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Abstract—--Anisotropic turbulence and speculur reflectors have both been invoked 1o explain uspect-sensitive

radur scatter from the atmosphere. However, conclusions

ubout the dominant type of scatter are usually

based on qualitative arguments, and can tend (o be sontewhat subjective. In this article, we develop a
quantitative relation between the degree of anisot ropy of turbulence and prevailitg aimospheric conditions.
This relation is useful in determining whether any particular observation of ‘specularity’ really can be

ascribed to anisotropic atmospheric turbulence. or whether a

@ 1997 Elsevier Science Ltd

L. INTRODUCTION

‘Aspect sensitivily’ in radar experiments refers (o the
feature of preferential scatter of radio signals from
overhead rather than from off-vertical angles. It is
often (but not ulways) found that the signatl received
when the bore of a radar beam points directly over-
head excceds that received when an off-vertical beam
is used. This characteristic is evident throughout the
middie and lower atmosphere — at VHIF (Very High
Frequencies) in the stratosphere and troposphere, and
at VHE, HF (Migh Frequencies) and MF (Medium
Frequencies) in the mesosphere.

The histary of observations of aspect-sensilive scal-
terers in the atmosphere is a very old and contlinuing
one. There have been (wo main schools of thought
concerning these scatterers, Some believe (hat the
aspect sensitivity is indicative of horizontally stratificd
and extended “speculir refiectors” in the atmosphere.
Others have advocaled that (he aspect sensitivity can
be explained solely on the basis of anisotropic tur-
bulence. One of the main problems has been thal there
is no quantitative theory that describes the limits to
anisotropy which may be caused by turbulence. Some
earlier experimental reports simply classified the scat-
terers as ‘specular’ and ‘isotropic’ (e.g. Gape and
Green, 1978; Réttger and Liu, 1975: Hocking, 1979,
Fukao et al., 1979). Other studies presented measure-
ments of the back-scattered power us a lunclion ol
beam (it angle (e.g. Lindner, 19754, 1975b: Vincent
and Helrose, 1978, Tsuda o al., 1986). Subscquent
studies attempled (o quantity the degree ol back-

‘speculur reflection’ process is in effect.

scatter by representing the fall-off as a function of
angle by some mathematical function; examples
included Gaussian and exponential functions (e.g.
Lindner, 1975a, 1975b; Vincent and Belrose, 1978;
Waterman ¢t al., 1985). Various variations on simple
measurements of power a$ a function of angle were
also cmployed to further investigate this phenomenon
(e.g. Rottger and Vincent, 1978; Woodman and Chu,
1989: Hocking er al., 1990 amongst others). The most
common parameterization has been (o represent the
power as a function of angle by a form proporiional
1o exp { —*/02}, where 0, has been called the ‘aspect-
sensitivity” factor. The above references are not a com-
plete set, but are adequate to establish the main fea-
tures related to aspect-sensitivily studies: a more
complete bibliography of studies related 1o this aspect
sensitivity dependence can be found in Lesicar ¢f af.
(1994), _

With the notable exceptions of Briggs and Vincent
(1973) and Vincent (1973), few attempts were made
prior to 1984 to relate these measurements and par-
ameterizations o any features of the scattering entitics
themselves. However, in the 1980s eforts were finally
successful in relating aspect-sensitivity measurements
to quantities like the degree of anisotropy of the scat-
terers. These theoretical developments included ones
by Doviak and Zrnic (1984) and Hocking (1987,
1989). “The relation between the aspect sensitivity of
the scattered radiation and the average shapes of the
scaticring entities s now fairly well understood.
Lxperimental studies hinve been carried out which util-
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ize these theoretical developments (e.g. Reid, 1990),
including  extensive mulli-station climatologies
reported by Lesicar and Hocking (1992) and Lesicar
et al. (1994).

A major remaining problem is (o determine what
actually causes the anisotropy of the scatterers. Whilst
we can now easily determine the degree of anisotropy,
it is still not possible to decide if this anisotropy has
been caused by turbulence, or (as is oflen claimed)
whether other forces are at work which cause
anisotropy which is much more pronounced than
turbulence can produce alone (i.e. specularity). Dis-
cussions about the types of non-turbulent ‘specular
reflectors’ which have been envisaged can be found
in articles by Hocking and Rattger (1983). Hocking
(1987, 1989), Hocking er af. (1991), Woodman and
Chu (1989), and Reid (1990). We do not intend to
discuss these mechanisms {urther here; we rather con-
centrale on obtaining a belter feel for the level of
anisotropy induced by turbulence.

In the following scctions. we develop a simple
expression which places limits on the degree of ani-
sotropy which can reasonably be expected because of
turbulence. The theory examines how wind-shear will
act to distort initially isotropic eddies. It is thus most
relevant at scales within the inertial range of tur-
bulence where normal Kelmogorolf theory predicts
that, in the absence of external distorting eflects, the
scales should normally tend towards isolropic (e.g.
Bradshaw, 1975), irrespective of any initial anisotropy
at the generating scales. We nole that the theory may
have deficiencies at the largest scales if those larger
scales are produced anisotropically in the first place,
but our purpose here is to apply our results to radar
backscatter. Since such backscatter usually comes
from scales within the inertial range, the theory is
perfectly adequate for our purposes.

(a)

W. K. Hocking and A. M, Hamza

2. THEORY

Consider a scalierer of size /. Then the mean square
diameler ol such an eddy will be approximately
1*~(Kt), where 1 is the time since the eddy was ‘cre-
ated’, and K is a (scale-dependent) diffusion
coeflicient. The scale dependence arises because
diffusion within the eddy takes place because of Lhe
motions of even smaller eddies which are embedded
inside it, and the nett diffusion is the cumulative effect
of all such smaller eddies. By dimensiona! consider-
ations, K~ /v, where v is a typical velocity associated
with movement within the eddy (typically considered
to be comparable with the speed of rotation of a
parlicle towards the perimeter of (he eddy) and if we
let the turbulent energy dissipation rate ¢ be
~eHfr~vYl then K~1"%'? Substitution for K in the
equation I* ~ K1 ther&ore gives

P~ fict?, (1)

-where f§ is a dimensionless constant of order unity.

This is a well known relation first noted by Batchelor
(1950). Other derivations include that by Weinstock
(1978). who obtained a value lor f of order 0.5. Never-
theless, we will consider ff (o simply be of order |
lor the time being — we will see that our subsequent
anisotropy formulae are in fact only weakly dependent
on the actual value of §8.

Now consider an idealized small, initially isotropic
eddy in the presence of # mean wind shear, as shown
in Fig. 1(a). We consider the eddy to be initially a
spheroid, which may distort to become an ellipsoid as
lime progresses. For purposes ol illustration (though
we note that this condition is not mandatory for our
general discussion), we consider that the eddy has a
Gaussian variation in densitly across a section through
its centre, superimposed upon a much larger mean-

Fig. |. An illustration of the nature of an eddy stretching in the presence of a wind shear.
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background. This Gaussian perturbation from the
mean may in fact be either positive or negative (le.
the eddy could have either stightly higher density or
slightly lower density then the surrounding almo-
sphere in which it is embedded). Such an eddy is rep-
resented in Fig. I(a). The solid lines in that figure
represent isopleths (contours) on a two-dimensional
slice through the eddy along which the density per-
turbation is equal to the root-mean-square per-
turbation for the whole eddy.

We should note here that the concept of using
different sized eddies as a representation of the tur-
bulent density field is not at odds with the classical
approach of representing the field as a power spec-
trum; De Wolf (1983} has shown the equivalence of
the two approaches. However, for our derivations
which follow, the eddy-like representation is much
better suited, and we will not utilize the spectral
approach until later in the article.

Let the initial diameter of the isotropic eddy by /,.
The eddy will diffuse apart as time progresses, but will
also be streiched horizontally by the wind shear. It
will also gradually destroy itself during this process,
and the energy it contains will cascade to smaller
eddies, but we are most interested in this initjal period
of diffusive expansion. After time 1, the vertical extenl
(vertical scale) of the eddy will be given by /., where

(2)

Since the eddy was considered small at time ¢ = 0,
and we expect the degree of anisotropy to grow larger
as the eddy evolves, we can neglect the snwll 4, term,
at least to first order, to give

L~ S (Ber. )

We now turn to the horizontal stretching of the
eddy, and begin by recognizing that it will have {two
terms. There will be firstly the diffusion term, as also
occurs vertically, but there will also be horizontal
stretching caused by the wind shear (see Fig. I{b)). We
will consider incorporating these concepts (ogether
shortly.

However, belore doing so we nced (o consider what
will happen to the eddy over a moderately long period
of time. It might be considered that the ‘stretching’
shown in Fig. I{b) is only a transient event. Afterall,
the eddy will rotate, and after a quarter cycle it will
be aligned against the mean shear. Perhaps then the
shear could act to return the eddy to its ariginal iso-
tropic shape (as shown in Fig. 2(a))?

In fact it is unlikely that this will ever happen.
As the eddy rotates, it will also become twisted and
stretehed inoa chaotic manner, so the process is not

Pt + 8,
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reversible. Once it has rotated half a cycle, it is con-
ceivable that the mean wind will again try to return
the eddy to its original shape, but in fact it will only
succeed in twisting and deforming the shape even
further, as shown in Fig. 2(b). This process wil] be
especially enhanced by the presence of larger scale
eddies in the vicinity which will also impart their own
shearing and (earing motions (o the eddy. It should
also be remembered that the picture often invoked to
describe a turbulent ‘eddy’ - namely a quasi-isotropic
ellipsoid — is really only a statistical representation of
an ‘average’ eddy, but in reality true turbulent entities
will be highly stretched and distorted ‘strings’,

We may now return to our mathematical analysis.
The amount of horizontal stretching will be given by
Ax ~ (Av)t, where Av i®the velocity difference between
the top and bottom of the eddy, or Ay = (dajdz)t,. 1If
we consider the diffusive and wind-shear induced
stretching to be additive, then we may write

dii
e/ Ber)+ i @

However, we already know that 2 = Ber’ from 3,
§0 we may use this to substitute for ¢ in the above
equation. We are especially interested in the degree of
isotropy, so let use examine the ratio LM We therefore
have

(5)

__” -3 13
”ll_. -1

This is the term which we seck, and it shows clearly
that, for larger eddies, the degree of anisotropy is
larger - a result which might be expected intuitively,
since larger eddies are longer lived and have more time
to suffer the effects of wind shear.

As noted earlier, there will be a weak attempt 1o try
to ‘recompress’ the original eddy after a half and cycle
rotation, but this tendency will be smull at best, since
it will result in a significant decrease in entropy; we
will consider that such recompressions do not occur.
Thus the second term on the right hand side of the
above equation might be reduced by a constant multi-
plicative factor, but the factor will nol be loo much
differcnt from |, and we therelore take our expression
(o still be valid. We write

!
[ =E~liyp My (6)
where
‘l“ o ’fh?, I%'”( [ Fa] (7)
d-]
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Fig. 2. (a) A schematic of the relation of an eddy in relation to the wind shear after it has rotated one
quarter of a cycle. (b) A more realistic representation of the way in which an eddy is distorted by a wind
shear as time progresses.

is 2 dimensionless parameter which we will denote as
the ‘eddy anisotropy factor’ and y is a constant of
order I, perhaps a bit less than unity. We denote the
ratio /1. by the symbol E.

4 THE RELATION TO ATMOSIPHERIC BUOYANCY

At first sight, it appears that the atmospheric buoy-
ancy does not appear in this equation, but in fact this
hears further investigation. Lel us examine the above
ratio for the special case that / ~ Ly, where £y is the
buoyancy scale, given by L= 10c e Y (Weinstock,
1978). I we substitute my = 2n/ty then we oblain
fp= 130 'Y We may therefore substitute directly
for L'« " in our expression (60) to give

LH,\ B PR (!a
Ln; i+075ﬁ ) (IZ o (8)
ar
Ly i
ML+ 0.75% 20 MYy -('_; oy N

“

o[-

The term Jdifd=jmy, " is just the square rool ol the
inverse ol the Richardson number, so we Gt rewrile
this as

Iu. [.5nfl "%y
LA f ) )
I'It.‘

J I

(10)
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where R; is the Richardson number. Thus we see that
the degree of anisotropy at the larger scales of the
turbulent regime are very simply related to the Rich-
ardson number. For turbuience generated by a
dynamic instability process (R, ~0.25), we see that
the ratio is approximately between 6 and 10 if we use
# =1 and take 7 to be in the range 0.5-1.0. Note also
the weak dependence of the anisotropy on fi; we see
that if we use fi = 0.5 (as suggested as an alternatjve
possibility following equation (1)), then the ratio
Y.g/L g, isin the range 7-13 for y in the range between
0.5and 1.0 (which is still quite comparable to the range
6~10 which was deduced for the choice of i = 1). For
convectively generated turbulence, the above
expression cannot be applied, and we need to revert
to the earlier equation (6).

4. APPLICATION IN RADAR STUDIES

One of the chief applications of this work is to
studies of aspect-sensitivity in radar studies. However,
with a radar one cannot measure the quantity /.
exactly; rather, the radar selectively scatters from
eddies with sizes comparable with (he radar wave-
length. Therefore we need to recast (6) in terms of a
radar wavelength, or some related parameter.

We begin by defining 4 new parameter, .o/,, where

di

&[T an

oy =

and where £, is the vertical wave number (k. = 2n/1).
This clearly is related to .o, but is not exaclly the same
as it. Note that we should ot write k.= 2nfl., since /.
Is a measure of the width of an eddy, not a wavelength
scale. To see this, consider an eddy with an ellipsoidal
shape and with 2 Gaussian variation in density per-
turbation, having a half-power half-width {. Then the
Fourier transform is also a Gaussian with half-power
half-width &5 ~ (0.22)2n)/0 ~ 1.4/L; this is not
k= 2nf¢,
With this definition of .+, equation (6) becomes

&z

; SE~I+ff "o, (12)

where y, is another constant.

We can obtain an estimate Tor the constant . in
terms of'y in the following way. We begin by following
Haocking (1987) and Briggs and Vincent (1973), where
it was shown that the eddy which is mosi eflicient in
back-scattering clectromagnetic rudiation of wive-
length 4 is one with a 1e hall-depth 4, cqual to about

0.24. Since /. is the RMS full-depth of an eddy, we
may use the fact that /. = 24,/,/2 to give

[.~0.28). (13)

The Bragg scale A, associated with this wavelength
is 1. = A/2, so that the Bragg wavenumber which is
most efficient at producing radar backscatter for this
eddy is

ke =2m/A. = 2m(0.28)2/L. = 3.5/1. (14)

Substitution into (! 1) and comparison with (7) then
gives ./, = 0.43 &, so that Yo=23p. I yis typically
within the range 0.5-1.0, then Y« 18 in the range 1.15-
2.3, and at this stage (and without experimental veri-
fication) we suggest that a value of ¥, =2 is most
reasonable. Conversion of LI, to an effective 0, (and
conversely) can then be accomplished using the
expressions discussed by Lesicar and Hocking (1992)
and Lesicar er al. (1994), viz.

!_\ 2— 12/,12 l
L]~ 8nzsin20,+ (13)

where A is the radar wavelength and #4 is the e~ ' half-
depth of the eddy. The latter has been shown by Hock-
ing (1987) to lie in the range 0.154 t0 0.321. Generally
a value of h>0.22 is used (also see the discussion prior
to equation (13)).

