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MST STUDIES OF GRAVITY WAVES AND TURBULENCE

W.K. Hocking

6.1. INTRODUCTION

On horizontal scales of a few hundreds of kilometres and less, and vertical scales of less than a
few tens of kilometres, the main dynamical motions in the upper atmosphere are those due to gravity
waves and turbulence. These two types of motions have important implications for the energetics
of the whole region. Gravity waves in particular affect the winds at larger scales, and even the
latitudinal temperature distribution. In this lecture, we will discuss the techniques used to measure

these motions, particularly with regard to radar applications.
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6.1.1 An introduction to gravity waves

it is generally believed that gravity waves (also called buoyancy waves) are the main cause of wind
and temperature fluctuations with periods of a few hours and less, down to a few minutes. There is
a school of thought which suggests that at least some of these motions are due to two-dimensional
turbulence, but this is a minority view. We will nevertheless discuss this approach briefly in the
section on turbulence, but for the moment let us begin with an account of what gravity waves are,
and a brief summary of their role in atmospheric dynamics.

Gravity waves are atmospheric waves which propagate in the free air. Individual waves cause

velocity, pressure and density fluctuations of a sinusoidal nature, and these waves carry momentum
flux and energy with them as they propagate. The waves are observed as quasi-sinusoidal oscillations
in wind velocity and temperature as a function of both time and height; an example of the vertical
velocity component of the wind is shown in fig. [_f__l They are generated in a muititude of ways, but the
simplest Way to visualize them is as the waves generated by flow of air over a corrugated boundary.
The air begins to oscillate over the corrugations, and in so doing generates propagating waves. The
waves have the curious property that the phase velocity and group velocity are almost perpendicular
to each other, and when the phase group velocity is upward, the phase velocity is downward. If
such a wave loses no energy as it propagates, then the exponential decrease of atmospheric density
with increasing height results in an exponential increase of amplitude with incredsing. height, so that
waves which start at ground level with amplitudes of a few centimetres per second attain amplitudes
of several tens of metres per second at altitudes of 70 km and above. In reality the waves do in
e some energy and momentum as they rise in height, but the most dramatic losses are in the
regions above 70 km altitude. The waves are important in the atmosphere because of this loss of
momentum and energy which occurs as they propagate; the momentum and energy are deposited
in the atmosphere and affect both the mean winds and the temperature distribution. In particular,
the momentum deposited by the waves acts to alter the mean eastward (zonal) winds, in some cases
even reversing them compared to the direction expected on the basis of radiative theory alone. This

fact los
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CAetnged sonal wind then drives a north-south (meridional) wind circulation, and this in turn causes
upwelling at some latitudes and down-welling at others. As a result, the temperatures in the upper
meMosphere are also substantially altered relative to their radiative situation, and one dramatic result
R wmote is the phenomenon of the polar summer mesopause becoming much colder than even the winter
lar mesopause. More detail about the way in which these waves modify the mean wind circulation
and thence the latitudinal temperature distribution can be found in Holton (1982, 1983}, and will be

elaborated upon later in this artide.

The waves show other interesting properties. For example, although there are seasonal variations
in wave intensity, there is also a remarkable degree of consistency in wave activity. From summer to
W inter the variation in amplitude is less than a factor of 3, and the variations as a function of latitude
are also relatively small. The distribution of wave power densities as a function of period and wave
nwmber also seems to be somewhat independent of latitude and season. It seems the waves can be
clescribed by a common “universal” spectrum of almost invariant shape and amplitude, and the term
O yniversal spectrum” is often encouatered in the literature { Van Zandt, 1982). We will consider this
wniversality in more detail in due course. ’
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Fig. 1. Example of vertical velocity fluctustions w a3 & Runction of # time ¢ and b height 7 in the
. mesosphere. {Crechowsky ct al. 1989)
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6.2. GENERAL THEORY

In the following section, we will discuss just how gravity waves§ arise from the fuid
dvnamical equations. and then consider the various quantities which can be measured in connection
with these motions. Discussion of typical scales will be left to a later section which deals with

experimental results.

6.2.1 The fluid dynamical equations of motion.

The equations considered are the standard fluid-dynamical equations

T2 xut g S Tp -V =0 (1)
22 4 p¥ u0 3)
%-?:f—’v?@ (4)

where D/ Dt represents differentiation following the motion. The total velocity is u, the density
o, 0 is the Earth’s angular rotation rate, X means cross product, g is the acceleration due to gravity
= (0,0,-g), p is the pressure, c? is the speed of sound squared. ¥ Fepresents the gradient differential
operator and “." means the dot product. O represents potential temperature, x the heat diffusion
coefficient, and v is the kinematic viscosity coefficient.

In the following sections. it will be briefly shown how these equations are modified for dealing
with gravity waves and turbulence, and the important parameters required in any useful study will

be defined.
6.2.2 The approximations of the equations of motion for gravity wave studies

The above equations describe the motions for all fluids. but it is often useful Lo simplify them
somewhat to study particular types of flow. One example is the study of wave events, in which the
equations are linearized and solved for solutions of the type ezp{i(k-z —wt+ & )}. Lxamples of
such solutions include planetary waves, tides, buovancy {gravity) waves and vortical modes ( e.g.
Houghtoh. 1977 Gossard and Hooke. 1975; Hines. 1960; Dong and Yeh, 1988; Yeh and Dong, 1989).
These are all important for the upper atmosphere, and some of them carry momentum and energy
from source regions like the troposphere to the stratosphere and mesosphere. Gravity waves are
particularly important. and indeed the momentum fux deposited in the mesosphere by these waves
is enough to completely alter the mean flow state at those heights ( Matsuno, 1981; Holton, 1982,

1983).
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In the case of gravity waves, one assumes solutions of the form ¢ = woezp{i(k-z —wi+ ¢ )},
(where  can be any one of the velocity components, the pressure, the density or temperature), and:
then substitutes into the equations of motion, retaining only first order terms. As a result, one finds.
that various waves can indeed exist, but they must also satisfy particular relations between the wave:
frequency and wavenumbers; the so- calied “dispersion relation”. In particular, waves are confined to.
have intrinsic frequencies in the range between the “Vaisala- Brunt” frequency (the natural frequency :
of oscillation of a displaced air parcel in the atmosphere - typically in the range 5 to 10 mins below -
100 km altitude) and the “inertial frequency”, the lower frequency limit set by the Coriolis parameter.
The relations between wave velocity amplitudes and the temperature, density and pressure amplitudes
are also defined uniquely by these equations, and these relations are called “polarization relations”.
There are also different levels of approximation, depending on whether particular terms are ignored -
or retained in the linearized approximations of the equations of motions, and the dispersion relations -
and the polarization relations differ slightly depending on the form of the equations used. Examples -
include the “Boussinesq” approximation (the simplest), the “hydrostatic” approximation, and the
“anelastic” approximation.

We begin our treatment by “linearizing” the afore-mentioned equations, as well as ignoring the
term vV 2. (The latter term represents viscous dissipation effects, which are usually unimportant at
the scales of interest to us). This means we consider only small perturbations, and ignore second-order

terms.

The general form of the equations is then

X = - (5)
%';-'Hu' = -’,—5’: (6)
™y = - (2v-%) (7)
L 2 ®)

at+8:“-)‘?+¥

Equations (5) through (7) are the momentum equations, (8) is a form of the first law of ther-
modynamics, and (9) is the continuity equation. The complex velocity amplitude is (u',?',w’).
Additionally, we use the definitions ¢’ = p'/7, and 1’ = p’/p. N is the Brunt-Vaiisild frequency given

by
LAY 10
T az +N” . . ( )
Here H is the scale height given by
H= %T: (11)

g is the acceleration due to gravity, p is deasity, p is pressure, c? is the speed of sound, and
% = R/fc,, where R is the gas constant for air and c, is the specific heat of air at constant pressure.
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The quantity f is the Coriolis parameter. Overbars refer to time-averaged quantities and primes

prefer to deviations therefrom.

The governing equations describe two-dimensional nonhydrostatic compressible flow on an f
plane. We have taken variable as the sum of a mean and fluctuating component B, + ©p.

We now assume solutions of the form ¢(z,z,¢) = whexp{i(kz + mz — wt)}, wheret:;zdeﬁne the
z axis to be along the horizontal direction in the plane of propagation of the wave. We recognize
that we have dropped terms involving second-order quantities, and whilst these will not drastically
alter things like the relation between wavelengths and frequencies (the so-called dispersion relations},
they can cause wave-damping. Inclusion of them complicates the equations, so we often take an
intermediate approach to consideration of their effects. We do this by assuming that all these terms
can be lurmped together as a so-called Rayleigh drag; in other words, we write these dissipative terms
as equal to a constant multiplied by the wind speed. Thusin the z-component, we add a term “~au”,
and so forth. We often do not bother with this term for vertical fluctuations.

Thus by using complex exponential (sinusoidal) solutions, and including Rayleigh drag, we pro-
duce the following resultant algebraic equations (note that we have assumed that wp = 0):

—iwy’ — v = —iky' —av ) (12)
—iwd ++fu’ = av (d,%:-:. ﬁr:}.&:‘ (13)
—iwuw’ g = —(imy’ - ¢'[/H) (14)
—itwr’ — w'_ﬁzlg = &%(iu‘q’)') {15)
¥
—iwr’ + ik — w//H + imw’ = 0. (16)

These are the basic equations one normally works with in dealing with gravity wave theory. There
are also various simplifications of these equations which are also employed.

We will leave these equations here, and now turn to simplifications of the equations to highlight
the effects of turbulence. We will then return to a more detailed solution of the equations as they
relate to both gravity waves and turbulence.
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6.3 SOLUTIONS
8.3.1 Solution of the gravity wave equations

We now return to our equations for gravity wave motion (equations (12) - (16)).

en it is solved, one finds relations between

These are actually an algebraic matrix equation. Wh
{ expression which relates the frequency

the various quantities like p', p’, u’ etc., as well as an edditione
and wavelengths. This latter term is called the dispersion relation.

The dispersion relation for this system is
—
- w. (N =u? w?
(W) s,

e+ =5 gt @

where m = m — i2/H and w. is defined as w +ia (Hines 1960; Pitteway and Hines 1963). f a =0,
then iy = —1/2H. -

The associated polarization relations are listed below:

i o = —(iffw ' . (21)

| W = — w(w? - f*) i 1 s u’
- - {w.(w" — Wk [ + (F ‘é'f)] } (22)
o= f(wl - k) ()
ro= gu' + (-Z—l + ﬁ) w'. (24)

j Under various assumptions, these can be simplified even further. For example, we might assume
zero damping, and small phase speeds relative to the speed of sound. The simplest (Boussinesq)
dispersion relation then takes the form

-..l m? N2 —_w?
‘ B Lot (25)

For a wide range of frequencies, somewhat larger than f and somewhat smaller than N, this
dispersion relation can be reasonably well approximated by

m N
-E':m' K ] (26)

' In the above and following relations, the following symbols apply:- (', v, w') = velocity pertur-
! bations, i = V=1, w = angular frequency, k is the horizontal wavenumber in the direction of wave
E propagation, m is the vertical wavenumber, ©' = potential temperature perturbation, p' = density
perturbation of a parcel of air displaced by the wave relative to the surrounding air (although the air
is assumed incompressible, density fluctuations due to the vertical displacement of air are allowed),
po = mean density, p’ is the pressure fiuctuation due to the wave, N is the Vaisala-Brunt frequency,
and f is the inertial frequency = 2Qsinfy, where 8, is the latitude. The term ¥ refers to the mean
f horizontal wind at the height of observation, and c is the horizontal phase speed of the wave as seen

i 12



from the ground. Hence c —u = w/k is the so-called “intrinsic phase speed” of the wave, or the wave
phase speed with respect to the mean wind at the height of the wave.

