\I Correlation length &

C, — Universal numbers dependent only on $
Co=0;Cp=l

Zn impurities in YBCO have $=1/2 ‘

“Swiss-cheese” model of quantum 1mpurities
(Uemura):

holes in Swiss cheese.

Inverse Q of resonance ~ fractional volume of I




As A, — 0 there 1s a quantum phase transition

to a magnetically ordered state

(A) Insulating Neel state (or collinear SDW at
wavevector Q) <= insulating quantum
paramagnet

(B) d-wave superconductor with collinear
SDW at wavevector Q <& d-wave
superconductor (paramagnet)

Transition (B) is in the same universality class as
(A) provided W, fermions remain gapped at
guantum-critical point.




Why appeal to proximity to a quantum
phase transition ?

¢, ~ S=1 bound state in particle-hole channel at the
antiferromagnetic wavevector

~¢Oﬂ

Quantum field theory of critical point allows systematic
treatment of the strongly relevant multi-point
interactions in (b) and (c).




Nearly-critical paramagnets

Quantum field theory:

S= [ dtudr E (Va0)? + 2(8,60)* +r¢?)

+2 (87

3-component antiferromagnetic
Oy —>
order parameter

e T S L mm..___...!
No Berry phase terms because of almost perfect |
cancellation of the two sublattice contributions

Spmn gap A

Neel order vV,

Quantum
paramagnet




ot |

Oscillations of @, about zero (for r > 0)
—p spin-1 collective mode

T=0 spectrum
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Coupling g approaches fixed-point value under
renormalization group flow: beta function (¢ = 3-d) :

11g> 23¢°

4
6 o o)

—€g +

Only relevant perturbation — r
strength is measured by the spin gap A

| A and ¢ completely determine entire

| spectrum of quasi-particle peak and

| multiparticle continua, the S matrices for
| scattering between the excitations,

L and T > 0 modifications.

"



=1

Zn impurity inYBa,Cu,0,,

Moments measured by
analysis of Knight shifts

vt 3

M.-H. Julien, T. Feher, _ 1 ‘ ' l’

M. Horvatic, C. Berthier, N!agnetlc O

0. N. Bakharev, P. Segransan, | Field H ‘

G. Collin, and J.-F. Marucco, ? '

Phys. Rev. Lett. 84, 3422 l l
o4

(2000); also earlier work of
the group of H. Alloul

Berry phases of precessing spins do not cancel
between the sublattices in the vicinity of the
impurity: net uncancelled phase of $=1/2

12



Orientation of “impurity” spin -- 7, (7) (unit vector)

Action of “impurity’’ spin

dn,

Simp = /dT [z’SAa(n) e YSNG(T)Pa(x = 0,7)

A,(n) = Dirac monopole function

Boundary quantum field theory: Sp + S imp

Recall -

= [ diadr B (Vaa)? + (0r0a)” + 762)

+2(82)

73



Coupling y approaches also approaches a fixed-point

value under the renormalization group flow
(Sengupta, 97

Beta function: , Sachdev+Ye, 93
€7y : - 5g Y Smith+Si 99)
3 ; — ___.,.......{. 3 —_—
s 1 3 7
+3 (S(S +1) - -3-) 97’ + 0 ((v.vo))

No new relevant perturbations on the boundary;
All other boundary perturbations are irrelevant —

& A Id’@é‘(x =0,7)

(This is the simplest allowed boundary perturbation
for §=0 — its irrelevance implies C; = 0)

A... and ¢ completely determine spin
dynamics near an impurity —
No new parameters are necessary !

Relevant perturbation — strength determined by only
energy scale that is linear in n,  and contains only
bulk parameters

nimp (hC)2
A

¢S

I

14



Fate of collective mode peak

4
Without impurities X (G,®) = A )2

es

s " A ho T
With impurities ¥ (G, w) = () ,
Z( ) AZ ATGS AI'GS

Ires

® —» Universal scaling function. We computed
it in a “self-consistent, non-crossing” approximation

I''A=0,05 1 IiA=0,1 .

Ll
o

20}

PR B

I'"A=0,15 |

p—
-

d
!
-1
26

hodf A

Predictions: Half-width of line = I"
Universal asymmetric lineshape




Coupling of impurity to fermionic i
' quasiparticles ¥, ,

.
I EEEEEEEN NSNS REE N ARG IRSEEEEEENEA NN AN NN USSR AN AR AN NS ENNGADE [

> J (1S, Y (r)o®¥(r) + U (0)¥(0)

! \

Kondo couplings Potential scattering

(Many works (e.g. Pepin and Lee, Salkola, Balatasky and
Scalapino) have ignored impurity spin and treated and
effective potential scattering model with U — oo ; we take U
finite and include Kondo resonance effects)

Because density of states vanishes linearly at
the Fermi level, there is no Kondo screening for
any finite J, (below a finite J,) with (without)
particle-hole symmetry

(Withoff+Fradkin, Chen+Jayaprakash, Buxton+Ingersent)

Our theory applies for A > T

" Implications of impurity spin for

STM experiments: A. Polkovnikov,
S. Sachdev and M. Vojta, to appear

4z




YBa,Cu,0, +0.5% Zn

H. F. Fong, P. Bourges,

Y. Sidis, L. P. Regnault, ™

J. Bossy, A. Ivanov,
D.L. Milius, 1. A. Aksay,
and B. Keimer,

Phys. Rev. Lett. 82, 1939
(1999)
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Conclusions: Part I

Universal T=0 damping of S=1 collective
mode by non-magnetic impurities.

(he)’

n m
Linewidth: |I'=—2"

Ics

independent of impurity parameters.

New interacting boundary conformal field
theory in 2+1 dimensions

Universal irrational spin near the impurity
at the critical point.