5. INERTIAL SUBRANGE COSPECTRAL PREDICTIONS

The previous development has highlighted the
tmportance of the paramelers .o and o/, in describing
the degree of anisotropy of typical eddy structures. It
is of significant interest to recognize that this par-
ameter can also occur in other calculations which
relate to anisotropy in turbulence. To see this, we
consider the velocity cospectrum,

Eulk) = § Gy + dcas krdr.  (16)

In this case we have simply let & be the wave number
along any chosen direction of motion through the
turbulence - though of course we must recognize that
il the turbulence is anisotropic then the variation in
the cospectrum as a function of wave number will
differ in scale for different directions of traverse,
though it will probably retain the same form. Never-
theless, this is not oo important in our fotlowing
discussion, provided (hat {his facl is recognized.

Our main interest here is in the spectral behavior of
the velocity cospectrum in the inertial range where the
viscous effects do not play a significant role. Lumley
(1967) and Wyngaard and Cote (1972), by assuming
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that the cospectrum jp the inertial range depends only

on k, on the rale of energy dissipation per unil mass

€, on the mean shear Idiajdz|, and assuming further

that it is linear in the mean shear, have shown by

dimensional arguments that:
il

di
E,,,,.(k) = _/al(l/ik—?jjg; (’_E

,C - I,'Jk—?.fj) ( ' 7)
oz

We see here again the importance of the parameter
Ay = |dafdzlk =13 e equation (17) can be re-
written as

E (k) = —ez"]k_s"'l,sa-’.’,rff"'_(d,,). (18)

Note that we choose this form for the relation
because it still allows ys o highlight the classical
25 dependence on ¢ and k, which is wel] known
for classical Kolmogoroff inertial range turbulence.
Because of the importance of o7, we will Incorporate
it wherever possible into the following discussions,
although we note that this was not done in some of
the references quoted.

At large wave numbers one reproduces Lumley's
(1967) result, namely

E,.(k) = —ezf-‘k-sf-‘.w,,gff*(O). (19)

In terms of a dimensionless measure of anisotropy,
wecandivide by £, = %€k =P where ., ~0.25 (as
seen in Hocking, 1986, Appendix A); we recognize
that £,, here is the same as G, there. We then oblain
a cospectral anisotropy function Pk} where

Enk)

E k) ~ €

$(k) = (20)

and where Cis a constant, Wyngaard and Cote {1972)
went on to generalize (e previous result (o the case
when buoyancy is added to the problem. They showed
that the cospectrum is then found to be

Eqlk) = — 2y~ YA F (A R (21}

which reduces 1o the previous result in the ithsence of
buoyancy. In the large wave number limit .o tends 1o
zero and they oblained:

EQdR) = —F(O0;R)of (Y% (22)

The cospectral anisotropy function can now be writ-
len as
(k) = F(R) . (23)

o the casc & = &, the huoyancy wave number, we

T e e e ——
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may apply similar arguments 1o those in Sectjon Jto
give

F(R)
/R

where ¢(R,) = F(0:R). Note that this has some feq.
tures in common with (10), especially the inverge
R, dependence.
We will not pursue this line of argument here, since

qS”(k,,) = Cz (24)

anisotropy, and that these quantitjes can indeed be
considered as fundamental 1o such work. The deri-
in this text in refation to
individual eddijes {which are quite new), and the (o
mulae discussed jn theé™current seclion, were derived
using independent approaches, and yet (he same cru-
cial parameter has arisen in both approaches. This
gives extra confidence that these approaches are both
valid, and reinforces (he importance of this paramelter.
It also substantiates the derivations of the eddy
anisotropy factor shown earlier i this text.

6. APPLICATION TO RADAR STUDIES

We now need to examine the implications of these
formulae in radar studies of anisotropy. For VHF
scaller from the atmosphere, Bragg scales of 3m are
relevant. In the mesosphere, a large wind shear might
be 40ms™! km~' and a typical turbulence intensity
might be 0.01 W kg - (Hocking, 1990). Then we have
from (12) that Il ~ 1.2, where we have used the
values of y, = 2 and B =1 as recommended earlier in
the text. Note that grealest anisotropy occurs when
turbulence is weak . In conditions of strong turbulence,

-the more violent motions tend o allow the main-

lenance of greater 1sotropy, avercoming the stratjf ying
effect of the mean vertical shear in the horizontal wind.
In the stratosphere we might typically take ¢ ~ [0~* lo
0 *Wkg"' (c.p Barat, 1982), so that . ~3-5 for
Ye~2. These would have 1o be regarded ag upper
limits, since radars are unlikely to detect weaker tur-
bulence. They correspond 1o vilues for the radar
aspect factor 0. (Hocking, 1987)of ~ 5" to 10" Smaller
vilues of @, associated with (rue turbulent scutler
would only be possible with stronger wind shears.
For a medium frequency (M} radar opcrating
around 2Mliz (c.g. Lesicar and Hocking, 1992 Les-
icar ef qf. 1994), eddies witly dominant Brage scales
of the order of 75 m are (he mostimportant for radar
seittler. 1M e ~ 0.000 (0 0. Wkg ' and the mean wind
shear is as above, then /1 will be of the order of 1.5-
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3.5. Such values are in excellent agreement wilh the
types of values reported by Lesicar and Hocking
(1992) and Lesicar el al. (1994) for scatier in the height
range 80-100 xm. However, this agreement does not
prove that all the scatter from 80-100km altitude
at MF is only caused by anisolropic turbulence; a
combination of specular reflectors and isotropic tur-
bulence could result in similar values, as could a scen-
ario involving only specular reflectors which contain
substantial undulations. The theory presented s0 far
cannot, in itself, prove the existence of anisotropic
(urbulence. What it can do is place lower limits on
the values of 0, which can be expected because ol
anisotropic turbulence; {hus we can be quite sure that,
if we measure values of 0, which fall below this limit
then we truly have a specularly refiecting process al
work. Given the conlroversy about the nature of these
highly specular refiectors/scatters, such a quantitative
means of discrimination is important. Let us therefore
look at the sorts of lower limits which we might expect
in this height range. When ¢~ 107*Wkg™' (MF rad-

ars are unlikely 10 detect weaker turbulence), then

{/l.~6 for 1=~ 2.0. Such an aspect ratio would cor-
respond to an aspect sensitivity factor 0, of ~5°. Even
smaller values would then require massive wind
ghears,ora completely new explanation such as specu-
tar reflections. In fact as a rule we can then say that
values of 0, less than about 4-5° are really caused by
specular processes at work. Nevertheless, each case
should be treated on its own merits. If it is actually
possible to measure the wind shear and the strength
of turbulence, even more accurate estimates on the
lower limits for 0, caused by anisotropic turbulence
can be made. For the first time, the tools are now
availabie through equations (6) and (12) to assess
quantitatively the likely cause of highly aspect sen-
sitive echoes in any given situation.

we conclude this section with a briel discussion
about the implications of these results in refation 10
the ability of radars and in-siin probes lo measure
turbulence, although we emphasize that this is not the
main point of this work. To begin, we must note that
an upward-poinling radar which utilizes the so-called
*spectral width’ method o measure the strength of
wrbulence (e.2. Hocking, 1985) generally measures
the root-mean-square vertical Ructuating velocity
within the turbulent patch. 1tis then assumed that the
turbulence is isotropic, and that the level of Auctuation
in the horizontal x and ¥ directions is simifar. I,
however, the turbulence is anisotropic, this can no
jonger be truc.

An exact determination of the correction to the
energy dissipation rale must recognize thal the ani-
golropy lerm is seale dependent, and in addition recog-
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nize that the classical =% form of the spectrum will
no longer be exactly true, at least for the verlical
fluctuating velocities. 11 is necessary 10 re-derive the
longitudinal spectral function for velocities, and then
integrate this spectrum over all wave numbers, after
suilably weighting the function by the radar volume.
Note that the effective anisotropy term for these cal-
culations is not the anisotropy factor relevant at the
scales of the radar wavelength, but an anisotropy fac-
tor averaged over all scales from the radar wavelength
to the buoyancy scale. An example of this integration
for the case of isotropic turbulence has been shown in
Hocking (1996), but extension to the anisotropic case
is difficult. As it turns out, it is aiso largely unnecessary
for this article, because the anisotropy factor £1s only
4 weak function of €. An error in eslimating € by @
factor of 3 leads to an error of only 40% in (E— 1).
For a typical value'of Z of say 3, the subsequent error
in 0, is typically about 30%. This is still adequate
for us to resolve between anisotropic turbulence and
specular reflection in many instances. Thus for the
purposes of this article, which is to place limits on the
degree of aspect-sensitivity expected for backscatter of
electromagnetic radiation by anisotropic turbulence,
high precision measurements of € are not required.
Further, it is important to recall that our objective
here is to place lower limits on the value of 6, which
may be expected because of anisotropic turbulence,
so that smaller values can be identified as true specular
scatterers. Thus if we err on the small side in our
calculations of €, as we will if we under-estimate the
strength of turbulence, we can be even more certain
that values of 0, which fall below this limit really
are specular reflectors; s0 in this sense there is little
disadvantage in under-estimating ¢.

For measurements of energy dissipation rates using
in-situ probes in the presence of anisotropic turbulence
the situation is a little easier, provided that the probe
can measure to scales within the viscous range. We
recognize that the energy dissipation rate is given by

¢ = 2] KEGk)K, (25)
0:

where v is the molecular kinemalic viscosity coefficient
(e.g. Batchelor, 1953, equation 5.2.9). If it is possible
1o measure all three components of the wind field,
then the above equation can be applied directly, with-
out error, However, even it only one component of
the wind is available, itis stif} possible to make useful
estimaltes by treating the ficld as isotropic. To see this,
we note that the above integral is dominated by scales
in the viscous range and at the high wave-number end
of the inertial range, where the turbulent eddies are
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most nearly isotropic, even in the presence of a wind
shear (as clearly scen in our carlicr work}. Thus direct
application of the above equation, but deriving [(k)
under the assumption of isotropy, will not lead o
huge errors in ¢ in this case.

Further discussion of the topic of how these cor-
rections lor anisotropy in estimating ¢ should be made
is beyond the objeclives of this paper. Certainly Muture
work on anisotropy should invoive more detailed
determinations of how one might use the radar spec-
tral widths to accommodate any anisotropy in the
turbulence field, and it may be possible to draw on
the fact that a radar can measure 0, to help out in
this regard. However, we should not lose sight of the
original objective of this paper, which was certainly
not to develop such a generalized, all-encompassing
theory. Rather, it was simply to try to place lower
limits on the expected values of {), which can be associ-
ated with anisotropic turbulence, and thereby help

distinguish between specular reflection and aniso-.

tropic turbulence. The lact that the anisotropy term
involves ¢ """ means that the dependence on ¢ is weuk.
This enables us to make meaningful estimates of these
limits, and such kimits have been presented; an error
in estimales of ¢ of even a factor of 2 or 3 still makes
for reasonable estimates of anisotropy. We are, lor
example, in a position now to be quite sure that the
highly aspect-sensitive reflectors reported by Hocking
et al. (1991), which had values of 8, of less than 17,
were not caused by turbulence. Other similar reports
of high levels ol anisotropy can similarly be ascribed
to specular refiectors. In general, a value of 0, of less
than about 4° or 5” can generally be taken Lo indicate
a specularly reflecting process.

We should also finally note that these tests for
specularity are essenlially one-sided. They can be used
to determine if a reflector is truly specular by deter-
mining if the measured value for 0, falls well below
the minimum value expected for anisotropic turbu-
lence, bul the converse need not apply -- a large value
of 0, (say 8" or 107} does not necessarily imply that
the radar returns must have been caused by turbulent
scatter. A specular reflector with substantial wobbles
in the reflecting surlace could produce quite large
values of cllective @,, certainly up to 107, as may a
combination of specular reflectors and isolropic tur-
bulence,

/7

W. K. Hocking and A. M. Hamza

7. CONCLUSIONS

New cxpressions have been developed lor a quan-
titative measure of the degree of anisotropy in atmo-
spheric turbulence. This amsotropy factor is a
function of the eddy scale, the wind shear, and the
strength of turbulence. There is also a Richardson
nuniber dependence at the buovancy scale.

We find that. in the stratosphere for VHF radar
studies, the ratio of the length to the depth ol a ‘typi-
cal” eddy should always be less than about 5, so that
the aspect sensttivity factor 6, should be greater than
5%in all cases of turbulent scatter. The only exceptions
might be in conditions of unusually strong wind
shears. Smaller values, like thosc reported by Hocking
et al. (1991), are indicative of a reflection mechanism
other than turbulenee, and scatterers which induce
such narrow backscatier angles can {ruly be called
‘specular’. For MF studies in the mesosphere, /./1.
should typically be around 1-4, consistent with obser-
valions above 80 km altitude, bul in extreme cases
could be as high as 6 or so. In such cases, ¢, could be
as low as 5. Lesser values of ), would have to be
caused by some specular reflection process. '

We eniphasize that the value of the current work is
in its ability to determine how small ¢, must be in
order for an observer to be certain that experimental
observations represent specular reflection; observed
values less (han this limit can be ascribed to specular
processes. In contrast, it should be noted that, if an
observed value lor 0, exceeds the lower limit calculated
using this theory, it does not mean that the back-
scattering medium must have been turbulent; we need
to use other sorts of evidence to resolve the cause of
the backscatter in this case. This point has been stron-
gly noted in the text. Thus the most important resuits
from this work rest with equations (6) and (12), which
may be utilized to allow estimates of the degree
of turbulence anisotropy once |di/dz| and c are known,
and these estimates can then be used as a benchmark
1o determine whether specular reflection is the domi-
nant cause of radar scatter in cases of smali 0.
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A dual—wavelength radar technique for measuring
the turbulent energy dissipation rate €

T. E. VanZandt, Ww. L. Clark, K. S. Gage,
C. R. Williams®, and W. L. Ecidund’
NOAA Aeronomy Laboratory, Boulder, Colorado

Abstract. We used the ratio of simultaneous observa-
tions of radar reflectivity DY S- and UHF-band radars
together with Hill's model of refractivity fluctuations
due to turbulence to infer €, the rate of viscous dissi-
pation of turbulent Kkinetic energy per unit mass. Ob-
servations wWere made for 25 days from November 13 to
December 7, 1995, at 11.4°S, 130.4°E (about 100 km
northwest of Darwin, Australia) during the Maritime
Continent Thunderstorm Experiment (MCTEX). The
500 m pulse length date covered the height range 872
MSL. The observed distribution of € has 2
strong diurnal yariation, with mean daytime and night-
time values of € of the order of 10~ and 107° m?s~3,
respectively- With the dual-wavelength technique most
non-turbulent echoes (including p:_a.rti_culate echoes) are
identified and fltered out, since the ensemble of turbu-
lent observations s identified by its conformity to Hill’s
model. The technique 18 self-calibrating, requiring only
the relative calibration of the two radars using observa-
tions during rain, and does not require precise absolute

calibration of either radar.

Introduction

The rate of dissipation of turbulence kinetic-energy
density € [m?s~] is 8 basic parameter of turbulence,
since it determines the amplitude of the turbulent en-
ergy spectrum in the inertial range and the large-wave-
number cutoff of that range. geveral techniques have
been Jeveloped to measure ¢, but the in situ techniques
— aircraft and palloon — are limited in their temporal
and spatial extent, lidar techniques are still under de-
velopment and in any casé will not be able to observe
through clouds, and the conventional radar techniques
require significant corrections due to instrumental and
atmospheric effects |Gossard: et al., 1998]. ‘

The present observations were made from November
13 to December 7, 1095, during the Maritime Continent

I
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Thunderstorm Experiment (MCT EX) with colocated 5-
and UHF-band wind profiling radarsat 11 A4°5, 130.4°E,
7 m MSL, in the Tiwi Islands about 100 km northwest
of Darwin, Australia (Bcklund el al,, 1009; Guge el al.,
1999]. The parameters of the S- and UHF-band radars
were: frequency, 9835 and 920 MHz; wavelength, 0.1058
and 0.328 m; and beamwidth (FWHP), 3.9° and 9°, re-
spectively: For both radare the beams Were directed to-
ward the zenith, the range gates were 500 m, matched
in altitude to within a few meters, and the dwell time
was 35 s. Only observations matched in time to within
135 s were used. The typical interval between obser-
vation pairs was 2 little over six times the dwell time.
Observations Were analyzed over the altitude range 872

to 3032 m MSL.