The following equations serve as useful approximations to the polarization relations. These are
not all exact, but nevertheless they are often useful because they are extremely simple, yet still apply
fairly accurately over a wide range of frequencies. They are particularly good at frequencies of more
than about 3 times the “Vaisala-Brunt” {requency. '

w = /' (27)

v =ifufw (28)

/8 =—p"/ro (30)

f

p' = —upolc — ) (31)

The first two equations (for v’ and w') are exact for the Boussinesq approximation, whilst the
last three are really only valid for f < w < N; they do, however, apply quite well over most of the
range of observed frequencies.

Some of the most important parameters required in studies of gravity waves are the velocity fluc-
tuations, and the temperature, density and pressure fluctuations. The wave periods (or frequencies),
the vertical and horizontal wavelengths, and the direction of propagation are also sought-after quan-
‘tities; so are the momentum flux terms. Examples of the latter include terms like pu'w’, where the
overbar may be either a space or time average (see the discussion relating to the fiuid equations for
turbulence (section 6.2.3)). This particular term refers to the vertical flux of eastward momentuin,
and also the eastward flux of vertical momentum. Terms like 7w refer to the flux of energy - in this
case vertical. One other useful guantity is the preferred direction of wave propagation.

The momentum flux terms can also be used to determine body forces in the atmosphere, and
it is these forces which can act on and change the mean flow, as discussed earlier. For example,
d/dz(pW)gives the drag force per unit volume. This force acts on the atmosphere in which the
wave is dissipating, and can substantially alter the mean wind. The drag force per unit mass is

obtained by dividing by p.
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6.3.1.1 Special circumstances for gravity waves - critical levels, turning levels.

As a wave propagates up into the atmosphere, the background wind may change. The frequency
and horizontal wavelength as viewed from the ground stay unchanged, so the ground-based horizontal
phase speed:stays unchanged. Thus the intrinsic phase speed must change as 7 changes. Since the
horizontal wavelength stays unchanged, then w, the intrinsic frequency (ie the frequency as seen from
the frame of reference of the mean wind) must also change. This means that the vertical wavelength

: must also change as the wave propagates upward, as evidenced by the various dispersion relations we
have seen. Il we take the simplest form as given by equation (25) viz.

mi N2 - w?
P (32)

then we see that there are some critical “special cases”.

First, we note that if w tends towards f (low frequencies, approaghing zero) then w? — f? tends to
zero and m tends to infinity. Thus the vertical wavelength approaches zero. This also corresponds to
the case of the intrinsic phase speed tending towards zero. In this case, the vertical component of the
‘ group velocity of the wave tends to zero too, and the wave starts to “pile up” on itself. This produces
large amplitudes, as the wave energy from below enters the region at a faster rate than that at which
the energy leaves above. As a result, the wave achieves large amplitudes and generally breaks down.
If the wave actually reaches the region where (c — T) equals zero, this is called a critical level. In
reality, waves usually break down before they reach this level.

‘ Secondly, we note that the frequency may approach N (ie high values). When this happens, m
' tends to zero. The vertical wavelength tends to a very large value, and as it happens the group

velocity tends towards vertical. The phase velocity tends towards horizontal, and the wavefronts
| become nearly vertical. Waves in this situation can “turn around” and head back down (if they were
[ originally moving up), so this situation is called a turning level. Waves in the upper atmosphere can
' often be “ducted”, which means they bounce back and forth between two turning levels at different
' heights in the atmosphere, whilst also traveling horizontally. Waves can travel for thousands of
' kilometres in this mode - and many observations of waves with large vertical wavelengths are in fact

ducted waves. Ground-basea;gﬁtical instruments are particularly susceptible to detection of ducted

waves.
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6.4 Visualization of the motiona.

6.4.1 Visualization of gravity waves

Visualization of gravity wave motions is modestly straight-forward for anyone who is able to
visualize wave motions. Fig. @ shows a collection of useful diagrams. The key points which (/¢
distinguish gravity waves from other waves are that

(i) they grow exponentially with height
(ii} their phase and group velocities are almost perpendicular.

The attached diagrams demonstrate these points. (Dunkerton, Hines).
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6.6 SPECTRA

Both gravity wave and turbulence studies involve determinations of relevant spectra at some
stage. The nature of these spectra, and the ways in which they are interpreted, are very different. In
this section, we will consider these functions.

6.5.1 The “Universal Spectrum” and saturation theory .

We first turn to a discussion about gravity waves and their relevant spectra. Previously we have
considered single waves, and examined their polarization and dispersion relations. Many early studies
concentrated solely on monochromatic events, but the recognition that the atmosphere contains a
large number of waves at any one time forces us to consider spectral representation of these motions.

To begin this section, however, let us recourse to a little history on the subject of these mo-
tions. The concept of gravity waves as a major contributor to motions in the upper atmosphere
was first introduced by Hines, (1960), and that paper has led to many publications describing wave
motions in that region. Initially most studies concentrated on indiyidual “sightings” of single quasi-
monochromatic waves, and these have been discussed in various reviews ( e.g. Rastogi, 1981, Fukao
et al., 1979; Vincent and Ball, 1977, to list but a few). However a major change in the “monochro-
matic” approach to gravity wave studies came about in 1982 with the proposal by Van Zandt, (1982)
that the spectral distribution of wave energies was not a strong function of latitude, longitude or
time of year, but was in fact almost invariant. Van Zandt, ( 1982) described an empirical form for
this spectrum, adopting a modification of the so-called “universal spectrum” originally proposed for
internal waves in the oceans ( Garrett and Munk, 1972; Garrett and Munk, 1975). It was found
that not only were the spectral shapes independent of position, time and underlying terrain, but
also the absolute values at any one altitude were fairly insensitive to position and time. Fig. [E]
shows spectra of wave energy densities plotted as a function of frequency for wave meotions at 85 km
altitude, using data recorded at 35°5, 10°S and 65°N. Cleatly the absolute spectral densities are
similar at all 3 latitudes. The work by Van Zandt, (1982) noted similar agreement not only as a
function of frequency but also as a function of wave number. The forms of the spectra proposed by

Van Zandt, (1982) are:

c” 2 wt _
E(k,w) = EO[T—-}-_J':/_k.]? '_;EW-'T_" (56)
and
E{m,w) = E, < 2 .'w—-: (87)

T+m/m] 7 m..

Note that in this case, k and m are taken as inverse wavelengths (1/Az,1/Ay), rather than
(27 / Az, 27 [ A}y although this definition is somewhat unconventional.

If the spectrum is separable, then it can be shown that p must equal q. Van Zandi, (1982)
proposed that p=2.4, t= 5/3, ¢ = 2.4 and c.=14 il m and k are in units of cycles per metre,
but these determinations were based on a small amount of data, primarily data collected in the
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troposphere. More recent results suggest that t is around 1.5 - 2, while p and q may be about 2 -
3. Van Zandt, (1982) also took m. to be about 1074 cycles per metre, corresponding to a vertical
wavelength of about 10 km. The quantities m. and k. represent typical values which separate the
“high” wavenumber part of the spectrum (where the spectrum is almost of the form m™7 or k"’)a.nd
the “low” wavenumber pa.rt(where E is almost independent of m or k).It should be emphasized that
a value for m. = 10~* cycles per metre applies only in the troposphere, and changes as a function
of altitude. Sidi et al., (1988) have recently suggested refinements and improvements to the above
model, but the concept of a universal spectrum still applies.

Further developments in this area have been to consider the assumption of separability (e.g.
Gardner, 199?) and to try and develop a stronger theoretical explanation for the reasonrs for this
spectrum (e.g. Dewan and Good??; Smith et al., 198777; Hines, early 1990’s). Dewan (GRL, 1997;
JGR, 1997/8) has also further developed a similitude approach to understanding the spectrum, and
has produced additional relationships between wave-numbers and frequencies over and above the
standard dispersion relations. We will not dwell on these points here; they represent discussions
beyond the scope of the current course. However, a true scholar of gravity wave studies should most
certainly pursue and investigate these articles.

Many studies made in the 1980’s and 1990’s have concentrated on examining spectra of wave
motions (e.g. Van Zandt, 1985; Scheffler and Liu, 1985; Smith and Van Zandt, 1985; Vincent, 1984;
Nastrom et al., 1987; Fritts and Vincent, 1987; Meek et al., 1985; Dewan et al., 1984). Considerable
progress has been made in determining to what degree the wave spectrum can be really described
as “universal”. In brief, it has been found that whilst there is some degree of “universality”, there
is still some departure from this, but not by more than a factor of 3 or 4 at any one height. For
example, the GASP experiments ( Nastrom et al., 1987, 199277) found wave activity in the upper
atmosphere to be 2-3 times greater over mountainous terrain than over flat land or the sea. Studies
of wave activity as a function of season in the mesosphere have also shown variations of a factor of 2
or 3, and these will be reported later.

The spectra also tend to grow in spectral density with increasing height, but once above about
70 km altitude there is a tendency for the wave amplitudes to become more constant, as if the
atmosphere is “saturated” with waves and cannot tolerate any more. For this to be so, the waves
must lose energy as they propagate upwards, and it seems likely that as they grow, they become
unstable, cause small amounts of turbulence, lose energy and thereby reduce their amplitude to
become stable once again. This process repeats at various altitudes, with the actual altitudes at
which breaking occurs depending on the way in which the waves add up. This is to say, at any
one altitude the resultant velocity and temperature profiles are due to the sum of all contributing
waves, and at some altitudes they will add in such a way as to give an unstable Richardson number
(depending on the phases of the waves). At this altitude. turbulence will occur, while at other nearby
altitudes the arrangement of phases may not result in instability. Desaubies and Smith, (1982) have
studied processes of this type, and examined the statistics and expectation of regions of instability
arising. These patches of turbulence occur in much the same way as whitecaps appear on the surface
of the ocean. Similar studies in the atmosphere have been discussed by Hocking, (1991: JGG) and

Fairall et al., (JAS. 1991}, ()- 5 Ba.)

The nett result of this process is that the mean wave amplitudes tend to be somewhat constant
as a function of altitude above about 70 km and up to 100 km altitude. This saturation theory” has
been proposed and reported in several papers ( Dewan and Good, 1986; Smith et al., 1987; Weinstock,
{984; Tsuda et al., 1989; Fritts and Chou, 1987). It is also found that there is a “rollover” vertical
wavelength as a function of altitude, and at wavelengths much lower than this value the spectral
shape is of the form m~?, whilst at much longer vertical wavelengths the spectral shape is nearer to
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flat. The “rollover” vertical wavelengths are smallest at the lowest altitudes. Fig. @ from Smith et
al., (1987) illustrates these characteristics. It has also been found that the spectral densities depend
on the Vaisala-Brunt frequency, and that the spectral density as a function of vertical wavenumber
in the high wavenumber limit takes the form

P(m) « N?fm® (58)

Other variations of the universal theory include modifications to take account of Doppler shifting
due to the mean wind ( Van Zandt and Fritts, 1987), and variations in wave amplitude as a function
of height due to variations in static stability { Van Zandt and Fritts, 1989).