II. Intrinsic inelastic lifetime of nodal
quasiparticles ¥, ,

Photoemission on BSSCO
(Valla et al Science 285, 2110 (1999))

(Quantum-critical
damping of quasi- _
particles along (1,1) [

’ -

0 B 10 16 20 25 M A

2
Quasi-particles

sharp along (1,0)

77



Energy Relative to Ec( eV)

MDC Intensity (A. U.)

D. Orgad et al, cond-mat/0005457 :
Photoemission on LNSCO
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Large o tail in the fermion spectral function

1
Glk,w)~ -
( ) (vpk—a))1 b
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THz conductivity of BSCCO
(Corson et al cond-mat/0003243)

0 ‘ 50 ‘ 100
Temperature [K]




Origin of inelastic scattering ?

In a Fermi liquid ImX~7 ?

In a BCS d-wave superconductor  [m2 ~ T’

Classify theories in which a d-wave
superconductor at I < T, has, with
minimal fine-tuning:

(a) nodal quasiparticle lifetime ~ 71/ k,T
and possibly

(b) negligible scattering of quasiparticles
along (1,0), (0,1) directions

We will find that theories which obey (a) also have a
large o tail in nodal quasiparticle spectral function




LProximity to a quantum-critical point

Superconducting 7, » =

o —t—
-
P

Quantum _~

« ecritical ,7
/
Superconducting d-wave

state X superconductor

>

A)

(Crossovers analogous to those near quantum phase
transitions in boson models
Weichmann et al 1986, Chakravarty et al 1989)

Relaxational dynamics in quantum critical region
(Sachdev+Ye, 1992)

ANTF ck hw
G k, = @ 2

Nodal quasiparticle Green’s function
k -+ wavevector separation from node

L3



|Necessary conditions I

Quantum-critical point should be below its upper-
critical dimension and obey hyperscaling.

Critical field theory should not be free — required
to obtain damping in the scaling limit. Combined
with (1) this implies that characteristic relaxation
times ~ A/ k,T , so satisfying (a)

Nodal quasi-particles should be part of the critical-
field theory.

Quasi-particles along (1,0), (0,1) should not couple
to critical degrees of freedom to satisfy (b)




Low energy fermionic excitations of a
d-wave superconductor

Gapless Fermi Points in a

d-wave superconductor at
wavevectors (K ,+K)

K=0.391~n

(S

Jal
le

2y




Order parameter for X should be a spin-singlet
fermion bilinear at zero total momentum

e.g. Charge stripe order
op ~ Rel:(I)xe"Gx +@ e ]

If G#2K fermions
do not couple
efficiently to the
order parameter and
are not part of the
critical theory

Action for quantum fluctuations of order parameter

= /(izfﬁd7[|8T<I>$]2 + 10,9, + VP, |* + |[VD,|?

45 (l(’px‘g + |_<I>y\2> + % (|‘I)x|4 + 1‘1’;;14)
+ 'U0|‘I):BI2‘(I)ZJ|42]

Coupling to fermions ~ A .[d ‘xdz|® | PP
and A is irrelevant at the critical point

Imz — T2d+1—2/v

~ ibeveen2andd) o 2/3 <y <1
f=>l]  Similarly exclude staggered flux state, which has

B O=(7,7) and a gradient coupling to fermions

pa



Order parameter for X should be a component of
A, = <cch_ . J,> (fermion pairing)

or

A, = <c,'fa,cka> (excitonic order)

Complete group-theoretic classification

X has a,’xz_y2 pairing plus

(A) is pairing\‘ fermion spectrum
; L] full d
(B) id,, pairing”™ Y 8appc

(C) ig pairing
Nodal points

D) s pairing

superconducting
nematics

(E) d,, excitons

(F) d, pairing

(G) p excitons




Quantum field theory for critical point

Ising order parameter ¢ (except for case (QG3))
02
2

2, 5,2, U 4
(Vo) +§¢ +ﬂ¢]

1
S = /dzzcd'r [5(87@2 +
Coupling to nodal fermions

Sps = fd%df 0 (V1M T, + UML)

AYM, =7"; M,=7"
BYM,=7"; M,=-7"

(C) A=0, so (a) is not obeyed
DM, =7"; M,=1"
EYM =", M,=-7°
M, =1t", M,=-1"
(G)M,=1; M, =1but ¢ has

2 components

"



Only cases
(A) dx?-—yz = alxz_y;Z +is and

(B) a,?xl,_y2 & dxz,_y2 +id
have renormalization group fixed points with
A=A #0andu=u #0

Only cases (A) and (B) satisfy
condition (a)

d,, order vanishes along the
(1,0),(0,1) directions, and so only
case (B) satisfies condition (b)

29



Gapped quasiparticles:

Below T, : negligible damping

Above T: damping from strong coupling to
superconducting phase and SDW fluctuations.

1‘

Nodal guasiparticles:

Below T, : damping from fluctuations tod ._, +id,,
x'—y
order

Above T_: same mechanism applies as long as
quantum-critical length < superconducting phase
coherence length. Quasiparticles do not couple to
phase or SDW fluctuations.

30



Conclusions: Part I1

Classification of quantum-critical points
leading to critical damping of quasiparticles
in superconductor

Most attractive possibility: T breaking

transition from a ¢ , oy superconductor to
a d >+ ld superconductor

Leads to quantum-critical damping along
(1,1), and no damping along (1,0), with no
unnatural fine-tuning.

| Note: stable ground state of cuprates can
} always be a d ) superconductor; only need §

| thermal/quantum fluctuationsto d , . +id , |
order in quantum-critical region.

Experimental update: Tafuri+Kirtley (cond-mat/0003106)
claim signals of T breaking near non-magnetic impurities

in YBCO films

Bl

B

3/