Theory of the Dual-Wavelength
Technique

The radar reflectivity 71 [m?/m®] for 2 given radar
wavelength A [m] can be written [Gossard et al., 1998},

Tlurb,A + Tpart,d (1)
0383~ /3C Haa(6) ¥ 0.85 x 10~ 16274 Z,

™ =

where Turb,A and fjpart,x BI€ the contributions due to
scattering from turbulent jrregularities of the radio re-
fractive index # and to scattering from particulates, ¢
spectively. c? [m"”" 3], the turbulence structure con-
stant of n, and Ze [mm“m':‘], the rain-equivalent re-
flectivity factor, ar€ independent of A and depend only
on the properties of the turbulence field and of the en-
semble of particulate scatterers, respectively.

The A—* dependence in 7part,s holds for patticulate
scatter in the Rayleigh range; that is, from particulates
with an effective diameter < A/10 {Battan, 1973). For
the S- and UHF-band wavelengths used in this study,
all particulates except 1aTge hail, birds, airplanes, etc.
lie in the Rayleigh range.

The \~*/? dependence in Tturb holds for Bragg scat-
ter from turbulent fluctuations of the radio refractive
index n in the inertial-convective range. The factor
H,»(€) takes into account departures from the A%/
behavior when viscosity and diffusion aré important.
Hereafter Hn,(€) will be spproximated by the [Hill
1978} model factor for turbulent fluctuations of temper-
ature Hra(€) (henceforth gimplified to Ha(e)), which



£33%

is an excellent approximation to H, x(£) as long as the
temperature-humidity cospectrum js positive. The ar-
gument of Hy(¢) is usually expressed as K7, where k =
(dm/A) is the Bragg wavenumber for radar backscat-
ter, 1o = (v*/€)1/4 is the Kolmogorov microscale, and
v is the kinematic viscosity, a known function of at-
mospheric temperature and density. Thus, at a given
altitude &g is a function of ¢ parametric in ).

Curves of log[Hx(¢)] (where log = log,,) for an alti-
tude of 1592 m MSL and the present radars are plot-
ted (thin curves) in Figure 1(a) versus log(e] for & from
107° to 1072 [m?s~3]. When ¢ is sufficiently large, a
radar signal is scattered from turbulent irregularities in
the inertial-convective range and Hy(e) = 1. As e de-
creases, H) () increases to a small peak (= 1.5) in the
viscous-convective range and then decreases rapidly to
very small values in the viscous-diffusive range.

The value of £ can be-inferred only when Teurs,a 18 -

dominant in both ng and nir, 50 that it is convenient to
transform n, to
— Ly
= G @
= Ca[Ha(e) + BA~W3Z, /07,

where B = 7.50 x 10~'%, and to form the ratio

Cs _ Hs(e)+ BA;'Y*z, /2
Co  Hy(e)+ BA;"3g, jC2

(3)

Then, when 7,4 predominates in both Cg and Cy,
Cs/Cy = [HS(E)/Hu(E‘)}, (4)

which connects the observations with turbulence theory.
The heavy curve in Figure 1(a) is the ratio Hg(e)/Hy(e)

(a) |
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plotted as a function of £. Since Hy = 1 over the range

of interest, then Cy = C? according to Equation 2.
Conversely, when Mpart, Predominates in both Cs

and Cyp, then :

log[C's/Cys) = log[(As /Ay)~11/3 = 62 =1.79. (5)

Results

As an example of the application of this technique, we
show the analysis and results of the MCTEX observa-
tions at 1592 m MSL, although the data from all heights
have been analyzed. First, the color 2D-histogram in

Figure 1(b) shows the percentage of the 13,478 obser-
vations of log|Cs/Cy] oceurring within each pixel of i
log[Cs /Cy] versus log[Cy] at this altitude. The sensi. ?
tivity limit of the UHF-band radar bounds the left side ?
of the plot. Only those occurrences for which the S- F
and UHF-band vertical velocities differed by <1 msg—!? by
have been accepted. This almost entirely eliminates ;
spurious side-lobe echoes from strong non-atmospheric £
targets such as birds, bats, or airplanes.

The power of these dual-ivavelength systems to delin-
eate the nature of atmospheric scatterers [Gage et al, : §

1999] is apparent in Figure 1{b). The upper occurrence-
density, ridge is produced by Rayleigh, or particulate,
scatter (the downward curvature on the right is due
to saturation of the S-band receiver). The relative cali-
bration of the radars is established by slightly adjusting -
the log[C,/Cy] ratios so that this ridge is centered on
the theoretical value of log[Cs/Cy) = 1.79 for Rayleigh
scatter (see Equation 5), represented by the upper dash-
dot line. The abscissa has been truncated to emphasize
the turbulent scatter region, but Rayleigh scatter was
actually observed out to log{Cy] s —8.7, corresponding
to 2. = 45 dB.

-5 T
-6 -5

14 .3 .2
log( &) [m2 5-3]

Figure 1. (a) The thin curves labeled Hy and Hg represent the log of Hill's C{IQTB] model factors

to correct the inertial-convective range spectrum for the effects of viscosity and
which models Cs/Cy versus
scatter. (b} A 2D histogram of the percentage occurrence in each 0.1 by 0.1 pixel of logJCs /Cu) versus
log[Cys] of the 13,478 total observations taken during MCTEX at 1592 m MSL. The mi

of log{Hs/Hy). The upper dashed

curve labeled Hg/Hy depicts the log of this ratio,

indicates the peak model value
for pure Rayleigh scatter.

18 - -12
log(Cy ~ Hy Cyd)
iffusion. The heavy

€ for pure turbulent

dle dashed line
line indicates the theoretical value
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The similarity between the shape of the lower ridge in
Figure 1(b) and the model curve of log[Hs(e)/Hu(€)] in
Figure 1(a) strongly indicates this ridge is due to tur-
bulent scatter. Indeed, since the abscissas in Figures
1(a) and (b) have been scaled so that three decades of
log[e] have the same length as two decades of log[Cy| =
log[C2], much of the ridge is consistent with € o< (C2)*/2,
as suggested by heuristic theory [Gage et al., 1980;
Hocking end Mu, 1997]. The occurrences between the
upper and lower ridges are due to-mixed particulate and
turbulent scatter.

The relation between log[Cs /Cy).and € is only weakly
dependent on local environmental conditions [Hill,
1978]. Thus, a particular value of log|Cs/Cu] in the
turbulent ridge can be identified with the same value
of log{Hs(€)/Hu (€)]; which then determines the corre-
sponding value of £. Figure 2 shows the distribution of
occurrences of logle] versus local solar time (LT = UCT
+ 0841 h). During MCTEX, sunrise and sunsel were

at 0530 h and 1810 h LT, respectively, plus or minus & .

few minutes. Between 08 and 09 h (about 3 h after sun-
rise) the mean £ increases abruptly from its nighttime
value of about 1052 to a mean of about 10738 [m?s™9]
through midday and then decreases back to the night-
time value by 23 h. The peak value generally occurs
near midday between 1500-1600 m MSL. The shape of
the diurnal variation in Figure 2 is consistent with the
strongly convective daytime atmosphere at this loca-
tion |Ecklund et al., 1999; Gage et al, 1999]. As the
altitude increases from 872 to 3032 m, the diurnal vari-
ation changes in three ways: a) the morning increase
starts later; b) the afternoon decrease starts earlier; c)

the nighttime values increase slightly, probably due to .

the decrease of radar sensitivity.

06 12 18
Hour [Local Solar Time]

Figure 2. A set of vertical histograms showing
the number of occurrences of particular values of
logle] at 1592 m MSL. A histogram is plotted for
every hour of local solar time (LT), normalized
by the peak number of occurences for that hour.
The 8694 values of £ are from the lower ridge of
log[Cs/Cu) values in Figure 1(b).
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The measured daytime values of ¢ are fairly consis-
tent with those in other studies (e. g., see the review by
{Hocking and My, 1997]). Of course, as € approaches
10~3, the curve of Hs /Hy becomes flat so that the
inferred values of & become sensitive to small errors
in either Cs/Cy or the model. Indeed, not using oc-
currences of log[Cs/Cul > 0.18 (the maximum value
of log{Hs/Hu)), which are probably valid observations
but with small positive errors), reduces the histogram
of £ there. However, the absence of occurrences with
Jog[Cy] > ~11.5 in Figure 1(b) is consistent with a lack
of values of € larger than about 1025, ‘

If larger values of € were anticipated at other lo-
cations, the range of € could be extended by using a
shorter wavelength radar {e. €., 3 cm), though the in-
creased sensitivity to Rayleigh scatter from insect and
cloud particles might result in an increased fraction of
particulate echoes.

The nighttime values of order 10~% presented here
are uncertain because the otservations of Cs and Cuy
were near instrumental limits. Although not incon-
sistent with the typical values found in other studies
of background turbulence (see Table 4, [Gultepe and
Starr, 1095]), values approaching 107 have also been
observed. Of course, the dual-wavelength observations
could be extended to smaller & by using more sensitive
or longer wavelength radars.

Although not a factor in this study, Hs/Hu is sensi-
tive to the specific humidity ¢ when the T'q cospectrum
is strongly negative [Hill, 1978]. Then the peak value of
Hs/Hy is increased slightly and the curve is shifted to-
ward smaller . However, even in the “extreme” case in
Figure 3 of [Hill, 1978], the present estimates of logle]
would be only about 0.3-0.4 too small, except near the
peak of Hg/Hy. Inspection of simultaneous balloon
profiles of T' and ¢ from 26 km southwest of the radars
shows that large negative T'q cospectra are rare during
this campaign.

A further complication to these studies can arise if
there is a negative correlation between £ and C? within
the pulse volume, such as is thought to exist in shear-
generated turbulence [Gibson-Wilde et al., 1999}, which
would lead to systematically small values of . The
present daytime observations were taken during con-
vection when such a negative correlation would not ob-
tain, but such an efiect on the nighttime values cannot
be ruled out.

Examination of Figure 1(b) shows that, for any given
value of observed log[Cu), & spread of log[Cs/Cu}, or
values of £, is observed. This may be attributed in large
part to the dependence on ¢ and dg/dz of the relation
between ¢ and C2 (e. g., Hocking [1997]). This inter-
pretation is supported by the fact that the spread is
much smaller in similar dual-wavelength observations
(not shown) taken at the Flatland Atmospheric Obser-
vatory in Illinois in winter where ¢ and dg/dz are small.

The theory assumes, of course, that the mean value
of € is the same in the observation volumes of the S- and
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UHF-band radars. But because the beamwidths of the
radars were different (3.2°and 9°, respectively), spatial
variations across the beams will lead to fluctuations of
log{Cs /Cy], that spread the turbulent ridge but do not
bias the mean values of Cs/Cy and e. Because the
9°beam is only about 250 m in diameter at 1592 m, the
spatial variations here should be small.

This technique could be used to measure ¢ in other
environmental regions, such as the stratosphere or the
ocean (using sonars), as long as kg = (4m3/4) /(Ael/4),
the argument of Hill’s factor, for the shorter-wavelength
sounder lies between about 0.3 and 1.0. Further work
is needed to extend the technique to both higher and
lower values of ¢, to measure ¢ under other meteorologi-
cal conditions, and to make simultaneous measurements

with other techniques.
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6.6.3.5 Determinations of K

Measurements of K (either Km or Ky ate also important in atmospheric studies. However,
techniques vary widely, and are not always consistent. We have seen relations like ' = cij(w}s),
and such relations may well apply within a particular layer of turbulence. On the other hand, when
we cxamine diffusion over spatial scales of tens of kilometres vertically, it is not clear what the
appropriate diffusion coefficient might be, particularly in view of the fact that layers of turbulence
can often be separated by regions of laminar flow. How does one deter‘%ne an effective diffusion
coefficient in this case? Dewan (1981; Sesen<s and Rastogi and Woodmanalfave pointed to a process
involving stochastic and intermittent creation and destruction of turbulent layers, so that the rates
of diffusion depend not only on the strengths of turbulence but also on the rates of creation, and the
lifetimes, of these turbulent layers.

ﬁﬂ 27 Hiustration of the process of atmospheric vemical diffusion proposcd by Dewan (1931) and

WoooMaN and RASTOGI (1984). (a) A layer of wrbulence forms ot time ¢ and constiisents diffuse
against their background gradient. The small graph on the dcfi-hand side shows a3 representative
prafile of the mean density of a ¢ i and in this case diffusivn will be upwards across the
layer. tb) Constituems could only diffuse across the layer in {ul and noe further. hecause the layer has
a limited depth. The faver in time diex out, and this decayed layer is shown as the hroken line.
fiventuslly. st some fater time 43, a new layer (orms above the present onc, and is then able 1o allow
further diffusion of the constitvents upward. The overall rate of large scale diffusion thercione depends
a1 lesst as much on she frequency of formation of these layers as it does on the actusl turbulenl
intensity within the layers.

Additionally. Walterscheid and Hocking (1991) have demonstrated the possible importance of
u«Syokes diffusion” as a possible mechanism for diffusion of constituents in the atmosphere. All these
processes need to be recognized. and it may be that the most appropriate diffusion process may be
a function of scale.

Therefore. in the following section I am going to list several different procedures whi " have been
used in the past to measure Jiffusion coefficients. Some can be performed with radar, sume cannot.
I will not be ~judging” the optimum technique: I will simply be noting t_I*iem.

Clearly the first technique, then, is to use measurements of ¢ and the Brunt-Vaisala [requency to
determine A" through the relation T

K = cg/(wh) (127)

An example of an cxtensive set of measurements by this method is that presented by Fukao et
al.. (1994).
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One of the main applications of diffusion coefficients is for numerical modeling of large scale
atmospheric motions. Thus another common means by which diffusion coefficients are inferred is to

use numerical models “in reverse”, leaving the diffusion coefficients as free parameters and “tuning”
the K values so the results of the model agree best with experimental observations.

Whilst a few attempts have been made to determine K from direct experimental observations.
they have not been Irequent. Justus, (1967a) tried to obtain A and A separately from detailed
measurements of wind velocity, and from observing the oscillation amplitude of eddies. Another
attempt to determine K directly was tried by Zimmerman and Keneshea, (1981} who used rocket
measurements of temperature to solve the equation

K= -w0'/(d0/dz) (128}

© being potential temperature and w’' the vertical fluctuating velocity. Additionally, Vincent
and Stubbs, (1977) have looked at gravity wave decay with height, although this method has large
inaccuracies due to uncertainties in determining “typical® vertical wavelengths for gravity waves.
Teiteibaum and Blamont. (1977) also made rocket estimates of K. and Gibbins, et Fl., ( 1982) used
studies of the transport of water vapour to give estimates ol K.