The original studies concentrated on the horizontal wind fluctuations, but the vertical wind
fluctuations have also been studied in some detail. The spectrum of these fluctuations shows a fairly
flat spectrum, but in light wind conditions there is a peak in spectral density just before the Vaisala-
Brunt frequency, and then a sharp cutoff at frequencies higher than the Vaisala- Brunt frequency.

Fig. w shows an exampie. -

It should once again be emphasized that the above discussions are all based on a theory of quasi-
universality, and assume that the irregular motions are due to a spectrum of buovancy waves. It
was noted earlier that a few workers believe that the irregular motions are due to 2-dimensional
turbulence, but it does appear that at least in the stratosphere and mesosphere the wave theory
is quite compelling. For motions in the troposphere, the argument is still much more alive; two-
dimensional turbulence will be discussed shortly in the section on turbulence. The actual reason
that this spectral shape results is far from established, although wave-wave interactions may play
an important role ( e.g. Muller et al., 1986). As noted, Hines (1990's), Gardner (1997) and Dewan
{19977) have examined causes for this spectrum in the atmosphere.
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6.6 EXPERIMENTAL STUDIES WITH RADAR - TECHNIQUES

6.6.1 Measurement techniques - gravity waves

Measurement of gravity wave parameters is usually a fairly straight-forward matter of measuring
velocity and temperature fluctuations. The most common ways in which this is done are via exper-
iments situated on rockets and balloons, or by radar and lidar techniques. The literature abounds
with such measurements, and it would be impossible to discuss them in any detail here. We will
simply note that rocket techniques may involve smoke trail releases ( e.g. Dewan et al., 1984), falling
spheres released at altitude ( e.g. Jones and Peterson, 1968) or release of chafl ( e.g. Widdel, 1987)
to name a few. Balloons carry a variety of instrumentation, usually including an anemometer,.

. As far as radar experiments go, either tilted beams and
Doppler measurements are used (e.5. Woodman and Guillen, 1974) or the spaced antenna method
(e.g. Hocking et al., 1989). Lidar experiments usually infer temperature and the fluctuations in this
parameter can then be used to study gravity wave motions ( e.g. Chanin and Hauchecorne 1981;
Shibata et al., 1986; Hauchecorne et al., 1987).

This lecture is about radar techniques, and that is what we are about to discuss. But I will not
dwell here on intimate details like how one uses radar to measure individual radial velocities - this
is done elsewhere by other authors. However, we will consider some other “derived” techniques for
measurement of gravity wave parameters, and chief amongst these is measurements of the so-called
“momentum fluxes”. we have already seen how important it is to know these terms; now we will see
that in fact these can be directly measured by radar techniques.

6.6.1.2 Momentum Fluxes
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Provided one has sufficient resolution, determination of momentum fluxes is relatively straight-
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forward. Neverthcless. such resclution is not always possible, and some other techniques have been
developed which enable direct calculation of these fluxes. For example one technique, developed
originally by Lhermitte, (1983}, uses pairs of tilted beams to make direct measurements of the vertical
flux of horizontal momentum. This method was also later used to good effect by Vincent and Reid,
(1983) to make measurninents of momentum flux and body drag in the upper atmosphere.

6.6.1.3 Other Gravity Wave Parameters

Measurements of wave periods and wavelengths are, surprisingly, still quite difficuit. The vertical
wavelengths are fairly straight-forward, but determination of horizontal wavelengths, phase velocities
and intrinsic frequencies are more difficult. (The intrinsic frequency is the frequency which would be
measured by an observer moving with the mean wind at the height of measurement.} At present,
the only available methods are multi- station observations and (to a limited degree} radar beam-
swinging methods (e.g. Vincent and Reid, 1983).
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6.7 EXPERIMENTAL RESULTS AND IMPLICATIONS

We now turn to some brief details about our current knowledge of the distributions and values
of gravity wave parameters, and ¢ and K, in the atmosphere. As usual, we will begin by examining

gravity waves.

8.7.1 Resuits - gravity waves

We will concentrate in this section on studies of the characteristics of gravity wave spectra.
Despite a large number of studies of gravity wave motions in the atmosphere, only recently has it
been possible to examine in detail the “universality” of the spectrz, and any seasonal variations.
Thus some of the following results are somewhat tentative, but nevertheless they do seem to produce
a self-consistent picture. Perhaps the first point to highlight is that there is no genuinely “universal
spectrum”, since there are indeed seasonal variations. Nevertheless in the height range of 80-100km
over a large part of the globe and the whole year, the variations in total wave RMS amplitude seems
to be less than a factor of 3 or so, which is still quite a small variation. Hence Thost workers in the
field do still speak of a “universal” spectrum as a reference spectrum. and study deviations from this

law.

6.7.1.1 Frequency and wave-number spectra, typical scales, and directions of propagation

Typical frequency spectra have already been discussed, and illustrated in fig. [} Periods are
generally in the range from about 5 mins up to the inertial period (generally 10 - 20 hours for most
latitudes), and the spectra all tend to show similar shapes. The absolute integrated power under the
spectra also tend to vary by less than a factor of 3 or 4. The spectral shape is generally a power law,
of the type P(f) « f~?, with t jn the range between about 1.3 and 2. This has been confirmed using
radars as well as other methods. Radiosonde data have also been used; e.g. Tsuda, Van Zandt etc.;
Allen and Vincent, (1997) (JAS).

Likewise the power density as a function of vertical wavenumber m and horizontal wavenumber k
are also power laws, but with a “roll-off” to flatter shapes at low m and k. Fig. [_Jshowed examples,
and showed how this “roll-off” wavenumber changed as a function of altitude. This “roll-off” vertical
wavelength A..(= 2x/m..) varies from about § km in the lower stratosphere up to about 20 km in
the upper mesosphere { Smith et al., 1987; Eckermann and Vincent. 1989). At wavelengths much
longer than A.., the spectrum is flat, and 1.1 the short wavelength limit the spectrum tends to be
proportir nal to m~3. - -

There are also short-wavelength cutoffs in the spectrum, with shorter wavelengths not being found
at all. The vertical wavelengths are generally confined to wavelengths greater than about 1.5 km at
60 km altitude, and greater than about 3 km at 100 km altitude ( Vincent, 1987, Philbrick, 1981).
It also appears that vertical wavelengths in excess of about 30 km are rare.

[t should be noted that the estimates of “typical” scales outlined above were often made from
studies of seemingly “monochromatic” waves, and although this is generally an allowable procedure,
one must be careful. The dangers of studying “monochromatic” events in the presence of a spectrum
of waves have been highlighted by Eckermann and Hocking, (1989).

Horizontal wave spectra can also be described by power laws, being typically proportional to

k-2 ( Fritts et al., 1989), with horizontal wavelengths ranging from about 5 km out to thousands of .
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kilometres  Reid, 1986). This typical power of -2 is not consistent with a power of -J [or the vertical
wave-number spectra unless the spectra are not separable in w, k and m. Nevertheless it should be
roted that this k—2 power law is based on only a few observations made by Fritts et al., (1989), and

ariability between the few spectra measured by these authors. Fritts et al., (1989)
Ve

there was large v

suggested that a “typical” horizontal scale is about 300 - 500 km. Jrvelras and

Another important quantity is the relative contributions of upgoing and downgoing waves. It is
believed by most workers in the field that the majority of gravity waves in the mesosphere have their
sources in the troposphere, and studies of “rotary” spectra by Vincent, (1984) and Eckermann and
Vincent, (1989) have supported this assertion, showing more than 65% of the wave energy was due
‘to upward propagating waves. This.may well be a lower limit. For example, an upward propagating
elliptical wave will have both an upward and downward component if decomposed into circular modes.
Nevertheless, the idea that gravity waves have a high percentage of sources in the troposphere does
seem cotrect. and this in itself is an important result. '

It is not only important to know whether waves propagate preferentially up or down, but also
whether they have preferred senses of horizontal propagation. For example, Vincent and Stubbs,
(1977), Vincent and Fritts, (1987) and Hocking, ( 1983b) found a preference for winter-time north-
south propagation in the altitude region 80 - 100 km. A more detailed study by Eckermann and
Vincent, (1959) in the region 30 - 60 km altitude showed an east-west preference in summer and
a north-south preference in winter in southern Australia. Part of the reason for this north-south
preference in winter may be related to filtering of gravity waves due to critical level interactions with
the mean flow ", but Eckermann and Vincent, ( 1989) suggests that the distribution of
sources may also be important in establishing these preferred orientations. Ebel et al., {1987) have
studied the effects on gravity waves of filtering by the mean wind. '

The shapes of the spectra are only poorly known, but the situation is even worse when it comes
to phase velocities. Typical horizontal phase velocities are in the range between 0 and 100ms™!, but
experimental determinations of the distribution of phase velocities are sorely needed. A knowledge of -
this distribution is needed because it will help in describing how and where waves in the atmosphere
break. The quantity ¢ — 7 (where c is the horizontal phase speed and T is the mean wind) is the speed
of the wave relative to the mean wind, and is called the intrinsic phase speed. When this quantity
approaches zero at any height, the vertical group velocity also tends toward zero, and the upward
rising wave begins to “pile up” its energy on itseil, resuiting in very large amplitudes which then
cause the waves to break (see our discussion of critical levels earlier in this paper). The waves may
break by convective instability ( Fritts and Rastogi, 1985), shear instability (usually in the presence
of an alreadyv existing mean shear) (e.g. Fritts and Yuan, 1989; Reid et al., 1987), or slantwise
instability ( Hines, 1988). However, one must be careful in assuming that gravity waves always break
into turbulence. For example, Klostermeyer, (1989) has proposed that waves may also luse cnergy
by non-linearly converting to waves of other frequencies and wavenumbers, and even “cascade” down
to waves of very short vertical wavelength.

6.7.1.2 Seasonal and latitudinal variatjons

The most thorough investigations of gravity wave variations as a function of time and latitude have
been those duc to Hirota, (1984), Mcek ct al., (1985), and Fritts and Vincent, (1987). llirota, (1984)
collated wind and temperature data recorded by tneteorological rockets from a variety of slations
situated around the globe, and fig. @ from Hirota, (1985) shows a summary of their results. The
data refer to RMS values of the second derivative of wind and temperature as a function of height and
measured in the altitude range 30-70km. An annual oscillation exists in wave intensity as a function
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of season at high latitudes (max. in winter) with a transition to a semi-annual oscillation in the
tropics and low fatitudes, with a maximum at the equinoxes. It shouid be highlighted here however,
that because of the nature of rocket profiles, it was not possible to distinguish the wave periods, and
these RMS values include waves of all periods. Values are generally in the range 6 ~ 10ms~'km 2
and 2-5 Kkm~?. [Typical vertical wavelengths are of the order of 5-10 km, so the vertical wave
number m is approximately 1 rad km~! ;50 a RMS value of the 2and derivative of approximately
6ms~'km~? refers to an RMS amplitude of ~ 6ms=1, and temperature fluctuations of around 2-5
K. ]. Eckermann and Vincent, {1989) have also estimated RMS wave amplitudes in the height region
30-60 km, and found horizontal RMS velocity amplitudes of around 5ms™" at 30 km altitude, rising
to around 9 ms™! at 55 km altitude. Typical RMS temperature fluctuations were around 3 - 6 K.