More recently, Weinstock, (1982) has proposed a formula which relates the vertical diffusion
coefficient to the mean square fluctuating velocities of gravity waves. This formula has arisen from
his work on non-linearity in saturating gravity waves, and takes the form

-5 Wi(m)
o= 3 =

m

where wZ(m) is the mean square fluctuating vertical velocity of gravity waves with vertical
wavenumber m, H is.the scale height, and wp is the Brunt-Vaisala frequency. The parameter &
is a “typical” horizontal wavenumber for waves of vertical wavenumber m. Preliminary estimates of
K using variations of this formula have been made by Vincent, (1984)and Meek et al., (1985}). It
should be noted that the formula does require the existence of a saturated gravity wave spectrum.
Measurements of A" by this type of procedure almost certainly refer to large scale diffusion processes.
The gravity wave approach for estimation of K has been compared to the eddy diffusion approach

in a review by Ebel, (1984).

As already noted, direct measurements do not represent the major means by which K has been
determined. More commonly, estimates of K have been made by comparing modeling studies with
observed temperature, wind and constituent distributions, and “tuning” the value of K to give best
agreement. For example. one of the carliest examples of this type of approach was that due to Johnson
and Wilkins. (1965). These authors noted that the temperature gradient at 85-110 km-is not as steep
as it should be if only molecular diffusion acted, and so Johnson and Wilkins. ( 1965) concluded
that turbulence must be acting to transfer the heat down from the regions where photodissociation
(and thercfore heating) takes place to the lower regions where CO; radiation can occur. Working
{rom this premise they were then able to obtain approximate estimates of the expected eddy diffusion
coefficient. In a somewhat similar vein, Colegrove et al., {1965} noted thal observed ratios of the
concentration of Oy to that of O at 120 km were higher than might be expected. They postulated
that eddy diffusion could mix the O down from 120 km to 90 km, where the mean free path is less,
and so allow greater O concentrations in the 90-120 km region. These authors also made estimates
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of K. These last two techniques form the basis of many subsequent estimates of K. Successive authors
have included temporal variations ( Shimazaki, 1971; Keneshea and Zimmerman, 1970), and have
looked at latitudinal and seasonal variations { Hesstvedt, 1968; Johnson and Gottlieb, 1970; Blum
and Schuchardt, 1978). It was also pointed out (Keneshea and Zimmerman, 1970} that some of
the earlier papers had assumed that turbulence existed above the turbopause and therefore were in
error. Strobel et al., (1987, 1989) and Garcia and Solomon, (1985) have used even more sophisticated
models to estimate Km and K7. These latter models treated Kt and K as separate parameters,
and inferred that K is somewhat larger than K by a factor of about 3 times ( Strobel, 1989).

An interesting question arises from this work on energy and oxygen balance. Turbulence produces
both heating and diffusion, and it is not at all obvious which process dominates. The rate of diffusion
of heat depends on both the turbulent diffusion coefficient K and the vertical temperature gradient,
the latter being caused initially by solar heating. Both Johnson and Gottlieb, (1970) and Johnson,
(1975) pointed out that the rates of diffusion and heating are very similar. The question arises as to
which is most effective - is diffusion more effective, so that turbulence actually diffuses heat across
the heat gradients formed by solar effects faster than it causes heating itself (and thus cooling the
mesosphere), or is it more efficient at depositing heat, thus heating the mesosphere? It turns out
that the answer to this question lies in the value of the constant ¢; in equation (124}, but no definitive
reference exists which can unambiguously say which process dominates.

The reason for the dependence on ¢z can be seen by examining the Richardson number R;. Tfﬁs

is given by

_ wh  __wh
Ri= giazy = kY (130)

since £ = Km{d¥, /dz)? ( Justus, 1967a). Here dii/dz is the vertical shear in the mean wind. Thus
K., = cze/wh, where ¢z = R; is the mean Richardson number of all turbulent patches. Hunten,
(1974) showed that the rate of transfer of heat through the mesosphere was F = nHpwi K, (where
n = 7/5 H = scale height, p = density), whilst the rate of loss of heot cuer-one scale height was

P = (R:)"'Hpw} K. Thus P/F = (Rin)™'.

Clearly heating dominates if B; < 0.28, and diffusion if R: > 0.28. Hunten. (1974) claimed that
for turbulence to occur, R; must be less than 0.25 so heating should dominate, whilst Johnson, (1975)
claimed that whilst R; must be less than 0.25 to initiate turbulence, turbulence may then persist
for values of R; as high as 1.0. Thus Johnson, (1975) claimed that R; is nearer 1.0. The estimates
suggested earlier (eqnation (24} would imply that diffusion dominates.. Recently Chandra, (1980)
has presented a more rigorous treatment of stimation of eddy diffusivities to.bring into account 3.
and assumed ¢z = 0.6, and Gordiets et al., (1982) have concluded.that the answer to the question
of whether turbulence heats or cools it immediate environment depends on the height gradient of K.
They claimed that turbulence heats below about 105 km altitude and cools above. '

One problem with these theoretical estimates of K is that they do not consider the effects of
vertical winds. For example, atomic oxygen from 120 km could be brought down to 90 km by vertical
winds at one location, and lifted back up by vertical winds at another. The possibility of such “cells”
of circulation has not be inciuded in any of these analyses. Thus, in principle, all prior estimates are
upper limits of K.
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The study of turbulent heating and diffusion in the middle atmosphere is complicated by some subtle points
relating to the application of existing theory. Incorrect interpretation of turbulent specira can result, leading to errors
in estimates of the strengths of turbulence by factors of 5 and more. In this short review, the relevant turbulent spectra
and equations are considered, and their applications in middle atmosphere studies are outlined. New developments
with regard to some of this theory, and especially new understandings about the dynamical parameters used in some
of these applications (often referred to as the “constants” of the equations) are described. Current areas of uncertainty
are also considered, both in relation to turbulent energy dissipation as well as diffusten over various scales.

1. Introduction :

In studies of turbulence, the optimum spectra to use for
calculations of kinetic energy dissipation rates are often the
velocity spectra. These are dealt with in some detail in the
literature (e.g. Batchelor, 1953; Tatarskii, 1961, 1971). For
freely decaying turbulence we can consider £, the kinetic
energy dissipation rate, as

P I [ —
= — =y 2 2 -
e=—s[u+v?2+w?], )

where [« + v2 + w”] is the total mean square velocity fluc-

tuation, and { [4? + v + w'Z] is therefore the mean kinetic
energy per unit mass at any instant in time (Batchelor, 1953,
page 86). The overbar refers to a spatial average. (An even
more fundamental discussion about the energy dissipation
rate can be found in Batchelor, 1967, Subsection 3.4, but
that is beyond our requirements for this paper.)

If an experimentalist can obtain velocity fluctuations at
scales within the inertial range of turbulence, or even into the
viscous range, then calculation of kinetic energy dissipation
rates is very straight forward, For example, if an observer is
dealing with isotropic, homogeneous turbulence, and if that
observer can make measurements at scales within the inertial
range and deep into the viscous range, then the kinetic energy
dissipation rate £ can be found directly by integrating across
the spectrum as '

e=2 fo " W E) ik Q)

where v is the kinematic molecular viscosity coefficient, k
is the wave number, and E(k) is the spectral density of ve-
locity fluctuations (sum of all three components) over a shell

Copy right® The Soclety of Geomagnetism and Earth, Planctory and Space Sclences
{SGEPSS); The Seismological Socicty of Japan; The Volcanological Society of Japan;
Tiwe Geodetic Society of Japan; The Japanese Society for Planetary Sciences.
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in wave-number space of radius k (e.g. see Batchelor, 1953;
Hocking and Hamza, 1997, and references thergin). How-
ever, in atmospheric sciences, determination of E(k) down to
scales this small is rarely possible. In the middle atmosphere,
it simply cannot be achieved with current technology.

If it is possible to determine velocity fluctuations down to
scales at least into the inertial range, determination of ¢ is still
modestly easy, although one often needs to make assump-
tions about the form of turbulence (isotropic, Kolmogoroff
theory etc.). Examples of such applications exist in the lit-
erature: for example, Barat (1982) has shown how this may
be done using structure functions.

However, Barat’s measurements required a high altitude
balloon, and special instrumentation. Measurements inlo
the upper middle atmosphere by this method are limited by a
ceiling on the balloon altitude. In-situ measurements above
say 40 km altitude are limited to rockets, and because these
must travel at high speed, they cannot sample the velocities
with sufficient resolution to apply such methods.

Measurements of middle atmosphere turbulence are there-
fore largely limited to radar techniques, and occasional rocket
and balloon studies. Within these categories, only special
balloon-borne instrumentation is capable of direct velocity
measurements at sufficient spatial and temporal resolution
to enable direct calculation of £, and even then high altitude
balloons are only flown rarely. All other methods involve
measurements of velocity fluctuations which effectively in-
tegrate over moderately large intervals of scale, or involve
measurements of parameters other than the velocity fluctu-
ations. In the former case, the integration limits and instru-
menltal weighting are often hard to determine, and in the lalter
case il is often necessary to make various assumptions, and
determine other parameters such as background gradients,
before turbulence strengths can be calculated.

This review focuses on a crilical examination of the as-
sumptions made in developing the formulae which are used
in determination of middle atmosphere turbulence strengths,
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and highlights recent developments in this area.

2. Currently Used Formulae
The following equations present various formulae which
are currently used for determinations of middle atmosphere

turbulence strengths.

£ = co0?)?/Lg, ' (3)

Lo = e, @
x}

£E=20 (qz)wa. - (5)

Variations of these formulae have been presented by, for
example, Weinstock, (1978a,b, 1981), and Hocking (1983,
1986). The term wp is the Viisili-Brunt frequency, ¢ is
the kinetic energy dissipation rate, o refers to a typical root-
mean-square velocity (to be specified in more detail later),
and Lp is a scale related to the larger eddies.

These equations appear deceptively simple, but they are
in fact complicated by several factors. Principal amongst
these is the fact that the term o? is sometimes ill-defined.
The constants co and ¢ are critically dependent on how a2
is determined. Formulae of this type are often used in both
in-situ and radar studies, but the nature of the determination
of a? must be very carefully considered. For example, in
radar studies it is usually an integral over the radar volume,
and over the duration of the radar record used for the cal-
culation. The details of this integration process need to be
carefully considered. As we will see, there are also addi-
tional complications, and even the choice of the scale Lg is
complicated.

In fact there are some references which use yet another
variant on Eq. (3). This equation takes the form

& =cs(0)¥?/L, . (6)

where L, is a scale associated with the radar beam and pulse-
length, and not the scale Lp defined above (e.g. Labitt, 1979;
Bohne, 1982; Doviak and Zrnic, 1984). We therefore need
to ask: which of these two options (i.e. Eqs. (3) or (6)) is
preferable?

Thus we recognize thal these equations, desplte a decep-
tively simple appearance, are not well understood, and we
pose the questions: What do we mean by o2? Which scale
“1” should we use? Answering these questions will be one
of our responsibilities in this paper.

There are also other equations which appear in the litera-
ture which need to be more properly understood. Some such
equations are the expressions

K] 174
n=(%) , | )

& =can ' &
and
LB = CsLn. . (9)

Again, these are very simple equations, but with hidden
complications. We will define the various terms and consider

these cxpressions shortly,

X O/

Another expression used in the literature (o determine ¢,
which utilizes the mean square refractive index fluctuation
2 2
M")

quantity C2, is
(VC.. s

C2? is often called the “potential refractive index structure
constant”, although the use of the word “constant™ here can
be quite misleading, since the quantity is far from constant—
it in fact varies markedly as a function of the intensity of the
turbulence. Nevertheless, we must persist with this usage,
since it is very common. However, the reader should bear in
mind that C? is in fact a measure of the amount of refractive
index fluctuation in a given turbulent patch, and is not to
be considered in the same category as the other dynamical
parameters (also referred to as “constants™) which are the
topic of this paper. Again, the above expression locks simple
encugh, but application of this expression is complicated by
determination of the term “F" (which represents the fraction
of the radar volume which is turbulent), and by a proper
determination of the “cqpstant” y—which in fact turns out
to be Richardson-number dependent. We will not consider
the factor “F” any further here; our main interest is in the
parameter ¥. Discussions relating to “F” can be found in
Van Zandt et al. (1978, 1981) and Hocking and Mu (1997).

Finally, there is another expression which appears to be
exquisitly simple, yet hides a multitude of complexlty This
is the expression

L)

K=c— (an

@y
where K represents a diffusion coefficient. This relation
purports to relate the rates of atmospheric diffusion and the
value of the kinetic energy dissipalion rate. However, it raises
many issues. It may be derived from modestly simple argu-
ments; for example, Fukao et al. (1994), Appendix A, gives
one example. However, there are yet further questions about
this. Is the derivation too simplistic? Is it valid at all? If it
is valid, what should be the “constant™ ¢;? Different authors
have proposed different values for c;. If indeed it does ap-
ply, is it valid over all scales? If the scale-range is limited,
what limits exist? Mclntyre (1989) has even considered that
the value of ¢c; might depend in some way on the mode of
turbulence generation, and the degree of super-saturation of
the waves which generate the turbulence. How realistic is
this proposal? In that case, it would not even make sense to
assume that c; is a constant for an individual event, although
there might still be some long-term average value of c; which
can be applied to the middle atmosphere. We cannot address
all these issues, but will try and consider at least some of
them.

Thus, while we recognize that these formulae are used in
the literature for determination of ¢ and K, we also recognize
that each equation embodies a complication of one sort or
another. A major objective of this paper will be to highlight,
and where possible clarify, these complications.

We will begin our discussions by pointing the readerto Ap-
peadices A to D, which contain expressions for the currently
accepted structure functions and spectra which are generally
used in theoretical Kolmogoroff wurbulence studies. In gen-
eral the formulac are presented without proof: they are meant
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to simply be a summary of the main and simplest tools used in
turbulence studies. We begin with functions associated with
measurements of velocity, and later move to measurements
of tracers and scalars.

In our next sections, we then begin to address some of the

questions raised above.

3. Turbulence Scales and Inverse Scales

We first turn to a discussion of the Egs. (7) to (9), mainly
because the questions posed in relation to these expressions
are some of the simplest to answer.

The first equation, {7}, is a derivation produced from di-
mensional analysis. However, once derived it can be usefully
employed as a scaling length. Physically, it is a scale within
the viscous range of the tutbulence, and represents a typical
scale at which energy transfer by scale-cascade, and energy
dissipation to heal, are comparable. The scale £; is a scale
which represents the transition between the inertial and vis-
cous ranges of turbulence, and is defined in terms of the in-
tercept between extrapolations of the spectral forms in these
two ranges (e.g. see Tatarskii, 1971). It is always bigger than
n, and the constant c4 is in fact fairly well known. However,
it is important to recognize that even ¢4 depends on whether
one is using measurements of velocity fluctuations or some
sort of constituent or tracer. Typical values of ¢4 are 7.4 for
temperature fluctuations (e.g. Hill and Clifford, 1978), and
(15C)*4 (where C = 2.0), or 12.8, for velocity fluctuations
(e.g. Tatarskii, 1961).

Thus these scales are at least fairly well understood, al-
though on occasions some authors have assigned them to
have units of metres per radian, which is wrong. They are
simply units of length.

Equation (9) does introduce some extra complications,
however, which sometimes lead to confusion. The scale Ly
is a vertical scale at which the RMS fluctuations due to the
turbulence are equal to the change in the mean value of the
same quantity over the same vertical scale. This is quite dif-
ferent to Lp, which is a scale at the “large-scale end” of the
inertial range of the spectrum. The latier quantity is usually
much larger than the first—often by more than an order of
magnitude {e.g. see Hocking, 1985, who gives a ratio in the
order of 30).

‘To complicate things further, an alternative scale to Lg is
often used, which equals £'/*w; ** and is called the Ozmidov
scale. This differs from Ly only by a multiplicative constant
of 2r/c3, so conceptually is very similar to Lg. We will
generally use Lg, since this has become more common in
middle atmosphere work, and Barat (1982) has shown that
it does indeed seem to relate fairly nicely to the low wave-
number end of the inertial range.

Another common problem which occurs in discussions
aboul the scales of turbulence is the use of inverse scaling
factors. Whilst a scale is assigned a “wavelength” A, and its
comresponding wavenumber is & = 27/, it is not uncom-
mon o use special inverse scales which relate to particular
spatial lengths by a simple reciprocal relation. For example,
sometimes a scale ki = 1/Lg is used for scaling purposes.
This seems at odds with the wavenumber kg = 25 /Ly, butin
fact there is no conflict; we will therefore dispense with this
issue here. Lg is a “lypical” scale, bul does not particularly

represent the distance between the maxima of any special si-
nuscidal fluctuation. Therefore there is no obligation to use
2m as the scaling constant, 50 kg = 1/Lp is just as useful for
scaling purposes as 2m /Lg. Problems arise, however, when
kg is referred to as a “wavenumber™; it is in fact not onc,
and should be considered (when used) as nothing more than
an inverse scaling factor. Confusion arises because scaling
parameters like his are sometimes referred to as “wavenum-
bers”, and because they are often denoted by symbols which
are traditionally used for harmonic quantities. If, on the other
hand, one is talking of true wavenumbers, and their relation
to “wavelengths”, then one must use k = 2n /X,

4. Relation between ¢ and o2

In this section, we wish to address the issue of the cor-
rect relation between o2 and &, as described in Egs. (3) and
(6). The equations look similar, but in fact are very different
conceptually, and we need to understand why.

In studies of turbulence with a radar, one usually mea-
sures a complex-amplitude time-series which is a result of
radio-wave scatter from a region of space called the “radar
volume”. This volume s defined by the radar beam and
radar pulse-length. Within this volume, scatterers are mov-
ing with a variety of velocities, and the observed signal is due
to a combination of Doppler shifted echoes produced when
the radiowaves scatter from these entities. The received sig-
nal can be Fourier transformed to produce a spectrum, which
has a half-power half-width of f|/, and an associated vari-
ance f2. If we multiply 2 by (A/2)%, where A is the radar
wavelength, then we produce a variance in terms of velocity
units, which we denote as 2. This variance is an integrated
effect of all the velocity fluctuations within the radar volume,
as shown diagrammatically by Hocking (1983).

Detailed derivations of the relation between the turbulence
velocity spectrum (which describes the fluctuations inside
the radar volume) and the value of o2 have been presented
by (amongst others) Hocking (1983), Labitt (1979}, Bohne
(1982) and Hocking (1996a). In the following subsections,
we will briefly re-visit some of these derivations.

To begin, we will follow the derivation presented by
Hocking (1983), which produces Eq. (3).

4.1 Buoyancy scale dependence between 02 and ¢

Assuming a Kolmogoroff form for the turbulence spec-
trum, Hocking (1983, 1986) has shown that

k=dn /)
ot f ek~ dk, 12)
2n/Lyp

where o is the root mean square velocity deduced from the
spectral width of the signal. At this stage we will not concern
ourselves with the constants of proportionality; our main
interest here is in the genera! form of the equation. We will
shortly produce a more sophisticated form of this equation in
which the relevant constants of proportionality will become
clearer. ‘This equalion expresses the fact thal the velocily
variance measured by the radar is the integrated effect of
differeat scales within the radar volume.
Upon integration we obtain the following expression:

A7
o? oc £ [Lf,” - [5] ] : (13)
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Assuming that Lg > 1 /2 we have the following relation-

ship:
ol
&€ =.C -I:;- -

The value of c; differs somewhat for different assumptions
about the constants involved in the Kolmogoroff spectrum,
but Hocking (1983) has given a value of ¢; of 3.5. This
value assumes that the fluctiations producing the radar signal
are produced in roughly equal proportion by scales in the
buoyancy range and the inertial range. We shall re-address
this assumption shortly.

If, in addition, we use the relation between the buoyancy
scale Lg and the Viisild-Brunt frequency which was speci-
fied earlier as

(14)

2
Lg = ——g!/2,73?
B= 062" “® (13)
{Weinstock, 1978b), we may then write
£ = C‘DO’z&JB (16)

where ¢y is a constant (~0.45).

In contrast to this expression, (which is commonly used
in mesospheric and stratospheric radar studies), equations
relating radar spectral widths and turbulent energy dissipa-
tion rates which have been presented in the meteorological
literature have tended to ignore the possibility that the buoy-
ancy scale may play a role in the relation between £ and o 2.
Rather, they have assumed that either the length of the radar
pulse, or the radar beam-width, (whichever is larger) is the
most important parameter in determining this e—o ? relation.
We will now look at this particular derivation in more detail.
4.2 Radar volume dependence between o2 and &

The following derivation briefly summarizes that pre-
sented by Labitt (1979), and also presented by Hocking
(1996a). We do not intend to repeat their derivations in detail
here, and so we start with the relation .

o?= f f j Dor (k)1 — e P HRa kI g

(17)
which is derived in those references. @;; is described in Eq.
(B.4), and in this case we take { = j i.c. both velocity com-
ponents aligned in the direction parallel to the direction of
traverse (in this case the direction of traverse of the radar
beam) through the patch of turbulence (see Appendices A to
D). The term in square brackets is simply | minus the Fourier
transform of the radar volume, and therefore takes into ac-
count the radar weighting. Equation (17) is in fact similar
in some aspects to Eq. (12), but there are also some impor-
tant differences between the two. The former one essentially
assumes that all radial motions are paraliel to the bore-sight
direction of the radar, while this newer one recognizes that
there may be contributions from off-bore-sight components
if the beam is broad. Equation (12) also contains no specific
radar weighting, but does contain a lower limit on k which is
defined by the largest turbulence scales. Equation (17) con-
tains no such turbuience-defined limit, and this will shortly
prove to be an important point.

It is also important o point out that ncither of these for-
mulac recognize the fact that the velocity spectrum should
actually be anisotropic at scales comparable to and larger

than L. However, since for MST work the radars usually
point vertically, and it is primarily the vertical velocity spec-
trum which affects the spectral width, it is only necessary
that a reasonable estimate of the vertical velocity spectrum
is produced for our work here. In this case, we specify E(k),
and the vertical velocity spectrum is derived from that, but
we have allowed a reasonable range of possibilities for E(k),
and therefore a reasonablé range of vertical velocity spec-
tra. The key point is that E(k) is chosen so that the vertical
velocity spectra are realistic. Since horizontal fluctuations
are of secondary significance for a vertically pointed, narrow
beam, the issue of anisotropy is not so crucial here. Hocking
(1996a), and Hocking and Hamza (1997) has discussed the
issues of anisotropy in a little more detail.

If one then takes the classical inertial range spectrum (e.g.
see Tatarskii, 1971}, then the spectrum of vertical velocities
as a function of wave number & is

Ek k2
¢'uU——'(k—Z[l—k—zz],

where £ is the magnitude of k and so is a scalar satisfying
k2 =k2+k2+ k2 E(k) = ag? k=53 and @ is a numerical
constant wuh value 0.7655C, where C = 2.0 (sec Eq. (B.4)).

The following expression for the velocity variance mea-

a8

“sured by the radar may now be obtained:

1
o? = —ae?’T, (19)
2
where
T = f f sin® k53
x[1 ~ —k’[a sin? 9442 cos? Elldkde (20)
Thence
= _2_.{_5__0-3 2n
[xT)?/?
Finally, the following expressions for Y are valid: Firstly
ifa > b:
2\ n =115 B2
T—ZF(E)a FlSipai-5| @

whilst if & > a:

_or{2). 5 “_2]
Tuzr(a) F[ Zisil-z | @)

Where F is the confluent hypergeometric function. To a
good approximation we cah write

k]
ag
£ = 0-79 L_' Lo

T

249)

where L; is the largest of the pulse length and the beam width,
and c; is a correction factor very close to 1.

As noted, Eqs. (14) and (24) are conceptually very differ-
ent. Why should this be?

The answer to this question can be seen in the diagram-
matic sketch shown in Fig. 1. This diagram shows a sche-
matic representation of the spectrum, as well as the weight-
ing effect of the radar beam. It also emphasizes the fact that
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Radial Velocity Spectrum and
‘ Radar Weighting Function.
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Fig. 1. Graphs showing the radial velocity spectra and radar weighting functions for different assumed spectra and radar volumes.

the spectrum may have a “roll-over” at small wavenumbers,
where a *‘roll-over” refers to a moderately abrupt but smooth
change in slope. This may be evident as a “knee” in the
spectrum, or even a local peak. Whether such a “rollover”
exists depends on what one assumes about the nature of the
low wave number spectrum (often the gravity wave spec-
trum) at the scales close to the turbulence regime. It also
depends on which radial velocities are being measured—a
vertically pointed radar measures principaily the verticai luc-
luating motions, whilst a horizontally pointed radar measures
largely horizontal components of motion. In our discussion
we are primarily considering near-vertical beams, which arc
the main modes used for middle atmosphere studies.

This “roll-over” is what causes the Labitt formalism to
break down. Labitt assumed that the Kolmogoroff spectral
form (i.e. &« k~3/%) continued down to k = 0, and this is
why his integral involves L,. Such an assumption may be
vaiid if the radar is used to point its beam horizontally (as
is the case, for example, with the meteorological NEXRAD
radars). However, if this “roll-over point” in the spectrum
occurs at wave-numbers which are greater than the lowest
wave-numbers corresponding to the radar volume, then the
intcgral begins to involve Lg. For most middle atmosphere
radars, near-vertical beams are used, so this latter possibility
is likely.

Figure | shows how this comes about. The integrand in-
volves a product of the spectrum and the weighting function,
and it is seen that if the weighting function is that for a“small”
radar volume, and we follow it from large & back to small &,
then the weighting drops to zero before kg is encountered.
Thus the integral does not involve any portion of the spectrum
al k values below kg. However, in the case labelled “large

radar volume”, the radar weighting function does not start
to approach zero (reading from the right) until the spectrum
has entered the “buoyancy” regime. Thus the nature of the
spectrum in this low wave-number end begins to affect the
integral.

The situation is also indicated diagrammatically, but in a
different way, in Fig. 2. In the first case, we show a region of
turbuience with the radar volume being substantially smaller
than the largest scales of turbulence, In this case, we expect
the Labitt formula to apply. However, the other diagrams (b,
¢, and d) show cases where some part of the radar volume
cxceeds (or is at least comparable with) the largest scales of
the turbulence. In this case, we expect the formula with an
Ly dependence to apply.

Thus Labitt has ignored the small wavenumber depar-
ture from the inertial range law, However, we should also
point out that Eq. (12) is also only a crude approximaltion,
since it assumes that the spectrum drops abruptly to zero at
the wavenumber kg. Therefore both approaches have their
weaknesses—Eq. (12) is mathematically crude, while Eq.
(17) is mathematically rigorous but ignores the true small-
wavenumber spectral variation. It makes sense to combine
the formalisms, to try and take advantage of both of their
strengths.

In the following section, we will put the concepts dis-
cussed above into a mathematical setting, and demonstrate
that our expectations are valid. In fact, we will show that the
largest cross-volume length of the radar volume must be less
than one half of the buoyancy scale for the Labitt formula to
apply—in all other cases, the formula involving Ly is morc
appropriate. )
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Fig. 2. Different possible relations between the radar volume and a patch of turbulence, Only in the first case is the behaviour of the turbulence spectrum
at small & (i.e. below kg} unimportant in determing the relation between £ and o, In all other cases, the relation between £ and o has a kg dependence.

5. Combining the Buoyancy Part of the Spectrum
within the Labitt-Formalism

We will now re-address Eqs. {17) and (18), but this time

we will permit £(k) to have a “roll-over” point at low wave-

number. We will see that this substantially changes Eq. (24),

and in fact makes the result appear more like (14) in many

cases. :
To begin, we propose the following possible shape of the
spectrum at small &, (as discussed by Hocking, 1996a): '

k=573
[L+ xe(k/kp)") .

where kg = 27/ L and where the value of n determines the
form of the low wave-number part of the spectrum. The value
of x affects the relative positions of the low-wavenumber
“roll-over point” in the spectrum and the quantity kg.
Hocking (1996a), used the special cases n = —3 and ~4/3,
because they represent extreme examples of the possible
spectral forms, and thus set reasonable limits on our for-
mulae. They correspond to cases with E(k) oc k*4/? and
k=173 at small k respectively. Examples are shown diagram-
matically in Fig. 3 for the case of 3, = 1.0. Clearly the
“knee” (or “peak” for the case n == —3) is close to the value
of kg, 50 henceforth we will use x, = 1.0 as areasonable ap-
proximation, although we recognize that future more detailed
experimental studies might give slightly different values for
this parameler. At present, however, there are insufficient
experimental data to betler define x;.

As noted prior to Eq. (18), this equation implicitly assumes
an isotropic spectrum. However, this is not entirely unrca-
sonable for the cases we wish 1o consider. In addition, for a
vertically direcled beam il is principally the vertical velocitly

E(k) = ag¥? 2%)
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Fig. 3. Representative forms for the turbulence spectrum £(k), including
typical possible variations at small £. Specifically these graphs show Eq.
(25), forn = =3 and ~4/3, The n = —3 case corresponds to a power
law of the type *3 at small k, and is represented by the broken line; the
n = —4/3 casc comesponds to a power law of the type k~1/? at small
k, and is represented by the solid line. In both cases the buoyancy scale
is the same and equals 250 m; the corrésponding wavenumber lies very
close to the peak in the broken curve (from Hocking, 1996a).

fluctuations which are important, so as long as £(k) is cho-
sen 50 as to produce a reasonable vertical vefocity spectrum,
any lack of isotropy is not oo critical to cur arguments. It
should also be recognized that we only seek 1o place rea-
sonable limits on Lhe relation between spectral widths and
the energy dissipation rates, so great accuracy in specifying
E (k) is not required—indced, it is presently not available
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Fig. 4. These two graphs show corrections to the formula & =~ (0.450 2wy) in radar applications. Specifically, they show values (or cr in the expression
€ = (0.4502wg)c; 7, for cases of (a) n = —3 and (b) n = ~4/3. Cases where the “Labitt formalism™ should be used are also indicated. In case (b), the
scale on the right stde indicates the approximate heights at which the appropriate beam-widths shown on the left apply, assuming an angular beam-width

of typically 2 to 5 degrees.

as an experimentally measured quantity, which is another
reason why we have taken this more approximate course of
action. )
We now must determine
k-5

e
T= f f S /Ry
_ -»k’[a sin a+b’cos191]dkd9

(26)

Hocking (1996a) has numerically integraied this expres-
sion for a wide range of combinations of kg and pulse iength.
With respect 1o the case n = —3 (E o k*? at small k), he
found the following. Provided that the larger of the radar
pulse-length and beam-width exceeds one half of the buoy-

ancy scale, then to very good accuracy, T can be represented
closely by the following expression:

= (0.45Lg)¥*. @n
Hence, using Eq. (21) we oblain the relation
0.3
£=33— =0.470 wsg. (28)
Lp

This compares very favourably 1o the estimates made i m
the earlier literature, in which the equation £ = 0.45¢%w}
has been given e.g. see Eq. (16). Figure 4(a) shows a contour
graph in which a measure of the ratio of the true value of
€ relative to the above formula is shown for various beam

« .
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widths and various buoyancy scales Lg, The area in which
the Labitt formula is accurate is also highlighted; note that
throughout most of the region described by this graph the
dependence of £ on Ly is very important and the Labitt for-
malism is generally not valid. As experimental support for
this prediction, it is noteworthy that Bohne (1981: abstract),
who attempted (o use the Labitt formalism to produce radar
measurements of £, and then compared them with measure-
ments made in-situ, found that he could only make useful
estimates of & for those cases in which the radar pulse length
was less than one half of the buoyancy scale. The reason for
the inaccuracy of the radar measurement in these cases of
small Lg was almost certainly because Eq. (28) should have
been used, rather than the Labitt approach.