Meek et al., {(1985) and Vincent and Fritts, (1987} used radars to monitor wind fluctuations as a
function of time and height. They then spectrally analyzed the time series and divided the spectra
into frequency bands. Fig. @ shows a sample from Vincent and Fritts, (1987) of the mean square
amplitudes in the period range 1 to 8 hours, plotted as a function of height and time of year. Typically
the root-mean-square {RMS) values of the wind fluctuations are in the range 10 to 20ms™! at 60 to
100 k£m altitude. We note from fig. that there is a semi-annual oscillation as a {function of season
below 80 km, and this becomes more like an annual variation at higher altitudes. Notice however that
the semi-annual oscillation below 80 km is shifted in phase by 180° relative to that found by Hirota,
(1984); in this case, maxima occur in summer and winter, whilst Hirota, (1984) found the maxima to
occur at the equinoxes. However, we should note that the data used by Hirota, (1984) are at lower
heights (stratospheric), and also there was no frequency filtering applied by Hirota, (1984). Thus
the oscillations recorded may well have been dominated by near-inertial frequencies, or alternatively
there may be a genuine change in seasonal characteristics at around 70 km altitude.

6.7.1.3 Momentum fluxes, Energy fluxes and drag forces

Studies of momentum fluxes as a function of height are becoming very important, since they
impact on the mean wind in a very dramatic manner. To see how this arises, imagine the typical
mean wind profile which would arise in radiative equilibrium, in which the eastward mean wind
increases monotonically with increasing altitude up to about 100 km altitude. Rising up into this
environment are gravity waves with phase velocities with all orientations, but we are interested
only in those in the east- west plane. These may have phase velocities varying from say —50ms™!
(westward) to say +50ms~! (eastward). As the waves rise up, the eastward propagating ones all
eventually encounter an altitude where their phase speed equals that of the mean wind, and so they
break and dissipate. Thus they are prevented from propagating above this level. Thus by about 70
km altitude, there are a dominance of westward propagating waves, with a significant portion of the
eastward ones having been “filtered” out lower down. Above 70 kmn, these westward moving ones
now hegin to break (not necessarily by critical level interactions, but simply because they have grown
to large amplitudes), and so impart westward momentum to the mean wind. As a result. this slows
and even reverses the mean wind above 70 km. The drag force term which describes the acceleration
on the mean wind is %j‘;(p?_tﬂ'), or approximately ;’J;(W).

This drag force also determines the mean north-south wind. In a purely radiative situation, a
temperature gradient exists between the poles and the equator. This attempts to drive a north-south
flow, but the Coriolis force twists this into an east-west flow. This east-west flow in turn produces a
north-south Coriolis acceleration of its own which acts in the opposite direction to the temperature
gradient, and so as a result no north-south flow occurs. lowever, once the gravity waves induce some
alteration of the mean zonal wind, the north-south Coriolis force and the temperature gradient force
no longer balance, and as a result a north-south wind results. Equilibrium occurs when

63



17

d
—u'w/ = f§

dz

(131)

where ¥ is the mean north-south wind and [/ is the Coriolis parameter = 2Qsin§_, € being the
latitude and 0 the rotation rate of the Earth ( = 7.27 x 10~

| *rads s~'). For example, to explain a
10ms=! north-south wind at 45° latitude ( fT=10""ms"?

) requires a value for d/dz(u'w’) of around
1m3s~? m~!, or about 80ms='day~'., The few investigations made so far seem to rmeas

of this order ( e.g. Vincent and Reid, 1983; Fritts and Vincent, 1987; Reid and Vincent, 1987), but

these have only been occasional measurements. More are needed in order to confirm that the gravity
wave drag is responsible for the observed meridional winds.

The north-south winds can also be partly balanced by other forces such as d/dy(x'v’), and more
studies of all these different momentum fluxes and body forces are badly needed before the dynamics

Energy fluxes have been studied perhaps least of all. Vincent, (1987) has briefly reviewed a few
measurements, and reported estimates between 7 x 10— Wm™? for waves in the period range 50-60
mins, and >~ 107?Wm=? when integrated over all wave periods, at altitudes of 80-90 km. Czechowsky
et al,, (1989) have made measurements of the upward and downward fluxes of gravity wave energy at
the top of the troposphere in Germany, and found values in the range 0.08 to 0.1Wm~2, The upward
flux exceeded the downward flux by about 0.0141¥m -2, Again, more measurements are needed.
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Gravity wave and equatorial wave morphology of the stratosphere derived
from tong-term rocket soundings

By STEFHEN D. ECKERMANN'", ISAMU HIROTA? and WAYNE K. HOCKING?
YWhaiversity of Oxford, UK
*Kyoto University, Japan
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SUMMARY

Fluctuations in vertical profiles of atmospheric temperature and horizontal wind in the 2060 km altitude
range have been isolated from meteorological rocket measurements during 1977-87 at 15 widcivé separated
sites. The seasonal, geographical, and vertical variability of the variance of horizontal velocities, u'* + v'*, and
relative-temperature perturbations, 7.7, were studied. The bulk of the variance of both quantities in the 2-
10 km and 2-20 km vertical-wavelength bands was associated with gravity-wave motions, although in-depth
study of the wave polarization shows that planctary-scale equatonial wave modes contribute to the variance at
equatorial sites. Annual mean variances varied widely among the I5 stations, suggesting=appreciable geo-
graphical variability in stratospheric wave activity. Whereas w'* + 02 values generally increased significantly
with altitude throughout the stratosphere, T .2 values grew less substantially and often decreased with altitude
at upper heights. Rotations of wave-velocity phasors with height were always more frequently elockwise
than anticlockwise in the northern hemisphere, consistent with upward-propagating. wave energy, vet these
percentages (>50%) showed a marked semi-annual variation, with equinoctial maxima and minima at the
soistices. At high latitudes {~50°N-80°N) variances exhibited a strong annual variation, with the minimum in
summer and a strong peak during winter at both lower (2040 km) and upper (4060 km) heights. The annual
variance cycle attenuated somewhat at mid-latitudes (—~25°N-40°N), and a strong peak in August dominated
the @? + v? variations at 40-60 km. The peak was also evident in 7.7, but was smaller relative to the winter
peak. At low latitudes (~15°N-25"N) the wave morphology was broadly similar 1o that at mid-latitudes, apart
from an additional upper-level peak in the variance in May. This peak in May occurred in some years but not
in others at mid-latitude stations. At the equatorial stations {~I10°"N-10°S) the low-level variance showed listle
systematic seasonal variability. but exhibited clear modulation over a quasi-two-year period. Much of this
variance was consistent with the Kelvin modes thought to drive the castward phase of the stratospheric quasi-
biennial oscillation (QBG). However, the uniform cast-west alignment of waves was inconsistent with the
expected polarization of the mixed Rossby-gravity wave mode which is believed to drive the westward phase
of the QBO. At 40-60 km, the variance was strongly attcnuated around April-May and November, when both
%7+ 07 and Tdecreased with height around the 4045 km range, indicating that wave dissipation occurs
here. This produced a semi-annual variation at upper heights, with maxima around January and July, which
may contribute significantly to the semi-annual wave driving of the equatorial upper stratosphere. Polarization
studies showed that this variance in the 2-10 km band was mostly due to gravity waves, although equatorial
modes contributed during December-February.

]. INTRODUCTION

The atmosphere between about 20 and 60 km in altitude. hereafter referred to as
the stratosphere, has proved to be a notoriously difficult region to probe in fine detail.
For many years in situ measurements from rocket-borne payloads provided the majority
of information on the basic dynamics and thermal structure of the atmosphere at these
heights. While remote-sensing experiments aboard satellites now provide excellent global
data on the background structure and on planetary-scale wave disturbances throughout
the stratosphere, smaller-scale motions. such as gravity waves, are poorly resolved by
these instruments at present. While ground-based radar systems now regularly measure
winds in the height intervals 0-30 km and 60-100 km with high time-height resolution,

* Corresponding author, Present address: Computational Physics Incarporated. Suite 600, 2750 Prosperity
Avenue, Fairfax, VA 22031, USA. e-mail: eckermante ismapd.nrl.aavy.mil.
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Figure 4. (a) Phasor diagram showing the geometry af the variation of intrinsic phase speed |¢ ~ Ucos @]
with azimuth angle between the wind and wave-propagation vectors, ¢. (b} Maodetled variation of vertical
wavelength. A, with ¢ for three different ground-based phase speeds . Values of U = 50 m 5-! (eastward) and
Brunt-Viisilad frequency N = 0.017 rads™' were used in the calculation. and are typical of the mid-latitude
winter stratosphere. (c) Histograms of the number of mean azimuthal alignments of the horizontal-velocity
fluctuations, ¢. within six azimuth bins, as calculated from rocket data in the 2-10 km vertical-wavelength band
at three sites where earlier data were reinterpreted by Eckermann and Hocking (1989). The data arc split into
summer, spring. winter and autumn groupings. The lower and upper plot scquences at each site are results
{rom a lower (20-41km) and upper (40-60 km) height range. Error bars are 90% confidence intervals of the
count as given by the Poisson distribution.
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Figure 10. Plot pairs showing the values of the variance of horizontal velocities, &™ + v™. and the relative
temperature perwurbations. 7.7, (2-10km vertical-wavelength band) as a function of height at 2 selected

sitc in a given month. The error bars are standard errors of the mean.

energy propagation. whereas the converse holds in the southern hemisphere (e.g.
Andrews er al. (1987) p. 199). Therefore the sense of rotation with height of wave-induced
horizontal-velocity vectors provides information on the vertical sense of propagation of
the waves. Such calculations have verified that most upper-stratospheric gravity-wave
energy originates from lower heights (Hirota and Niki 1985; Hass and Meyer 1987:
Eckermann and Vincent 1989).

To study these features in greater depth. mean scasonal variations in the ratio of
the clockwise-rotating variance to the total variance PRESR {equal to (! + Q)/21) are
plotted as percentages in Fig. 11. Complete separation of upgoing and downgoing wave
cnergy into the clockwise and anticlockwise spectra is only possible for a circularly
polarized wave, whereas the gravity waves are elliptically polarized (see. for example.
Fig. 1 of Hirota and Niki (1985)), and so the partitioning is ‘blurred’ somewhat (Eck-
ermann and Vincent 1989). Thercfore similar ratios were also computed, using another
independent technique developed by Hirota and Niki (1985). in which the change in the
wind phasor angle at adjacent heights is computed. and the wind profile rotation is
dassified according to whichever angular change (i.c. clockwise or anticlockwise)} is the
hnorc common over the 20-60 km range. The results presented are for Auctuations in the
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are probably due to the inclusion of large-amplitude Kelvin-wave disturbances in this
broader band (e.g. Hirota 1978; Devarajan et a!. 1985; see also Fig. 5).

The analysis was duplicated using the data-reduction technique of Hamilton (1991),
with results computed over the 28-57 km range. As for the broad-band results, these
data showed a more prominent annual cycle, giving large wintertime variances. Some of
this variance may be due to interannual variability in the wintertime background vertical
structure due to stratospheric warming events (e.g. Labitzke 1981). Nevertheless, the
qualitative seasonal variations were generally the same.

(b) Temperature fluctuations

The seasonal variations in the variance of the relative-temperature fluctuations
T2 =(T]T,) are plotted in Fig. 9, again using data in the 2-10 km vertical-wavelength
band. The four rows of plots correspond roughly to each of the four latitude bands
defined earlier. -

It is immediately apparent that T 2 does not increase substanti_a_ll; with altitude, in
contrast to u’* + v'2 in Fig. 7. Additionally, monthly variations of T3 often differ from
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Figure 7. Mean monthly variations in the fluctuating horizontal-velocity variance ®74 vlin the 2-10 km
ertical wavelength band, as calculated within two altitude ranges of 20-40 km (dashed curve) and 40-60 km

s

{4 Oolld curve). Error bars indicate standard errors of the mean. Note: y-axis scales vary from plot to plot.

iYe e, and the winter maximum is less suppressed These results contrast with the (u,, Yrmas
auons from White Sands calculalcd _!y Hirota (1984), who found small maxima in
B April and Scptcmbcr. The u? + v'? data at White Sands reveal that the former
-'-h (m April) is very weak, whereas the latter maximum is very prominent and

N
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Figure 5. As for Fig. 4(c), but using data in the 2-20 km vertical-wavelength band from four representative
sites.

assumption. To investigate this issue, Fig. 6 displays alignments in the 2-10 km band at
the three equatorial sites. The alignments at all sites in the lower height range 2040 km
are strongly zonal in all seasons. At the uppermost heights the zonal clustering persists

strongly only during December-January. In other months the zonal preference is gen-
erally much weaker.

5. MEAN SEASONAL VARIATIONS IN WAVE ACTIVITY

Hirota (1984) investigated the scasonal variations of the gravity-wave activity” in
stratospheric rocket data by calculating the intensity of the fluctuations in various
atmospheric variables, X, over the height range z, < : = :,, using the following height-
integrated formula
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THE ROLE OF STOKES DIFFUSION IN MIDDLE-ATMOSPHERIC TRANSPORT.

W.K. HOCKING

Physics Dept.,

University of Western Ontario,
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and

R.L. WALTERSCHEID -
Space Sciences Laboratory,

The Aerospace Corporation,

El Segundo, California, U.S.A.

ABSTRACT. Although turbulence occurs regularly throughout the middle
atmosphere, it‘s appearance is sporadic both in time and space. 1t is
certainly not posgible to visualize the upper atmosphere as a
homogeneous turbulent medium; laminar regions often appear to exist
between the turbulent ones. Although localized occurrences of
turbulence can be gquite intense, this intermittency restricts the
capability of small scale turbulence to cause large scale diffusion. 1In
this paper, we discuss an alternative model for large scale atmospheric
diffusion, which allows large scale diffusion to proceed even in the
presence of very ljocalized turbulence. We propose that large scale
diffusion need not be entirely due to small scale turbulent eddies, but
that an ensemble of gravity waves may act in a diffusive sense. This is
possible because of the accumulated effects of the Stokes’ drifts of an
ensemble of gravity waves. We disuse the mechanism by which this
occure, and quantify the level of diffusion which we expect this
mechanism to produce.

1. Introduction.

Rather than being a homogeneous process acting uniformly throughout the
middle atmosphere, it has been clearly shown through the period of the
recent *"Middle Atmosphere Program™ that turbulence is both temporally
and spatially intermittent. It occurs only for short periods of time at
varying spatial locations. Examples of this intermittency have been
illustrated particularly well with radar studies (e.g. Czechowsky et
al., 1979; Roettger et al, 1979; Woodman 1980; Sato et al., 1985,
amongst many), and this intermittency has been discussed in some detail
by Hocking, ( 1992).
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The consequences of this intermittency are important. 1In
particular, we must revisualize how large-~scale turbulent diffusion
takes place. An important proposal due to Dewan ( 198l1) and Woodman and
Rastogi ( 1984) suggested that the random occurrence of layers acts like
a Monte Carlo process gradually causing diffusion, as first one layer
forms, causing diffusion, and later another forms to cause transport
over the depth of that layer. Thus in this model the factors which
control the large-scale diffusion are not the rates of diffusion across
individual layers, but the frequency of occurrence and depth of
individual layers. Any determinations of effective diffusion
coefficients must take this into account. "Classical" formulae relating
the mean strength of turbulence within turbulent layers to the mean
diffusion coefficient, such as

K = ¢ s/waz {1)

would no longer be valid at large scales. -

In this paper, we will discuss an alternative proposal, based
around the concept of the "Stokes’ Drift" of a gravity wave. The model
has been reported in detail by Walterscheid and Hocking, ( 1991), but in
this review we summarize its salient features and discuss it‘’s
implications for visualization of turbulent transport in the middle
atmosphere. We should note here that we are not claiming that this is
the sole cause of large scale atmospheric diffusion; we do, however,
claim that it is an important one.

We choose to first give a discussion of the basic ideas inherent in
the model, drawing on the results of Walterscheid and Hocking ( 1991).
In this way, we hope to portray the salient concepts involved in the
model, free of any mathematical encumbrances; we also make some
statements without proof in this introductory discussion, and leave
their actual justification until later in the paper. Only after this
descriptive discussion do we turn to a more mathematical description.

2. A physical description of the principle of the model

A single monochromatic gravity wave in a compressible atmosphere carries
a parcel of air in an elliptical orbit and returns it (almost) to its
start position after one cycle. But it does not in fact return exactly
to its start position. 1In fact (at least in the compressible case)} the
particle drifts slightly from its start position, and this constitutes a
so-called "Stokes drift". A pictorial example is shown in fig. 1. This
is true even for nondissipating waves, but more so for dissipating ones.
When a spectrum of waves exists, the Stokes’ drifts of the waves can add
in a random-like manner to produce a sort of random walk. This results
in dispersion of an initially compact cloud of particles, although it
should be noted that the process will only be important over time scales
of several hours and more. Walterscheid and Hocking { 1991) used
numerical procedures to examine the magnitude of this effect, and in due
course we will summarize the results obtained in that earlier work.
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However, before doing so, we now wish to take the concept of Stokes-’
diffusion a little further, and discuss gravity waves in a somewhat
| simpler atmosphere.

T = 30m f
100km

Parcel Motion

i Group
Velocnly

X

| Phase
\ Velocity

Figure 1. Schematic diagram of a typical parcel orbit when driven by a
monochromatic, compressible gravity wave. The points S and F represent
the parcel location at the start and finish of 1 full cycle, and the
distance SF represents the "Stokes’ drift".

Consider for simplicity one of the simplest types of buoyancy
waves; namely the Boussinesqg case. Individually, waves of this type
suffer no Stokes’ drift, and according to the above description they
will therefore not exhibit the type of diffusion just described.
However, when one considers a spectrum of waves, which may exhibit
motions which decorrelate over some (as yet unspecified) spatial and
temporal scales, then the picture changes. The relation between the
velocity of a displaced parcel and its position becomes more complex,
and the nett wave propagation vector may no longer be normal to the nett
j velocity. In such circumstances, even a spectrum of Boussinesq waves
may exhibit a form of diffusion. 1In brief, a Stokes’ drift may occur
when one wave displaces a parcel along the direction of phase
propagation of another wave.

The above description considers a special case of a random
collection of monochromatic waves. However, we can also view the wave
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field as a succession of wave packets. it is true that such a series of
packets can be represented as a Fourier sum, and therefore in the same
spectral manner as that just discussed, but it can sometimes be useful
to visualize the wave field as such as sequence of packets. We can now
look at the effects of our special diffusion in terms of such a
description.

Consider an array of marked parcels subject to the passage of a
random succession of dissipating wave packets. Because the packets are
dissipating, parcels will suffer a net displacement as a result of the
passage of a packet. If the parcels are separated by a distance that is
large compared to the localization of wave packets, then parcels may be
displaced with respect to each other in random walk fashion. As time
goes on, the root-mean-square separation measured from the center of
mass of the array will increase. This increasing separation in time is
diffusive, and in this respect is similar to the separation that occurs
as a result of the action of turbulent eddies. Wave packets are viewed
as localized entities, and the diffusion that occurs is akin to
scattering (Herterich and Hasselmann, 1982).

Eventually, the monochromatic waves making up the packets lose
coherency in a dispersive medium and degenerate into a more or less
random superposition of waves. We therefore now return to our
discussions concerning a general spectrum of waves. The wave field in
the mesosphere is apt to be dominated by such waves, and we now consider
parcels subject to a random superposition of a large number of these
waves. The motion of the parcels consists of a cycle—-averaged drift and
an intracycle disturbance velocity relative to the drift. The
intracycle variations due to superposition of all of the waves are
esgentially uncorrelated for locations sufficiently far apart; i.e., for
locations separated by a correlation length or greater. The correlation
length in a given direction n is £, ~ (Aky)"~1, where
Ak, is the bandwidth of the wave-number spectrum in the direction
p. However, diffusion is the product of the cycle-averaged drift.

This drift may be strongly inhibited by nonacceleration constraints (see
Walterscheid and Hocking, 1991) and the degree of correlation in drift
motions may be greater than that implied by f., but it still occurs
nevertheless.

We note that our model does not contravene any of the conditions of
non—-transport theory or potential temperature conservation in a non-
dissipative field. If we consider the Boussinesq case, we imagine that
parcels execute a long-term "random-walk" on surfaces of constant
potential temperature. They simply "slide around" on these surfaces,
but nevertheless the nett result can look very much like diffusion. We
will not dwell extensively on this point in this paper; Walterscheid and
Hocking { 1991) discussed the implications of the model with'respect to
" non—acceleration and non-transport theorems in greater detail.

In order to see the consequences of non—transport and conservation
theorems, consider fig. 2. We imagine for simplicity a group of waves
with various horizontal and vertical wavelengths, but with periods which
are all harmonically related. Suppose the period of the longest wave is
Ty, and all other waves have periods of Ty/2, Ty/3 etc. Then
after a time Ty, the potential surface will look exactly like it did




at time T=0, as shown in the second part of fig. 2. However, the
parcels which were marked in the first part of fig. 2. will now have
drifted to new locations on the surfaces of constant potential surface.

Schematic lllustration of Stokes Diffusion

along Planes of Constant Potential Temperature
Timet=

\\

200 km

Timet=2T

Figure 2. Illustration of the diffusive effect produced by an ensemble
of gravity waves due to the Stokes’ mechanism. Note that this
represents only a small part of the wave field - the general slope of
the isopleths up to the left is due to a larger scale wave which is not
fully resolved in this diagram.
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After another period Ty, the parcels will have drifted further, as

shown in the third part of fig. 2. To a distant observer, the parcels
will appear to have undergone a "diffusive” spread, and this spread
includes some vertical component because the original surfaces of
constant potential temperature themselves had some vertical fluctuation.

Note that the spread after one cycle is much smaller than the
vertical displacements which the parcel undergoes during one period of
its trajectory, but the important point is that the layer never returns
to a flat layer, even after all of the waves have completed integral
numbers of periods. The original flat layer of parcels is now spread
out vertically. After many cycles, the vertical spread can indeed be
comparable with the vertical excursions of the particle during a single
cycle.