Let us now turn to the case of n = —4/3. In this case the
spectrum goes as k~!/3 as k tends to 0. Then in fact numerical
integration of Eq. (26) over a wide range of possible buoyancy
scales and possible pulse lengths and beam widths gives the
following expression: '

3 2/3
=332 _ 0470wy [l] (29)
L Lo

BCr
where cr is a correction factor. Even in this case, where the
buoyancy range runs somewhat smoothly into the inertial
range, but where the energy involved in the buoyancy range
is higher than that in the inertial range, it can be seen that
the dependence on Ly is still significant and thé expression
given by Labitt is generally not appropriate.

Figure 4(b) shows the value of the correction factor over a
wide range of beam widths and buoyancy scales. Note that
the region in which the Labitt formalism is approximately
correct is indicated and is clearly only a small portion of the
region. For MST radars the Labitt equation is almost never
valid and the previous expression (29) is correct. Further-

more, the correction factor is a fairly slowly varying term

which varies from as small as 0.9 for very small beam widths
and very long buoyancy scales up to a factor of as high as 2
for very broad beam widths (widths of several kilometres).
The correction factor is dependent on the characteristics of
the particular radar being used, but it is not a strong function
of the radar parameters, and a reasonable estimate of it can
be made in almost all circumstances.

Thus in summary, we see that the correct-equations to use
for converting o2 from radar measurements (after removal
of beam and shear-broadening {e.g. Hocking 1983; Nastrom,
1997)) is in fact Eq. (29) with correction factors as shown in
Figs. 4(a) or 4(b) (depending on the nature of the spectrum as
it goes from the turbulent regime to the gravity wave regime).

We have thus unified the two sets of possible formulae
discussed earlier, and also demonstrated when each applies.
This is an important result for future applications of radar
measurements in studies of turbulence strengths using radars.

We now move on to discussion of the other methods for
measurement of atmospheric turbulence. The previous dis-
cussion concentrated on measurements of velocity fluctua-
tions, whercas the next section will look in more detail at
scalar parameters.

Q;’a7

6. Scalar Spectral Methods for Measuring ¢

In this section, we will consider measurements of scalar
quantities ltke potential refractive index, neutral fluctuations,
and ion and electron densities, and discuss how they may be
used to infer £. We will concentrate on two main areas—
firstly, the ways in which radar can be used 10 measure re-
fractive index fluctuations, and then the ways in which direct
in-situ measurements of spectra can be employed to deter-
mine &.

The first case relates to application of Eq. (10), and we now
wish to address the questions we have raised in relation to that
equation. To begin, we first recognize that C? is a measure of
refractive index fluctuations, and refractive index fluctuations
are related more to potential energy perturbations and less to
kinetic energy fluctuations. Thus the relationship between
C? and £ depends on the ratios of potential to kinetic energy.
Since this ratio is Richardson-number dependent, it might not
be surprising to find that y could depend on the Richardson
number. Nevertheless, there have been documents in which
it has been assumed that ¥ is indeed a constant, and for a
while this was accepted as standard. In the next section, we
will re-examine the ratfér complex history associated with
¥- Again, we remind the reader that the terminology of
“constant” for C2 is very misleading, but is maintained here
for historical reasons. In the following section, we consider

‘C2 pot as a true constant, but simply as a variable which

parameterizes the degree of potential refractive index fluc-
tuation in a turbulent patch. Qur main point of discussion
will be the dynamical parameter y. We emphasize that the
following discussion relates both to radar measurements of
turbulence strengths using absolute backscatter techniques,
as well as in-situ measurements of ion, electron and neutrai
density fluctuations.

6.1 The “constant” y

Despite the above expectation about a Richardson-number
dependence of y, for a while this dependence was all but
ignored in the literature, and y was indeed taken as a con-
stant. Examples include Van Zandt et al. (1978, 1981), Gage
(1980}, as well as Hocking (1985), Thrane etal. (1985, 1987),
Liibken et al. (1987) and Blix et al (1990). Note that in the
last four cases, it was not actually.C2, the potential refractive
index gradient structure “constant”, which was measured,
but rather one of the neutral, ion or electron density struc-
ture “constants”. Nevertheless, the same principle applied,
and in each case the R; dependence of y was not properly
considered.

This is nol to say that the non-constancy of y was un-
known, but rather it was_fully appreciated only in fields
other than middle atmospheric ones. Examples of refer-
ences which demonstrate a Richardson number dependence
include Otlersten (1969), Crane (1980), and Gossard et al.
(1982, 1985, 1987). However, for middle atmosphere ap-
plications many of these early references were not utilized.
To be fair, however, the R; dependency was often not recog-
nized because it was impossible to employ it, simply because
measurements of R; with suflicient resolution were not pos-
sible. More recent papers like Hocking (1992), Blix (1993)
and Hocking and Mu (1997) have given due recognition (o
the more realistic R; dependence in middle atmosphere ap-
plications, but arc again constrained by the inability of cur-
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rent techniques to make measurements of R; with sufficient
resolution Lo be useful. Nevertheless, the recognition of this
dependence is importani from a conceptual viewpoint, which
is why we pursue it here.

We will now recap some of the earlier papers which noted
that ¥ was not in fact a constant. Outersten (1969) gave

| (1—R, )
—- — 30
Y a?( r; ) a?P,( R ) G0

where a? is a constant, R; is the gradient Richardson number,
R; is the flux Richardson number, and R, = PR, P,
being the turbulent Prandtl number. P, isdefined as K/ K7,
where K, and Ky are the turbulent momentum and heat
diffusion coefficients respectively.

Gossard et al. (1982, 1984) present an expression in which
y eflectively obeys

P, ~R;

1
DR ey

y S
where By = 3.2. .
Hocking (1992) assumed to first order a turbulent Prandtl
number of unity and oblained, via energy balance arguments,
the following expression for y;

30— Ry
Y =5 TR (32)

The ratios of potential lo kinetic energy storage as a func-
tion of R;, as deduced by Hocking (1992), are shown graph-
ically in Fig. 5.

We therefore recognize that even when the R; dependence
of v is understood, there is not general agreement about the
details of the relationship. Different authors have produced
different relationships, and we cannot resolve these differ-
ences here. Our preference is to use Eq. (32).

If Richardson number measurements arec not available,
then a value of

y =04 (33)

is recommended as a reasonable compromise, since it cor-
responds approximatcly with a Richardson number of 0.25
according lo (32). We therefore see that we are once again

r >
0025 1.0 R,

A

I f
-20 -1.0

Fig. 5. The ratio ofthe potential energy and kinetic energy specteal densities,
d', plotied as a funclion of the Richardson number, R;, Note that the
rutic dends (o infinity as By upproaches 1, and tends 1o | as & approaches
negative infinity (from Hocking, 1992).

returning to an assumption ol a constant value for y, but this
approach is adopted simply because it is often not possiblc
to measure R; with sufficient resolution. It is fairest to think
of this as a mean value for y. It is often the best we can do,
but is definitely an inferior approach to proper use of R; in
determining y.

6.2 An alternative way to determine ¢ using spectral

fitting around the spectral knee

Because of uncertainties in regard to application of the pre-
viously discussed "Cf" method, Liibken er al. (1993), and
Liibken (1997) developed an alternative method {or determi-
nation of . This method still employs direct measurements
of scalar spectra, but in a different manner to that described in
the previous section. 1t has been well-known for many years
that if one can measure 7, the Kolmogoroff microscale, then
one can deiermine £ through the relation (7). The kinemaltic
viscosity v is usually taken from cmpirical atmospheric mod-
els. The major difficulty is determination of 5 accuratcly, be-
cause £ is proportional to 77 to the fourth power. For example,
an error in 1 of a factor of 2 means an error in ¢ of a factor
of 16. Traditionally n has been determined by finding the
inner scale, &g, and then &termining n through (8) using an
assumed value for c4. (e.g. Watkins ef al., 1988). The value
of ¢4 depends on whether one is measuring velocity Auctu-
ations, ion fluctuations, neutral fluctuations or whatever, as
seen earlier. -

This method fell from favour, however, because there was
too much unccrtainty in determining €. Different extrapola-
tion schemes produced different values. Liibken has recently
atlempted to solve this difficulty by fitting a carefully pre-
scribed function to the Fouricr-spectrum of the time series
of neutral density fluctuations measured by a moving rockel
{expressed as a function of the spectral angular frequency w)
VIZ.

A s /3) 2 [
2ruy;
. (w/v,)~5?
[+ ((@/v) /K12

An angular lrequency of @ corresponds to a spatial scalc
in the turbulence along the track of the rocket with “wave-
length” equal to 2r v /w. Here, I'(5/3) = 0.90167; v, is
the rocket speed; fo = 2.0, and ky = 2m /€, where € is
a length scale closely related o €. The denominator in the
last multipficative term was introduced as an attempt to al-
low the inertial range to run smoothly into the viscous range,
and is somewhat ad-hoc. Becausc this is so, it is necessary
lo exercise some care in the meaning of €,. Liibken et al.
(1993), and Liibken (1997) made the (unproven) assumption
that €5 = £,. We wish to cmphasize that because this is
not yct proven, it represents a possible source of systematic
crror in the following discussions, and we will distinguish
between £y and €p in our discussions here-in, although we
recognize that Liibken ef al. did not. An alternative way to
write (34) would be

W(w) =

(34)

T(5/3)sin(n/3) 5,
2ru, G S

(m/ur)_s” -
x .
1+ xrllmfu)/ko¥3 2

Ww) =

(35)
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Fig. 6. Experimental and filled spectra for rocket ineasurements of neutral density fluctuations, The

100 m

simoath curve shows a fit assuming a Heisenberg

model in the viscous range. Buoyancy and inner scales arc also shown {adapied from Liibken, 1997).

where ky = 2 /€y, and the term x; accounts for the fact that
the spectral “knee” need not occur directly at a wavenumber
of kg.

By fitting this functional form 10 the measured spectra,
Liibken ef al. (1993), and Liibken (1997) were able (o de-
termine €5 to fairly high accuracy. The value of €, can be
determined independently of CZ and f,. They then assumed
that £, is proportional (0 £y, and so uscd a variation on (8)
YIZ.

€y = cin. (36)

They used ¢, = 9.90 to get 5, and thence determined
£. This choice required some knowledge about the Prandtl
number, and there is some uncertainty in this regard. Liibken
et al. (1993) and Liibken (1997) used 0.82, whilst Hill and
Clifford (1978) suggest 0.72. The latter result is the correct
choice if il is recognized that the temperature spectra and the
neutral density spectra arc identical in form. An example of
the measured and fitted spectra is shown in Fig. 6.

However, it is appropriate at this juncture that we make
some comments about the function W{w). This function is
designed to describe both the inertial range of the spectrum as
well as the viscous range, plus the transition between them. It
is proportional (o ™7 at large w, which limits its usefulness to
some degree. For example, if one requires the variance of the
third derivative of the spatial fluctuations, (as is somectimes
sought in turbulence studics), then H involves an integral over
all @ of W multiplied by @® which is an intcgral of w™", and
is therclore infinite. Higher order derivatives have similar
infinitics. Indeed, Heisenberg's original proposal for a o7
form at high wavenumbers was criticized by, for cxample,
Batchelor, for rcasons like this. Furthermore, Hcisenberg's
formula was really only supposed to apply to energy spectra,

whereas Liibken et al. have adapted it to scalar spectra. The
possibility of such infinitc integrals places some limits on the
uscfulness of this particular function: if this functiona! form
i1s indeed used. it is necessary that the user places some sort of
arlifical limit on the integrals, or assumes thal the spectrum
changes form yet again at some point well into the viscous
range.

Indeed, the optimal choice of W (w) requires additional
discussion, and should at this stage be considered indeter-
minate. Liibken found by experimentally fitting the data to
different functions that the so-cailed “Heiscnberg” theoret-
ical form described by Egs. (34) and (35) gave the best fit,
although his original papers also discussed a model due to
Tatarskii (1971) for the viscous range. However, we have
noted doubts about the suitability of the Heisenberg form.
Another possibility which well deserves examination is the
temperature spectrum of Hill and Clifford (1978). It should
be recognized that within turbulence in the free air, the fluc-
luations in temperature and the Muctuations in density should
have the same form, since neutral luctuations due to pressure
perturbations are negligible, so this is an excellent candidate,
Nevertheless, for now we recognize that Liibken's preler-
ence is to use Eq. (34). We recognize that the chiel new
contribution from Liibken ef al. (1993) and Liibken (1997)
o measurements of turbulence was to develop a formalism
whereby £ could be determined using aff of the availablc
spectrum, thereby (hopelully) producing higher accuracy.

This method was then used extensively by Liibken (1997)
o determine a climatology of £, An example will be dis-
cussed shortly in regard to Fig. 8. The method appears to be
moderately reliable, although it should be emphasized that
the assumption that €, = £ is still unproven; this can lead (o
systematic errors in £. Questions about the correct choice of
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Fig. 7. Cumulative graph of € in the troposphere (from Hocking and Mu, 1997), using radar data and the theory embodied in Eqs. (10) and (33), as well as
various in-situ measurements, Data are compared to Lee et al. (1988) and Vinpichenko et al. (1973).

the Prandtl number have also been noted above. Addition-
ally, because & varies as the fourth power of €, even small
errors in estimating €, can lead to considerable errors in £.
However, even despite these problems, the method remains
one of the more commonly used for rocket studies of tur-
bulence. It is only possible to guess at the effects of these
systematic errors, although we would hope that the method
gives accuracies which are correct (o within a factor of 2.

6.3 Application of the new C2 formula to some in-situ

data

In this section, we wish to intercompare the two ap-
proaches desctibed in Subsections 6.1 and 6.2, since they
have been two of the main approaches to determinations of
¢ by rocket techniques. Previous comparisons have not al-
ways shown good agreement, but in each case we have noted
recent developments and adjustments, 5o it will be of interest
to see how the two different techniques now compare after
these new developments are considered.

The formulae presented in Subsection 6.1, which involve
the more proper use of y, have been tested in at least a couple
of cases, and seem to produce somewhat better estimales
{han do those which do not properly consider the Richardson-
number dependence of this quantity. We shall illustrate some
of these, but it should nevertheless be borne in mind thateven
the tests shown here are not really definitive, and more tests
are unquestionably needed. In particular, in these tests we
have had to assume that y = 0.4, whereas it would be much
nicer to use actual measured values of the Richardson number
made at scales of a few tens to hundreds of metres.

The first such test is shown in Fig. 7, which summarizes
resuits from Hocking and Mu (1997), using tropospheric
data. This shows a cumulative distribution of energy dissipa-

tion rates measured by various techniques, including radar.
Whilst the data were taken at different sites, and on different
occasions, the overall agreement is quite reasonable. Val-
ues obtained by radar and shown here, for example, show
broadly better agreement that do those which do not use this
more recent theory.