However, since the parcels are still all located on surfaces of
constant potential temperature, we cannot deecribe this as true
diffusion. Certainly the motion along the surfaces of conetant
potential temperature is indeed true diffusion, but the apparent spread
vertically is (in the non-dissipative case) an artifact. Nevertheless,
from the viewpoint of a distant observer, it will appear just like
vertical diffusion. The parcels can "diffuse" no further apart
vertically by this mechanism than the maximum vertical excursion which
the parcel undergoes during any part of its normal gravity oscillation,
but in the middle atmosphere this can be several kilometres, as we will
soon see. We will refer to this type of "diffusion" as "pseudo-
diffusion”. '

The process just described will apply for any non-diesipative wave,
whether it be Bouseinesq or fully compressible. However, we will see
that when we allow waves to be dissipative, then parcels of air can
cross between lines of constant potential temperature. This, super-
imposed on the above "pseudo-diffusion" , leads to a very real diffusion
on time scales of several hours and more. In this paper, we will first
treat "pseudo diffusion™ ,and examine its magnitude and consequences as
it relates to a spectrum of Boussinesq waves, and then we shall consider
the caese of dissipative fully compressible waves and look at the
enhanced diffusion due to their dissipative nature. The actual cause of
the wave dissipation will not be discussed here, but it could include
non-linear interactions, critical layer interactions and turbulence
production. We do however note that if the degree of wave dissipation
i{s related to the mean energy dissipation rate, then the possibility
exists that the mean strength of turbulence in individual layers might
be related to the nett large scale Stokes’ diffusion simply because the
strength of turbulence and the Stokes’ diffusion both depend on the rate
of dissipation of the gravity waves. In this case it might not be so
easy to dismiss relations like (1), although the functional relation
between K and ¢ may not be as simple as (1) indicates.

We now turn to a more thorough mathematical discussion, in order to
illustrate that what we have just said is really a valid description.
Nevertheleas, the discussion will be somewhat less thorough than that in
walterscheid and Hocking ( 1991), since this paper is intended to be a
1ittle more descriptive and less mathematically rigorous than that
earlier one.
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3. Theory
3.1. MATHEMATICAL DESCRIPTION OF STOKES DRIFT

Stokes drift may be viewed in terms of the drift of thin fluid tubes
deformed by waves (Andrews and M®Intyre 1978) or in terms of the
drift of individual fluid parcels (Longuet-Higgins, 1969). 1In this
study we adopt the latter view.

Consider a field of motion that consists at every point of an eddy
contribution with zero time mean and a superposed mean flow. 1In
general, the Lagrangian mean displacement will be different from the
displacement implied by the Eulerian mean velocity. The difference
between the Lagrangian mean velocity and the Bulerian mean velocity is
the Stokes velocity. Thus,

L

u” o= + (2)

=]
I=]

5

where E'is velocity; the overbars refer to time averages over a
cycle. The quantity { ) denotes the Eulerian time average over the
locus of points traced out by the parcel’s mean Lagrangian motion and
( ) L  denotes the Lagrangian average over the parcel’s trajectory.
Stokes drift is written in terms of parcel displacement as

L _—
u ( X,t) - u (Xt)

=
I
g

~— L —_—
= uwu{X+Ei (Xt))y - u ( X,t) (3)

where X is the parcel position, i = Xo + EL t, £ =X - ﬁ,
Xo is the initial parcel position and 't’ is time. Thus,

=L

£ = [u(x, t')Dt - t (4)
where Dt denotes integration following a parcel (Andrews and MCIntyre,
1978). The quantity EL is that value of the mean drift velocity
which gives § = O. Stokes drift is nil for any motion for which
u(X+§, t)y = u (X, t); e.g.. purely transverse

waves. The quantity u consists of contributions owing to mean
background motion and eddy-induced Bulerian motion

=

+

= |

u = ug e , (5)
where Eé is the background part and Eé is the eddy-induced
part. Henceforth, we set up = 0.

If the parcel displacements during an averaging period are not too

great, we can show (e.g. Walterscheid and Hocking, 1991)
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u, = £ . Vu'( X, t) (6)
correct to second order in disturbance amplitude.

This formula was determined with the requirement that { = 0.
However, it is also convenient to refer the evaluation of :e to the
fixed point X5 rather than the moving point X = th
{Longuet-Higgins, 1969). Ignoring mean Eulerian motions gives

(4 ) TS +o(a )

s O

where (¥ = X - Xgr U5 = u {Xgr t) - 1 (X5, t) , and 'a‘’ is a
measure of wave amplitude. We define

£ = Lo" *+ 3y’ (7)

where
t

£-0' = 0!‘ u’( xo'ta)dtf

and where dt denotes integration at the fixed point X,. Thus

( uw ) = E Vo’ +6§6.V2'+0(a3) (8)
s O 0 0 0

The vertical Stokes velocity is just the z component of this
equation i.e.

( w ) = E(').th', + BE7g- Vwé + o(a?d) (9)

g O

where w is the vertical component of u.
For small values of {,/{., the second term on the right hand
side can be ignored in both {8) and (9).

3.2. SOURCES OF STOKES' DRIFT FROM A MATHEMATICAL PERSPECTIVE.

For monochromatic waves {,.Vu, = i E'.k u', where k is the
ug ($0-K)4g

wavenumber vector. Thus, Stokes drift by monochromatic waves on a
background state of rest can be induced by any process that produces a
longitudinal component to the wave motion. Steady, conservative,
monochromatic Boussinesq wave motion, which is purely transverse, does
not induce a Stokes drift, while monochromatic compressible wave motion,
which has a longitudinal component, does (Coy et al. 1986). Dissipative
processes also induce Stokes drift (Andrews and MCIntyre 1978; Andrews
et al. 1987).
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Superposition effects can alsc generate a Stokes drift, and we have
already discussed this qualitatively. However, it is unlikely that the
first term on the right-hand side of (8) and (9) contributes very much
to vertical diffusion. Sanderson and Okubo ( 1988) found that the
vertical Lagrangian displacement was nil to second order for a spectrum
of Boussinesq internal waves with vertical modal structures. In
Walterscheid and Hocking ( 199]1) we showed that the first term on the
right-hand side is nil for a spectrum of vertically propagating
Boussinesq waves for the special case where the waves comprising the
spectrum are harmonically related. These results indicate that
superposition effects should not contribute a significant vertical
Stokes drift through the first term on the right. Thus, there is a
tendency for £‘g to be orthogonal to Vwj, even for a superposition
of waves. In a non-Boussinesqg atmosphere this term might contribute a
significant upward drift through Stokes drifts induced by
compressibility, irrespective of superposition effects (Coy et al.
1986). However, these drifts should not contribute to diffusion. They
vary systematically rather than randomly and should be vancelled by
induced Eulerian drifts; otherwise the Stokes drifts would result in a
global long-term accumulation of mass above a given level.

This means that the diffusive action of Stokes drift is apt to
originate in the second term on the right-hand side of {9) [which we
denote (6;)0 ] and possibly higher-order terms. This is a major point to
note. When {43 >> f., the quantity §{, might be of the order of {,
and have a large component randomly orientated with respect to Vwg;
thus, in general, §f{§ will not be orthogonal to Vwj. We expect the
diffusion due to this effect to be a major contributor to the diffusion
which we will see in our model.

4. Measures of Dispersion

In crder to cbtain quantitative estimates of the diffusion induced by
this mechanism, we need to cobtain a measure of the dispersion. We have
found it convenlent to define 3 separate measures, each of which has its
own strengths and weaknesses.

If two parcels are separated by more than a correlation length,
there can be significant relative displacement of the parcels. If this
motion is extended to an array of parcels, the mean—square separation
between parcels should increase as the result of uncorrelated
displacements caused by the random superposition of waves. The mean-
square vertical separation of parcels at time ‘t’ relative to time typ
is : :

<( A'ii(t))2> <{A’ii(0))2>
s I - L—— (10)

[N
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The quantity AZ;(t) = Z; - 2, is the vertical displacement of the
ith parcel with respect to the mean vertical position Zys N is the
number of parcels, and t is again time.

The quantity o, can be expressed in terms of the mutual diffusion
of pairs of parcels as follows. Let 6y = 2; - Z,(0), and ( ) =

I( )i/N = ( )p+ where the subscript i refers to the i parcel, 1 <ji < »
N, and Z;(0) is the initial value of Z;. It is easily shown that )
2 _ T2 i
0, = <b;> (11) ,

and if we further define

xi = <(azij)2> i3 (12)
then -
2 2t 2 i .
X, = 2 < 8i> = 2 o, {(13) .

The angle brackets denote an ensemble average over a large number
of identical configurations of Z2;{0), and the quantity ﬁzi is the '
vertical separation between the it and j~-" parcel with the initial
separation separated out ie

8235 = [ z.(tY) - 2;(0)] ~ | Z3(t") - 25(0) | (14)

The definitions (10) and (12) are not very convenient for studying
the growth in the rms separation of parcels for instances when parcels
are separated by less than one correlation length. When investigating
the relative dispersion of parcels initially much closer together than .
one correlation length, a modified form of {12) proves very useful. We
define

2 74
Yonr = <823 ;0% > (15)

where k is an integer, and Af = k times the separation n of adjacent
parcels. 1In the case that k=1, this formulation involves summing .
squares of displacements of adjacent pairs of partjcles. _It has the
advantage that, whereas the rates of increase of o, and x, with time
depend on the rms wave amplitude, the correlation length, the ’
separations of adjacent particleg, and the total size of the cloud of
particles under consideration, {2A¢ has no dependence on the total
cloud size. It is very similar to the structure function at lag Af. '
When the motion of adjacent parcels is uncorrelated, rzAf reduces to '
Xz+ In the more general case, for N vertically aligned parcels
separated by a distance Af,
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2 N1 2
Xg = D (k) £7 0, 1/ (N@-1)/2)
2 . . 2,
where fz(k is the structure function at lag Af = k¢, and x, is

very nearly the structure function summed over all possible lags.

Since each has its advantages, all three measures of dispersion,
{10y, (12), and (15), will be used. the guantity {,apls particularly
useful for,examining the dispersion of closely spaced parcels. We may
think of {,ap with k=1 as being the mean rate of dispersion of
neighboring pairs of parcels having initial separation Af.

Walterscheid and Hocking ( 1991) considered various theoretical
examples which utilized applications of these various measures of
dispersion. We will not do this here, but rather will turn now to a
numerical model which was used to investigate in more detail the effects
which have been discussed so far.

5. Trajectory model
5.1. GRAVITY WAVE DISPERSION AND POLARIZATION RELATIONS.

In order to address the issues discussed, a numerical model was
developed. It was decided to first generalize the usual fluid dynamical
equatione by including a Rayleigh drag term, and to solve these
equations for WKBJ mcotions as rigorously as possible. Generalized
dispersion relations for buoyancy waves were then developed. In this
way, it was possible to examine the particle driits for a variety of
waves, from undamped to rapidly dissipating,and at the same time allow
greater confidence that any Stokes drifts were real and not due to some
inadequate approximation. The dispersion and polarization relations used
are developed in appendix A.

£.2. NUMERICAL MODEL

A numerical model was developed to examine the particle drifts and
evaluate the degree of diffusion. Paths of individual particles were
computed by solving the relation

dx

3T = 4 (%t) (16)
using a Runge-Kutta fourth-order scheme, where the velocity field
u(x,t) was specified by one or more gravity waves. In cases in

which more than one wave was used, the wave periods and horizontal

wavelengths were chosen to be harmonically related, and the drift was
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determined over one period of the lowest-frequency wave so that all
waves executed integral numbers of cycles. the difference in the final
position and the start position was then found. The particle drifts ,
were calculated using successively smaller time steps until the results v
were repeatable between two successive time steps; typical time steps
necessary were in the range 0.05 to 0.5 s for Boussinesq waves and
between 0.05 and 0.25s8 for compressible waves.

In our earlier work (Walterscheid and Hocking, 1991), we were also
concerned about the possible effect of a mean nett Eulerian drift, and
sC in some of our simulations we also subtracted out a time-averaged
Eulerian drift at each point of the trajectory. This was in order to
avoid the physically unrealistic circumstance of a nett vertical mass
flux being implicit in the model. However, our results with respect to
diffusion were largely independent of whether this was done, so we will
not consider this aspect in any more detail in this report.

—

5.3. WAVE SPECTRUM

The spectrum chosen was based on some observational data reported by
Ball ( 1981).and Vincent and Ball ( 1581), which showed frequency
spectra of the type P(f) a £ 1. This means that the energy per decade
is constant. Within each frequency band, it was assumed that the
horizontal wavenumber (k) followed a law of the type k—z. These choices
agree reasonably well with the relations described by VanZandt ( 1982).

In order to obtain stable results in reasonable computer time, it
was necessary to limit the number of waves in the spectrum to a fairly
small set. To do this, and yet still have an adequate range of wave
periods and wavelengths, only waves with upward group velocity and
eastward phase progression were considered in most of the calculations.
Some simulations with westward-propagating waves showed that the
dispersion of particles was essentially unchanged provided that the
total energy content of the waves was unchanged. Thus, these initial
limitations on the spectrum do not appear to be overly restrictive.

The Stokes drifts over six cycles of the longest period wave were
calculated, using the previously mentioned Runge-Kutta scheme. In some
special cases, drifts over eight cycles were found. The larger the
number of waves that are included in the spectrum the more complicated
the flow becomes. As the complexity of the flow increases, shorter time
steps and greater precision are required in order for the iterative
procedure to converge. The combination of short time steps and high
precision makes trajectory calculation for a large number of waves
infeasible.

An ensemble of 21 waves was chosen, using periods of 15 to 240 min,
and with horizontal wavelengths in the range 6.25 to 1600 km. The
phases of the waves were chosen at random. A table of the parameters of
the resultant waves is shown in Table 1 of Walterscheid and Hocking, ¢
1991). Waves with a vertical wavelength less than about 2-3 km were
ignored, since these should be heavily damped by viscous and radiative
effects (Schoerbel et al. 1983; Fels, 1982, 1984). Periods up to 240
min were included but not beyond, because inclusion of longer periods
made the simulations prohibitively lengthy.
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Figure 3. (a) Typical height profile of the x component of the wave
velocity for the nominal spectrum of Boussinesq waves used in the
trajectory simulations. (b) The vertical autocovariance function of the
profile shown in (a).
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Figure 4. Typical particle trajectory for the spectrum of Boussinesq
waves discussed in the text. The trajectory is for one cycle (240
mins).
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6. The Simulations

Although we introduced ocur discussions in terms of the Stokes’ drifte of
compressible waves, we subsequently showed that even Boussinesq waves
can cause Stokes’' Diffusion, provided that a spectrum of waves is
present; the drifts for individual monochromatic waves is zero. In many
senses this type of diffusion is easier to model, and furthermore the
diffusion inferred in this case is a useful reference point for
subsequent comparisons with the compressible case. Thus we begin by
studying this special case.

6.1. BOUSSINESQ SYSTEM

The Boussinesq system was obtained from the equations presented in the
appendix by letting H and csz tend to infinity, except in the
expression for N2 (A4), and by setting £ = 0 in (Al0). “Potential
temperature for the Boussinesq system was defined as § = 6. E,

where O, is taken to be 300K.

Initially, Stokes drifts were calculated for a variety of
monochromatic waves, and it was confirmed that the Stokes drift in these
cases were zero. In the remainder of this section we report model
results for a spectrum of waves.

Fig. 3a shows a typical height profile of the x component of the
velocity (u’) due to the ensemble of waves chosen to represent the
spectrum, and Fig. 3b shows the corresponding spatial-autocorrelation
function. Notice that the vertical correlation length is about 2.8 km,
since the autocorrelation function falls to 0.5 at this lag. The
corresponding horizontal correlation length is ~50 km.

Fig. 4 shows a typical particle orbit over one cycle of the longest
period wave for the spectrum described in Table 1 of Walterscheid and
Hocking, ( 1991). The parcel experiences a nett drift, despite the fact
that the waves are undamped Boussinesq waves. The next step was to
quantify the degree of dispersion of an ensemble of particles in terms
of the vertical diffusion of the ensemble. Particles were initially
aligned in a vertical column and the quantity {_,,; [(see (15)] was
calculated. This was done for a variety of initial separations,
including cases in which the initial separation Af was substantially
less than and substantially more than the vertical correlation length;
values of Af chosen_were 4 km, 1 km, or 0.1 km.

The quantity {,, g was calculated using a vertical array of 65
particles separated by 1 km, with an initial separation of 4 km.
Particle pairs were successively the first and fifth, second and sixth,
third and seventh, and so forth. The upper line in Fig. 5 shows the
resultant varjation as a function of time. One "cycle" corresponds to
240 minutes. The_best-fit regression line gives

logyg §,4.0 = (1.04)40.12) 1°910(Ncyc1e) + (0.73%.05) (17)

where t* = Ncycle LT and tg = 240 min.

)
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Figure 5. Mean-square separation §§4_0 of parcel pairs as a function
of cycle number for two different sets of wave amplitudes and phases.
In both cases parcel pairs were separated by 4 vertically. The upper
set of points shows the mean-square separation {,, o as a function of
cycle number for one set of wave amplitudes, whereas for the lower set
the wave amplitudes'were halved. A different set of wave phases was
used in each case. The error bars show standard errors and the solid
lines show best-fit regression lines. The expressions for the best-fit
liners are also indicated on the graphs, where N refers to the cycle
number (Ncycle inzthe text). Both best-fit lines are statistically
consistent with {,, g o N.

As discussed by Walterscheid and Hocking, t 1991) [ see their
equations (29) and (30)], we expect that in the limit of large
separations,



-

|

2 76

*
2 Dt , (18)

()
or

NN NN

4 p,,t". (19)

fi

X

In other words, we expect the slope to be 1.0, and our observed
value is not statistically different, so we can take it as 1 exactly; if
we do this and solve for D,, using (19), we obtain D,, - 90 m? g1,

The diffusion coefficient will be 3 function of fhg*enerqg }n the
wave spectrum. We expect that D,, ~ (0,/t) =~ (uz/t) t ~w't,
go that

D,, a <w?t - o(a?) (20)

zz
where ‘a‘ is a measure of wave amplitude. Thus we anticipate that D,
will be proportional to the power in the spectrum.

In order to check this dependence, the above simulations were
repeated with the previous wave amplitudes halved thus reducing the
total power in the spectrum by 4 times), and a new set of phases was
used. For this case we found that D,, ~ 20 m? s~1 (see fig. S). This
reduction is close to the limiting value of a factor of 4 when §g >> £,

The results presented so far refer to parcel pairs whose motions
were initially uncorrelated, but it is also interesting to observe what
happens when psrcel motion is initjally correlated. Fig. 6a shows the
variation of {,45 ; as a function of time for wave amplitudes equal to
those used in the second set of calculations discussed above (i.e.
reduced to one half of the original set). The smaller amplitudes were
used to prevent the parcel motion from becoming uncorrelated too
quickly. The most noticeable effect is that the slope of the line is
much steeper than 1.0. It was found that the following equation was
approximately obeyed;

2 1.7 + 0.2
{90.1 @« ¢t

This faster increase in fio.l as a function of time arises
because of the rapid increase in the decorrelation between parcels;
initially the larger-scale waves do not play a dispersive role but as
the parcel separations increase, the large-scale waves become involved
and accelerate the dispersion of parcels.

Eventually the parcels should move go far apart that they are
essentially uncorrelated, in which case there should be a transition to
a relation of the type sze a t. Parcel motion can decorrelate
because of vertical and horizontal displacement. Note that in Fig. 4
the vertical and horizontal displacements both exceed their respective
correlation lengths - with a somewhat greater decorrelation indicated
for vertical displacement. To inyestigate the possibility of a
transition to a diffusive limit [ z1.0 was calculated as a function of
cycle number for an initial separation of 1 km and again using
amplitudes equal to one-half of those used originally ( i.e. the same as

(21)
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Figure 6 (a) Mean-square separation of parcels fio.l'as a function of
cycle number for the case in which the parcel pairs were initially 0.1
km apart. Wave amplitudes are one-half of those used in the first case
discussed in fig. 5, and the same as the second case d%scussed in figqg.
5. Note that {,5 ; increases much more rapidly than {24.0 4id in

fig. 5. (b) As in (a)}, but with initial parcel asparation equal to 1
km. Note that a break in slope occurs at about {,5 ; =7 - 8 kmz. At
thﬁs point the mean-square feparation of particles [ i.e. (1.0)2 +
({20.1] is approximately fg g where {3 ¢ is the vertical correlation
length (see fig. 3).
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those used for fig. 6, and the lower line in fig. 5). A break in slope
occurs at abgut cycle 4, when the mean square parcel separation is
[(1.0)2 + ({,0.1] = (2.8) kmz, or approximately the vertical
correlation length squared. It should be noted that the break shown
here is slightly more pronounced than for other choices of the relative
phases used, partly because of the rather low slope of 0.75 10.28 beyond
cycle 4. This is marginally consistent with a slope of 1.0. A break in
slope was a common feature of other simulations using different phase
combinations for the waves and seems to represent a real phenomenon.

We have deliberately not discussed the effects with respect to non-
acceleration and non-transport theorems in this article; Walterscheid
and Hocking, 1991) discussed these effects at length. We have only
noted here that our model does not contravene any such tBeorems.
However, we do note that the break in the slope of the {,,, curve
may also be related to constraints imposed by nonacceleration-
nontransport conditions; one would expect the dispersion to tend to
eventually "saturate~ at large enough parcel separations=since the
parcels can move no further than the maximum vertical displacement of
the wave. Some evidence is seen for this in Fig. 6b at cycles greater
than 6. The behavior is also seen to some extent in the upper curve
shown in Fig. 5 for N .10 =4 or 5.

To be more speciftic, when the mean position of 8 surfaces are
constant as a consequence of nonacceleration-nontransport constrains,
parcel displacements are limited to the maximum vertical displacement of
the wave-deformed # surface plus some drift relative to # the surface
because of nonconservation of #. ( This may be viewed, alternatively, as
conservation of ¢ accompanied by wave transport of mean #). The maximum
excursion of a wave-deformed § surface is AZ ox ~w'tg/(2%), where w’ is
a characteristic perturbation vertical velocity. For our nominal
spectrum AZ .. ~ 4 km and is consistent with the maximum parcel
displacement shown in Fig. 4.

6.2. A SPECTRUM OF COMPRESSIBLE WAVES

We now turn to some more realistic simulations, in which we allow the
waves to be fully compressible. Only saturated waves are considered.

We assume that saturation occurs ds a result of some dissipative process
(e.g., small-scale turbulence and convection), which can be modeled in
idealized terms by Rayleigh friction. Rayleigh friction is chosen in
such a way that m;, the imaginary part of the vertical wavenumber, is
zero. As already discussed, mean Eulerian drifts will not be discussed
in this paper, although they were certainly discussed extensively in our
earlier work. As for the Boussinesqg case, the initial configuration of
parcels was chosen to be one in which all the parcels had the same
location in the x-y plane, but different vertical positions. This is
because the major effect to be examined was the rate of vertical
diffusion, and if different horizontal positions were used for the start
positions, the horizontal spatial separation would contribute to the
decorrelation of velocities and enhance the diffusion. We note that by
now considering dissipative waves, there may indeed be a real

diffusive effect in addition to the vertical "quasi-diffusion" discussed




in relation to the Boussinesqg case.
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Figure 7. Mean drift and dispersion (oi) for a spectrum of saturated
waves, ag a function of the cyclg number. Start positions were
vertically aligned. Note that ¢, is the dispersion form the centre of
mass, and is one half of the quantity used in figs. 5 and 6.