A more interesting comparison comes about by examining
the same data using two different analysis techniques. We
have chosen the rocket data obtained by Thrane ef al. (1985,
1987), Liibken et al. (1987}, and Blix et al. (1990), which
have been nicely tabulated in those references. We have con-
verted the energy dissipation rates produced by these authors
back to effective structure constants (analagous to C2? butin
this case they were ion or electron density or neutral density
structure constants), and then re-determined £ using Eqs. (10)
and (33). We used F equal to |, because when using in-situ
data there is no need to concern ourselves about an incom-
pletely filled measuring volume—the data are recorded at
very high resolution by thec moving probe, and the measur-
ing instruments have volumes much smaller than the size of
any turbulent patch. We haye then compared the new dalato
estimates of & obtained by Liibken (1997) using his “spectral-
knee"formalism (see the previous section). The results are
shown in Fig. 8; we have concentrated on the region above
80 km altitude. The most important line is that for winter,
since most of the raw data used were taken in Autumn and
Winter (specifically October 1987, November 1980, January
1984 and February 1984; see references cited above). The
solid circles (theory presented here-in) seem (o show bet-
ter agreement with Liibken (1997) than do the filled squares.
Therefore it scems that data produccd with the newer version
of (10), using (33), provide broadly better consistency with
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Fig. 8. Energy dissipation rates from Thrane er al. (1985}, Libken et al. (1987) and Blix e al. (1990), produced after rescaling according to Egs. (10) and
{33). Rescaled raw data are shown by the symbols *T". The filled squares show median values of £ due to the original authors, whilst the solid circles
show median values using the newer theory. The left and right borders of the filled area shows 16% and 84% percentiles using the newer (heory The
solid lines show estimates for summer and winter due to Liibken (1997), using his procedure for fitting spectra to the data.

the methods described in Subsection 6.2 than do the earlier
methods. ’

7. The Relation between Diffusion and Energy
Dissipation Rates

The issue of the relation between the rates of diffusion and
the rate of energy dissipation in the atmosphere is another
area which is often oversimplified. It is often assumed that
(11) applies, and that measurements of £ immediately enable
determination of the rate of vertical diffusion, K. Authors
vary in their assumed values of ¢4, but most (with the possible
exception of MclIntryre, 1989) generally agree that the value
lics between 0.2 and 1.25 (e.g. Fukao et al., 1994; Lilly et
al., 1974; Weinstock, 1981). We will not dwell too much on
the actual value of ¢3 here; it is premature (o specify it more
precisely than has been done here, although a value of 0.8 is

commonly used.

A more important matter here is not what ¢z is, but rather
whether (I1) applies at all. The methods by which diffu-
sion can take place are far morc complex than simple three-
dimensional turbulent diffusion. The reasons for this lie in

two main facts; first, turbulence is very intermittent both tem-
porally and spatially, and very often occurs in thin layers in
the middle atmosphere. These thin layers ate often separated
by regions which are either only weakly turbulent or even
laminar. Secondly, the processes which induce diffusion can
themselves be scale dependent.

These factors mean that there are several ways in which
diffusion can occur. Table | summarizes some of these pro-
cesses, and we will now elaborate briefly upon them.

The first important factor is the spatial and temporal in-
termittency. This effect has been demonstrated in Hocking
(1991, 1996b), after adaptation from Desaubies and Smith
(1982). These authors show how an ensemble of gravity
waves can act together to produce regions of instability sep-
arated in height by regions of stability, with layer thicknesses
of a few tens of metres oul Lo a kilometre or so. Examples
of experimental studies of such layering are also discussed
there-in.

The consequences of this intcrmitiency are important.
They mean, for cxample, that we must revisualize how large-
scale turbulent diffusion takes place. An important proposal
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Table |. This table shows some of the various processes which are normally grouped together as “diffusive” ‘p;ooesses in the atmosphere. Classical

turbulent diffusion is only one such process, and at large scales is not necessari

iy even one of the most important. At intermediate scales (500 m to 3 km),

all of these processes occur, but we have left question marks here to indicate that it is uncertain just which of all these processes dominates in this regime.

Scale Momentum Constituents/temperature
<500 m K ;‘5 K o :—;—
500 mto 3 km all processes all processes
described above and below-— described above and below—

but which dominates?

but which dominates?

>3 km *“Classical turbulent diffusion”
Stochastic Layering
Quasi-horizontal diffusion

(Slant-wise convection)

+ other?

“Ciassical turbulent diffusion”
Stochastic Layering
Quasi-horizontal diffusion
(Slant-wise convection)
Stokes Diffusion

+ other?

due to Dewan (198 1) and Woodman and Rastogi (1984) sug-
gested that the random occurrence of layers produces a Monte
Carlo type of intermittent diffusion. In this model, diffusion
is not a continuous process, but a step-wise one. First one
layer of turbulence forms around a particle of interest, purely
due to chance. Turbulent transport of this particie then takes
place, possibly to the edge of the layer, or until the layer dies
out. At this lime the particle remains fairly stationary, since
molecular diffusion is assumed to be very small. Then at a
later time, another turbulent layer forms around the particle,
and further transport over the depth of that layer is now pos-
sible. This process repeats itself over and over. Thus the
factors which control the large-scale diffusion are not sim-
ply the rates of diffusion across individual layers, but the
frequency of occurrence and depth of individual layers (this
process is illustrated diagramatically in Fig. 2 of Hocking,
1991). Any determinations of effective diffusion coefficients
must take this into account. Proper modelling of the effects
of this intermiltency remains an important area of research.

Other consequeaces of the intermittency of turbulence in-
clude the possibility that the average rates of diffusivity of
momentum and heat may be different, and that the Prandtl
number may exceed 1, and perhaps be in the range of 1 to 3
(Fritts and Dunkerton, 1985). This is to say that if one pa-
rameterizes the rate of heat transport as K1(88/3z), where
39/3z is the mean potential temperature gradient, ignoring
the effects of the wave, then the effective coefficient which
must be used to describe the rate of diffusion is less than it
would be if we properly included the effect of the wave in
38 /dz. This is not so for momentum diffusion, because ‘u’
and ‘w’ are not in phase quadrature. Fritts and Dunkerton
(1985) have proposed this process as a way-to ¢xplain the
conclusions of Strobel et al. (1987), in which these authors
claim that the turbulent Prandtl number is somewhat in excess
of unity in the atmosphere.

Another important means of vertical diffusion is quasi-
horizontal diffusion along Lilted isopleths. It is well known
that horizontal difTusion at large scalces is a much faster pro-

cess than vertical diffusion. If the mean gradients are tilted,
then this horizontal diffusion attains a vertical component,
and can lead to an effective vertical mixing. Admittedly
a particle which starts at an altitude of z km, and finally
achieves a height of z + ¢ km, may also have drifted hori-
zontally a distance equal to perhaps hundreds of times ¢, but
nevertheless this still produces an effective vertical mixing.

Another important process which can produce significant
diffusion is so-called “Stokes Diffusion™, as proposed by
Walterscheid and Hocking (1991) and Hocking and
Walterscheid (1993). These authors have shown that even
a linear combination of Boussinesq waves produces a dif-
fusive-like effect on particles over periods of many hours,

. and whilst this process is not as strong as classical turbu-

lence in causing diffusion at scales of a few tens to hundreds
of metres, it becomes a major diffusive effect when applied
at scales of many hours. This is because it is not affected
by the intermittency of turbulence, and acts just as strongly
in laminar regions as it does in turbulent ones. This pro-
cess is especially important for diffusion of constituents. If
the waves are damped, the diffusive effect becomes even
stronger, especially if the damping induces particles to cross
between contours of constant potential tempeartuce; in this
case, Slokes diffusion may-also be important for momea-
tum diffusion. As noted, Table 1 summarizes some of these
processes.

Therefore we conclude this section by simply noting that
the refation between rates of diffusion and energy dissipation
is not simple, and in fact is both scale and species dependent.
This is still an area which deserves much research, and the
key point Lo note is that previous visualizations and param-
eterizations of these processes have been grossly oversim-
plified in the past. Diffusion is scale dependendent, and the
types of diffusion coefficients which a global-scale modeller
might use may be very different (usually larger) than the ones
which might be nceded to describe small scale mixing in the
atmosphere. o
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8. Conclusion 7

Some of the constants traditionaily used in turbulence the-
ory, and indeed some classical interpretations, have been
re-examined. The basis for these formulae have been dis-
cussed, showing how some of these constants arise. Appro-
priate formulae for application of radar and in-situ measure-
ments of turbulence have been presented, including recom-
mendations for the most appropriate constants where possi-
bic. Where necessary, oversimplifications in current thinking
about turbulence have also been pointed out. Without ques-
tion, though, all current measurements of energy dissipation
rates in the middle atmosphere have uncertainties of some
type; a major goal in the next few years shouid be to de-
velop instrumentation which can directly measure velocity
fluctuations in-situ down to scales within the viscous range.
Only then will it be possible to unambiguously interpret the
spectra, and determine turbulent energy dissipation rates with
precision.
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Appendix A. Velocity Structure Functions

The following appendices summarizes the main struc-
ture functions and spectra used in turbulence theory, without
proof or derivation.

The first type of function which we will discuss that is
commonly used to describe turbulent phenomena is the so-
called Structure Function. There are several of these, but the
main ones are Dy and D, which are defined in the following

way;

Dy(r) = lug(x + 1) — uy(x)|? (A1)

and

Dy(r) = WriG+D —u @I, (A2)

where we imagine traversing the turbulent medium in a
straight line and Laking point measurements along the way.
“Parallel” components refer to measurements of the veloc-
ity components with directions parallel to the direction of
traverse, and “perpendicular” components refer to velocity
components perpendicular to this direction. Isotropy has
been assumed in this definition, which is why we consider D
to depend only on the magnitude r of the vector r.
Occastonally a 3-D form of the structure function is some-

times used, viz,

Dy(r) =

lu(x + 1) — a(OP, (A.3)

where the vector difference between displaced components

is used, Because there are two perpendicular components,

and one parallel component, we may write

Dm{ = Du + 2D_]_. (A.4)

For inertial range, homogencous, Kolmogoroff-style tur-
bulence, we have the following relations.

Dl = CE!’ZN (A-S)

where C7 = Ce?/?, and C is close to 2.0 (e.g. Caughey et
al., 1978; Kaimal, 1976). In addition,

D, = ;cjrm, (A.6)

11

Dlol = C2 2'“

(A
There are also a variety of spectral forms which are used
as tools in turbulence studies.

Appendix B. Spectral Forms for Velocity Measure-
ments
A variety of spectra are used for turbulence studies. These
all have different purposes, and are summarized below for
Kolmogoroff-type inertial-range turbulence.
The first important expression is
F(k) = Ae?P—11/3 (B.1)

= k| is the length of the vector &, {and so takes
1r{ )sin(")c ~

where &

values between 0 and infinity), and A = —
0.061C, (Tatarskii, 1971). This is a full three-dimensional
function describing the total kinetic energy per unit cell size
(due to all three velocity components) in a cell of size d°k at
the end of a vector & originating from the origin. For homo-
geneous isotropic turbulence this function is isotropic. Pic-
torially one can visualize this as a solid sphere in (£, , ky, k.-
space which has highest density at the centre, and decreasing
density as |k| increases, where the density represents F.
Because this function is lSOll’OplC, it is ofien integraled
over a shell of radius k to give a new expression which is

E(k) = 4wk F = ag¥ 57 (B.2)
where ¢ = 4nA = MC 0.76655C (e.g. see
Tatarskii, 1971; Batchelor, 1953) Note that we will largely
follow Batchelor’s symbol-usage in this document: For ex-
ample, we use E(k)dk to represent the total energy in a
shell in k-space of thickness dk, as does Batchelor, whereas
Tatarskii (1961, 1971) uses the symbol E to represent the
function which we have called F.
If we use C = 2.0, then we have

E(k) = 1.53¢23 33, (B.3)

Different authors use different values for the constant
1.53—anything between 1.35 and 1.53 are common. Note,
however, that if one adjusts this constant then the constant
C also needs adjustment. I prefer to use C = 2.0 because it
has at least been measured with good accuracy in the lower
atmosphere (e.g. Caughey et al., 1978)

These equations are fairly simple to understand. However,
there are more complex variants. An important adjunct {and
in fact a more fundamental cxpression) is the equation

E(k)

yyrs) - (k%85 — kik;) (B.4)

D;j(k) =
which describes the three-dimensional cross-spectrum be-
tween the velocity components in the “” direction and the
"j" direction, where “i or j = 1™ mean the x direction, *



e

i

or j = 2" mean Lhe y direction and “i or j = 3" mean the
z direction. The values &y, k2 and k3 may take both positive
and negative values. Note that k is the length of the vector
from the origin to the point (ky, k2, k3) in k-space, and so
K2 = k2 4 k2 + k3.

For each of these spectra there is a related covariance func-
tion; for example,

] o0 oQ o _
Gl = — f f / e MERy(8)dE  (BS)

where R is the aoutovariance function corresponding o
&, and where j = +/—1 in this expression. We will not dis-
cuss these various covariance functions in much detail here;
the reader is referred to to Tatarskii (1961, 1971), Batchelor
(1953) or Lumley and Panofsky (1964) for more elaborate
discussions,

For cases of isotropic turbulence, we can integrate @y
around a shell of radius k to give (e.g. Batchelor, 1953, p. 35)

Wy (k) = ﬁ & (k)kd Sk (B.6)
For homogeneous, isotropic turbulence, we therefore have
Wi (k) = dmkid;; (k). (B.7)

E (k) relates 1o the ¥, (and hence to the ®;;) via the rela-
tion \

\ .
E{k) = ‘2'(‘1’“(’6) + W (k) + Waalk)). (B.8)

Notice the factor ; this is introduced so that the integral
over all k (i.e. fromk = O to k = 00) gives the kinetic
energy per unit mass, %v,zm. E(k) is unique in this regard—
other spectra have normalizations which do not involve this
factor of 3. For example, '

o0 J—
f Wi (k)dk = u} (B.9)
[1]

where u, refers to the velocity component in the x direction.
Sometimes (B.8) is also written as

Ek) = I # & (k2 dQ;,. (B.10)
2 Hip=r2

where the subscript *éi* means sum the three terms ©;), ®2;
and &3 (e.g. Lumley and Panofsky, 1964, p. 28).

The above spectra are useful [rom a conceptual viewpoint,
but are often hard to determine experimentally, since they
require a full three-dimensional description of the turbulent
field in all three velocity components. That is, they require
knowledge of all three velocity components at all points in
space. This is often difficult (if not impossible) (o measure.

Therefore, we also look for spectral analogues to the
structure functions which were described earlier for a one-
dimensional pass through the turbulent ficld.

To begin, if we have a detector which moves in a straight
line through a patch of turbulence, and it records the velocity
components parallel to the direction of motion (in analogy to
the process described in connection with Egs. (A.1)to (A.3)),
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and then we Fourier transform the resultant spatial scries, we
obtain (for Kolmogoroff turbulence) the function

Bk, 0,0) = o),y |73

where o], = %a = (.1244C. This is in fact a one-
dimensional function which we will denote as b5 viz.

¢p(kl) =a;|82/3|k1|—5/3- (B.12)

(B.11)

It is important to note that this is not the same as
@y (k;, 0, 0). Whilst both refer to spectral densities along
the x axis, ®;{k;, 0, 0) refers to spectral densities duc only
to “waves” with the phase-fronts aligned perpendicular to the
x axis. On the other hand, &,;(k, 0, 0) (and ¢, (k) refer 1o
the spectral density at wavenumber k| due to contributions
of “waves” of all orientations which cross the x axis. These
concepts are fundamentally different. In fact,

©;;(k1,0,0) = // &y (ky, ka, k3)dkadks. (B.13)

Likewise, if we find the spectrum for the velocity com-
ponents perpendicular to the direction of motion during this
traverse, we produce

P (k1) = On(ki, 0,0) = agpe™ k|7 (B.14)

where o}, = 3a};.
* Additionally, for the choice of C = 2.0 described above,
we have

¢ptk1) = Oy, 0, 0) = 0.25¢% |k, |73/

—o0 < k| < 00, {(B.15)
¢ (ki) = Ony(ky, 0,0) = 0.336 (k|73
—00 < k| < co. (B.16)

In the case of isotropic turbulence, there is no preferred

axis, so that these formulae are not restricted to any particular

axis.

Because of the obvious symmetry, many experimentalists
often “fold” their spectral densities at negative wavenumbers
over onlo their positive ones, and so do not differentiate be-
tween positive and negative signs for the wavenumber. Then
we obtain the following functions:

¢, (ka) = 0.506%3k %

0 < ky < 00, (B.17)
¢! (k) = 0.676¥3k57
—00 < kg < 00 (B.18)

where kg, arc absolute values of wavenumbers along the di-
rection of travel of the probe.

Note that Eqgs. (B.11), (B.12), (B.14), and (B.15) to (B.18),
have “£~3/*" laws, but so does (B.2). However, these equa-
tions are conceptually different; (B.2) represents an integra-
tion over a shell of radius & in three-dimensional k-space,
whilst (B.15) to (B.18) represent spectra determined by a
probe moving in a straight line through the turbulence. Nev-
ertheless, il is a common mistake for novice researchers to
confuse the two spectra, when they speak-of the “k /%" law,
which can lead to the propagation of considerable confusion.
It is important Lo conceptually distinguish these spectra.
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Appendix C. Scalar Structure Functions and Spec-
tra

In some studies of turbulence, it is not information about
the velocity fluctuations which are sought, but rather den-
sity fluctuations associated with certain tracets. One must
be careful to choose a “good” tracer—certainly quantities
which react chemically with their surrounds will not obey
the following equations (e.g. see Hocking,ﬂ 1985).

The structure function is described as

Dy(r)y=t(x+D -t @)

where ¢ represents the scalar concentration. For
Kolmogoroff inertial range turbulence this is given by

Dy(r) = Cirif.

The first important spectral form is &®,/(k), which is
the full three-dimensional spectral density function. For
Kolmogoroff turbulence, it is given by

@, (k) = 0.033C; |k|~"/3

(C.1)

(C.2)

(C.3)

in the inertial range. The nearest analogy to this spectrum
for the velocity case is the function F from Eq. (B.1); &,
should not be confused with ®;; from Eq. (B.4), although
the notations lock similar. This convention may seem just a
little confusing, but is maintained here as a result of historical
precedent.

This function has been chosen to be normalized so that

/wfw fw O (k)dk = (). (C.4)
—00 d 00 J o0
Then for locally isotropic, homogeneous we define
E¢ (k) = Amk> &, (k) (C.5)
or
E;(k) = 0.132n CZk|™*/* = 0.415CHK ™. (C.6)

The function £, is very analagous to the function E in Eq.
(B.2). ‘
Finally, we present the spectrum seen if we record along
a straight line. This is the spectrum which a probe moving
through a patch of turbulence would measure, and is very
similar to ¢, from Egs. (B.12) and (B.14} in the section on
velocity spectra. This is given by

o poo ‘
Selky) = f f P, (k)dkadk;
—0Q ¥ —00
which, for the case of Kolmogoroff turbulence, becomes

S¢ (k) = 0.125C{k| ™%
—00 < k < 00,

(C.7)

(€8

The function §; has strong similarities with ¢, in Eq.
(B.15). If we fold negalive wavenumbers onto positive, we

obtain
Sy (k) = 0.25CH™37

0 <k <o0. (C.9)

Again (as for the velocily spectra), note that (C.6) and (C.9)
both invoive a “,k~3/" law, but the spectra are conceplually
different.

Appendix D, C?and ¢
The energy dissipation rate is related to the potential re-

fractive index structure constant by

wz 3/2
= 2 B -2
£ = (yC,, _—FlﬁM )

(D.1)

where wp is the Vaisili-Brunt frequency. The parameter F
represents the fraction of the radar volume which is filled by
turbulence, while y is discussed in more detail in the main
body of the text.

The “potential refractive index gradient” is given in the
troposphere and stratosphere by

P /alng
M=-776%x10%= [ —=
X T ( dz )

15500 | 3lng/az
1 - DHdrge )
x [ 7 (l 2 atne/az)] (D-2)

where z is height, 0 is the potential temperature, g is the
specific humidity, T is the absolute temperature and P is
the atmospheric pressure-in millibars, The term in square
brackets was denoted as x by Van Zandt et al., 1978, indeed
this particular form of the equation was first introduced by
these authors. Note that x tends to 1 as the humidity terms

tend to zero.
In the ionosphere, where humidity is no longer important
but electron density plays a crucial role, we have
an [N dN N dp
M=—|——-—+4+—.— D.3
aN [0 dz  p dz] (D-3)

where again we have used the symbol # for potential tem-

perature and N is the electron density. The term p is the

neutral density. The function gﬁ.— needs to be determined

from electro-ionic theory (e.g. Sen and Wyller, 1960; Bud-
den, 1965; Hocking and Vincent, 1982).
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On the radar estimation of turbulence
stratified atmosphere

R. G. Roper

parameters in a stably

School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta

Abstract. Four estimators of the rate of dissipation of turbulent cnergy based on the velocity
structure function, rms turbulent velocities, Brunt-Viisili frequencics, and ground diffraction

pattern fading rates are discussed and compared using

Arecibo Initiative on the Dynamics of the

Atmosphere MF radar data in both the imaging Doppler interferometry (IDI) and spaced antenna
modes. A consistent set of empirical equations is developed which define and describe the
relationships between the turbulent velocity, the Brunt-Viisils frequency, the Luoyancy length
scale, the rate of dissipation of turbulent energy, the eddy diffusivity, and the time constant of the

gravity wave generated, intermittent, decaying,

coherent structures responsible for the scatlerers

detected by the IDI technique. It should be noted that the constants of proportionality are

significantly different from the currently accepted valucs.

1. Introduction

S. J. Franke [private communication, 1997],
following Booker et al [1950], has questioned the
validity of the identification of individual scatterers by
the imaging Doppler interferometry (IDI) techniquc
when the overall dimensions of the receiving
inter{erometer are less than those of the transmitting
antenna and has modeled this situation. He finds that
the sum of the powers scattered by an ensemble of
randomly moving scatterers distributed linearly across
the transmitting beam width produces a lincar phase
across the receiving interferometer. Franke's model
assumes scattering from a line of scatterers, and this has
been shown by Briggs [ 19957 to produce just such a
phase relationship. However, for randomiy distributed,
intermittent scatterers, such as those observed by the
Middle Atmosphere Structure Associated Radiance
(MAPSTAR) radar in the Arecibo Initiative on the
Dynamics of the Atmosphere 1989 (AIDA’89)
campaign, such a refationship is not observed. Using a
model based on the observed scatterer properties, Roper
[1998b] has demonstraled that the scatterer recovery
technique of Brosnahan and Adams [1993] recovers

Copyright 2000 by the American Geophysical Union,
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both the wind and turbulent velocity with acceptabie
error up to a wind velocity of some 60 m s'. The
purpose of this paper is to compare the results of
applying four analyses to the estimation of £ the rale of
dissipation of turbulent energy using MF radar dala.

2. Structure Function Estimates
of Turbulent Dissipation Rates

Baitchelor [1953] presents a formulation of the
velocity structure function which assumes  only
homogeneity and the Kolomogorov -5/3 power law.
Raper and Brosnahan | 1997 | (hereinaficr referred to as
RB) have used this formulation to deduce the rate of
dissipation of turbulent energy from the line of sight
random velocities and separations of scatterers
identified by the - MAPSTAR imaging Doppler
interferomcter (ID1) MF radar during AIDA 89, In their
formulation they chose to specify the velocity scale
characierizing the turbulence as the velocity difference
at which the velocity correlation coefficient feli 1o /e,
since this value, coupled with a guess of the time
constant of the energy-bearing eddies as 100 s, yiclded
a rate of dissipation of (urbulent energy not
significantly different from that obtained using direct
application of the structure function equation,

In this paper, an alternate approach to the rather
unsatisfactory determination of he encrgy-bearing
cddy scale £, is proposed. In attempting to determine

959
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st be over-cstimates. Whether or not &, (based on
Ly = L,) agrees with & depends to first order on the
Brunt-Viisili frequency e 1s the 20°N April monthiy
mean estimate of @ from Rees et af. {1990] even close
at noon, the time at which the AIDA data used here
were measured? Again we are reduced to uncertainty, a
result typical of remotely sensed measurements of
turbulence!

Weinstock's [1981] formula appears to overestimate
£ Weinstock concluded that anisotropy of the
turbulence may account for differences in his
applications to experimental data and should be taken
into consideration in the calculation of radar-derived
estimates. The question as to why Weinstock's
theoretically derived equation provided a fit to
estimates based on horizontal fluctuating velocities has
not been answered. Any equation addressing buoyancy
eslimates should only be applied to the vertical
fluctuating velocity, although all velocity components
of the turbulence are correlated.

An attempt has been made to arrive at diffusivity
formulations consistent with the derived buoyancy
scale lengths and rate of dissipation of turbulent energy.
The constanl of proportionality (= 1.8) in (15) is 6
times larger than the generally accepted value of 0.33
which, being based on a critical Richardson number of
Y4, is subject to the criticism detailed above.

In summary, the following set of self consistent
equations has been developed:

Equation (4) &=0.160"a,

Equation (6a) 60 =0.1(ug)m,

Equation (15) K.=18sw7,

Equation (17) Kp=0.18(up) 0",

Equation {18) K,=030%w".

These are also consistent with the length\ sca
[Weinstock, 1978] 7{
Equation (3) L, = (21t/0.62)smaim,

and (RB)

Equation (5) Ly =upna’,

and with the time constant of the intermittent, decaying
coherent structures (scatterers) given by RE as

T=xrw" (19)

Note that these equations, while internalty self
consistent, are neither independent nor absolute. The
equality of (15) and (17), for example, depends on (6a),
while the constant of proportionality in equation {6a)
depends on an equation of buoyancy length scales by
RB which is based on a limited data set (some 200
AIDA’89 profile comparisons).

In conclusion, emphasis must again be placed on the
fact that any estimates ol the turbulent dissipation ratc
and accompanying atmospheric heating and diffusivity
will be upper limits ag long as the theory of stationary
homogeneous turbulence is used to derive such
estimates. Because of the difficulty in estimating the

relative scatterer density, calculations of £ and K using

. the above formulae will also be upper limits.

The major problem in mesospheric studies is one of
calibration. Rarcly are measurements  of  the
characteristics of this region available from more than
onc instrumental technique. The comparisons belween
the incoherent scatter and IDI radars made during
AIDA89 were complicated by the dissimilar volumes
probed by the two instruments. The statement made by
Hocking [1996] is echoed here, that mare simultaneous
common volume measurements (including
instrumented rockets and rocket-released chemical
trails) are essential to furthering this area of research.

Acknowledgments. This rescarch is being supported
by the Atmospheric Sciences (Aeronomy) Division of
the National Science Foundation, under grant ATM-
9728629.

References

Adams, G. W., J. W. Brosnahan, and R. E. Johnson,
Aspect sensitivity of 2.66-Mhz radar returns from the
mesosphere, Radio Sci,, 24, 127-132, 1989,

Batchelor, G.K., The: Theory «f Homogeneous
Turbulence, 197pp., Cambridge Univ. Press, New
York, 1953.

Blix, T.A., E.V. Thrane, and Q. Andrecassen, [n silu
measurecmenis of the finc scale structure and
turbulence in  the mesosphere and  lower
thermosphere by means of clectrostatic positive ion
probes, J. Geophys. Res,, 95, 5533-5548, 1990



o o 4+ ol mbkd 1T 0

FRon Hockire  14g)

GAaTP)

Extraction of atmospheric turbulence parameters 93

scales to “go through’ several cycles, and so there will be
a larger r.m.s. velocity than for shorter data lengths.
Further, the measured mean is more likely to be close to
the ‘true’ mean when larger data samples are used.
Let the mean wind speed be 0. Let the data sample
have temporal duration T. Then in this time T, a length
T of the atmosphere passes over the radar, It is
constructive to examine the power spectrum produced
from a radar daia sequence recorded during the
passage of this region of atmosphere, and to compare it
to the structure function which would be measured for

scales up to 0T,
Asin equation(5), thestructure function is defined by

afith = {oy(x +DH—vy(x)%>, (14)

where v{r) is the Auctuating velocity parallel to the
mean velocity at positionr, and Eis the spatial lag in the
direction paraflel to the mean velocity. It is assumed
that o {r)is known as a [unction of r. Now let a region of
horizontal size L = §T drilt across the radar and
assume that the turbulence remains (statistically}
frozen’ in the atmosphere (Taylor's hypothesis). Then
the radar will measure a spectrum of velocities, with
most energy at §, and falling offin intensity either side of
this peak. For argument’s sake, take the probability
distribution of horizontal fluctuating velocities to be
Gaussian in form, with an r.m.s. velocity

L 1)2
vH=[L'1J‘ [v“(l)—ﬁ']’di} i (15)
[+]

Now assume that v, is a random function of position
r (not true in reality, but an appropriate assumption in
this case), and [orm the structure function {14), It can

be shown that the distribution of veldéity differences

[v)(x +D)—vy(x)] is also Gaussian, and .
of(L) = 2v} (16)

{The assumption of a Gaussian distribution of .

velocities is in etror, but it simplifies the discussion
considerably, and does not drastically - alter the
conclusions.) But for turbulence

of = CLe¥ PR, )

as in equation (5), and C}, = 2.0 [see equation (5)].
Thus, using equatio

Thus if it is possible to iid T Way to measure the r.m.s.
horizontal velocity vy, and il the mean wind speed of the
atmosphere is known, as well as the data length of the
sample, T, then equation (18) can be used to estimate ¢.
The parameter [ should be taken aseither [ = 6T, or the
approximale distance between the half-power points of

the polar diagram at the height of scatter —whichever
parameter is the larger.

It is of interest to consider an alternative derivation
of equation (18). The total mean square Rictuation of
velocities v3 could be rewritten as

1720 = r E(k) dk+j—h E() dk,  (19)
|1

1 —-a«

in a similar manner to equation {2). Here, k, represents
the wavenumber of the longest scale which fits a full
‘cycle’ in the length ! = 0T, viz.

ky = 2a/l.

on (7). Yet this result

is obtained, analogously toeqya
differs considerably [rom equation (18). Why? Equation
(2) was valid because Ly was the largest scale. But in
considering the case above, 2D turbulence was
considered, in which case thelargdst scaleis many times
greater than the scales being deait, with. There was no
eflective ‘cut-ofl” scale, and the scale | = 0T is not the
maximum scale contributing to they.m.s, motion. It is
the largest scale which makes a complete contribution,
but larger scales exist and make somé contribution to
the r.m.s. velocity. So for the two-diknensional case
described above, equation (19)is not valid. Rather, Fig.
4 describes the situation much better. The term 1/2u}
should equal the sum of the hatched and dotted areas
there-in, and not just the hatched area. Scgles larger
than 'k = 2n/6T) make a contribution, \albeit a
diminished one. Consequently equation (18) is\correct,
and equation (20)is in error for this case. Equatign (18}
is also valid for the case of 3D turbulence in whick the
resolution of the system is better than L. In this calg
should be taken as equal to the radar resolution, unlex
the data lengths become comparable to T

It should also be pointed out that although the

Then the resﬁlt

“k; -k 0

Fig. 4. Typical energy spectrum for turbulence (;]ualilative
only). See text.
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