Particles were entered with ten different start positions
distributed uniformly over one full vertical wavelength of the largest
wave; i.e., at (0, 0, 50), (O, O, 56.5), etc. (units in kilometers).
Typical particle orbits for a saturated wave spectrum wgre similar to

the one shown in Fig. 4. 1In this case, we calculated o, as our
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measure of dispersion [see (12)], so these values should be doubled if
making comparisons with figs. 5§ and 6.

Results for the ensemble mean vertical Stokes drift for a saturated
spectrum of waves are shown in Fig. 7. Using the quantities displayed
in fig. 7 to determine2 Dgi through the relation (18) gives values for
D,, of about 170-200 m“ s ~. We have already noted that some of this is
a "quasi-diffusion" contribution, and we have also seen from our work
with Boussinesq waves that this component is expected to be about 90 -
100 m?s”1. Thus we might surmise that the "real” diffusive component is
the difference between D,  calculated from fig. 7 and this "guasi-
diffusion™ component, or about 70-100 m%s %, Such a value is quite
representative of inferred diffusion rates in the middle atmosphere at
~80-90 km (e.g., Hocking, 1987) and suggests that this mechanism might
be an important cause of diffusion in the atmosphere.

This result is the main point of this work so far, and underlines
the potential importance of this mechanism as a cause of large scale
diffusion in the real mesosphere.

7. Summary and conclusions

We have examined the dispersion of marked parcels by Stokes drift using
the Stokes drift formalism, relations for the dispersion of marked
parcels, and trajectory simulations. Our trajectory model is one in
which Eulerian drifts are accounted for by simultaneously requiring the
mean Lagrangian displacement to vanish for monochromatic waves when
nonacceleration conditions apply and requiring that there be no long-
term accumulation or depletion of mass above a long-term accumulation or
depletion of mass above a given level; otherwise parcel drifts are
consistent with displacements caused by a field of noninteracting waves.
Trajectory simulations were performed for a spectrum of Boussinesqg and
saturated compressible waves.

We have found that "Stokes’ Diffusion" does indeed produce long-
term diffusive effects comparable to those measured in the real
atmosphere, and therefore note that this process will almost certainly
be important in diffusion in the Earth‘s middle atmosphere. Even a
spectrum of waves in a Boussinesq atmosphere can cause a form of
diffusion which we have labeled "quasi-diffusion", but once
compressibility and dissipation are also included, we find that very
substantjal rates of real diffusion do indeed occur. In our case,
using realistic gravity wave spectra, we obtain estimates of vertical
diffusion in the range 70-100 mzs_l.We note however that this diffusion
process will only be important on time scales of a few hours and more,
and will not be important for local small scale diffusion.

We also note that even for a Boussinesq spectrum, there will be
real diffusion along surfaces of constant potential temperature. It is
only the vertical diffusion which needs to be considered as non-real.
Indeed, if a tracer q has a gradient along a surface of constant
potential temperature, then Stokes’ diffusion will certainly cause real
diffusive transport of q.




APPENDIX A: THE DISPERSION AND POLARIZATION RELATIONS FOR GRAVITY WAVES
AS USED IN TEE TEXT.

The equations considered were the standard fluid-dynamical equations viz

Du

— + 2pflxu + pg +¥p = O (A1)
Dt

Dp 1 Dp

—_— = — A2
Dt cgs Dt (A2}
Dp

— + p¥.u =0 (A3)
Dt

where D/Dt represents differentiation following the motion. The total
velocity is u, the density is represented by p, @ is the

Coriolis parameter, {lxu is the cross product of ? and u,

g is the acceleration due to gravity = (0,0,-g), p is the pressure,
cs2 is the speed of sound squared, j represents the gradient
differential operator and *." means the dot product.

Assuming that each variable can be written as the sum of a mean and
fluctuating component <$> + $‘, and that WKBJ solutions of the type
d(x,y,2,t) a exp{i(kx + mz - wt)} (i = V/(-1)) exist for each of ¢ =
pressure, density, and velocity, then linearizing and solving these
equations leads to dispersion relations for a single monochromatic wave.
It will be assumed that the atmosphere is stratified with respect the
mean quantities, that the wave propagates only in the zonal direction,
and that the mean wind is zero, for ease of presentation. Let the
fluctuating velocity component be (u’,v’',w'). We will also use the
change of variables ¢ = p‘/<p>, and r' = p’f<p>, and define the Brunt-
vaisala frequency N by

N2 =29, g (B4)
T dz - H

Here, H is the scale height given by

RE)
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g = RT

0

where ¥ = R/c_ and R is
heat of air ag constant
Then the resultant
—jwu’ ~ fv’' =

—-iwv’ + fu’ =

—ilew’ + r'g =

(A5)

the ideal gas constant and Cp is the specific

pressure.
algebraic equations are

—iky’
0

—(imy* - ¢’ /H)

-iwr’ - w'.N2/g = 1/(csz).(-iw¢')‘

~iwr’ + iku’ - w'/H + imw’ = O

The variable f represents the inertial frequency. The Rayleigh drag

-

(A6)
(A7)
(A8)
(A9)

(A10)

is now readily included by adding a drag term proportional to the
velocity in the momentum equations, so that the first two equations

above beconme

-igu’ - fv’ = -iky’ - au-’

-iwv’ + fur

-av’,

where o is the Rayleigh drag coefficient.
Note that these equations are more general than even the anelastic

approximation,as well as the Rayleigh drag terms being included.

(Al1l)

(A12)

When these equations are solved, a dispersion relation results,

which is

m{m + i/H) =

where m = mp + im; and @, is defined as w + ia. It can readily

g (2 - ?) K2

Wy c

2
T @l - £2)y T ez

(Al13)

be shown that this dispersion relation is identical to that of Gossard
and Hooke ( 1975, pll12) when the Rayleigh term is zero, which helps
confirm its accuracy, but of course the relation just derived is more

general. Note that the scale-height term (-1/2H) has not been

separated out from m;, and if &« =0, then mi=-1/2H.

The associated polarization relations are listed below, viz;

v = ( —fa - ifw)/{w? + a?) . u’ = -if/g,

u'

{Al4)
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wiwe? - £2) mei( Lo 8
w'o= - - {m+ i( —— = .’ Al
{ Wy (N% - %) k H csz)) I (A15)
Y= (@i - £2)/(wek) . u’ (R16)
k m i
r' = —u’ 4+ ( =+ —ju’ (A17)
w w wH

The diffusive action of gravity waves was simulated by calculating
the displacements of parcels subject to the influence of an ensemble of
gravity waves obeying these relations.
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Viscosity waves and thermal-conduction waves as a cause of ‘‘specular”’ reflectors
in radar studies of the atmosphere
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We present a new theory to explain the cause of the atmospheric structures which are responsible
for specular reflection of radar signals from the atmosphere. Evidence recorded with the middle and
upper atmosphere (MU) VHF radar at Shigaraki in Japan, as well as previous reports of specular
reflections from other radars and at other frequencies, is used to support our assertions. The theory
postulates that the reflectors are produced by a form of highly damped wave which arises in a fluid
as a result of the effects of viscosity and thermal conduction. They occur at altitudes where gravity
waves are partially reflected and in the vicinity of gravity wave critical levels but are particularly
prevalent when such reflections and critical level interactions occurs in a laminar region of the
atmosphere. The typical scales of the waves, their reflection efficiency, and their likely location are
alt considered and found to be consistent with what is currently known about specular reflectors in
the atmosphere. Some predictions which will allow further tests of the model are also presented.

INTRODUCTION

A large number of papers have shown evidence
for radar scatter at VHF, HF, and MF which is
highly aspect sensitive, Generally, the observations
of anisotropy take the form of strong scatter from
overhead and less scatter at off-vertical angles. It is
known that this implies that the scatterers are
irregularities in refractive index which are stretched
out horizontally and compressed in their vertical
structure, but opinions vary about the cause of the
atmospheric structures. Some authors have claimed
that such structures are to be expected for aniso-
tropic turbuience [e.g., Crane, 1980; Doviak and
Zrnic, 1984; Woodman and Chu, 1989]. Others
claim that the variation in power as a function of
angle is too rapid to be explained by turbulence
alone, and they cite other evidence such as very
slow fading times to support their view that the
scatter occurs not from irregularities generated by
anisotropic turbulence, but rather from some sort of
stratified step in refractive index [e.g., Roettger,
1980a, b; Roettger and Liu, 1978; Gregory and
Vincent, 1970; Gage and Green, 1978; Hocking and

! Currently al Department of Physics and Mathematical Phys-
ics, University of Adelaide, Australia.

Copyright 1991 by the American Geophysical Union.
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-Vincent, 1982a, b]. The main possible physical

models which have been invoked Lo explain such
stratified reflecting layers have been (1) ‘‘steps™
induced at the edges of very turbulent layers [Bo!-
giane, 1968] and (2) long-period gravity waves with
short vertical wavelengths [Hines, 1960; Van Zandt
and Vincent, 1983].

While it is likely that some of the aspect sensitiv-
ity can be explained 'by anisotropic turbulence,
occasionally echoes of such stable, slowly fading
character occur, and with such strong aspect sensi-
tivity, that it really becomes hard to believe that the
scatter is due to turbulence. In this work we present
one such data set, and we quantify the degree of
aspect sensitivity. We present arguments to support
the view that these echoes are indeed due to some
sort of horizontally stratified structure and consider
the possibility that this is produced by either model
1 or 2 above. By solving the dispersion relation for
waves in a viscous fluid we show that model 2
cannot explain the observation, and we argue that
model { is also inadequate.

However, we note the exisience of other wave
modes apart from the usual acoustic and gravity
waves and, in particular, the existence of so-called
**viscosity waves,” which have also been described
by Klostermeyer [1972, 1980], Hooke and Jones
(1986], Pitteway and Hines [1963), Yanowitch
[1967a, b, 1969], and Myers and Yanowitch [1971].
By applying some quantitative analysis we show
that viscosity waves may be able to explain our
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observations and indeed many of the past observa-
tions of *‘specular reflectors.”’ We make frequent
reference to Hooke and Jones [1986]; and hereafter
this will be denoted HIJ.

EXPERIMENT

The data reported in this work were collected
during an experiment designed to measure and
quantify the degree of aspect sensitivity of VHF
radar scatterers in the stratosphere using the Japa-
nese middle and upper atmosphere (MU) radar.

The MU radar at Shigaraki near Kyoto in Japan is
a versatile system operating at a frequency of 46.5
MHz. It has fast flexible beam steering, and it is
possible to use all, or subsets of,.the Yagi's of the
main array to form a radar beam. It also features
high power, and good sidelobe suppression. The
main beam formed when using the whole array for
both transmission and reception has a haif-power
half width of 1.2°. More specific details have been
described by Fukao et al [1985a, b].

The data were obtained as part of two special
experiments performed in October and December
1988 which were designed to make studies of the
aspect sensitivities of radio wave scatterers in the
stratosphere over Japan. The data reported in this
paper were recorded during the October run, and so
only the beam configurations used in that case will
be reported here. For more details about the exper-
iments, see Hocking et al. [1990].

In the October experiment, eight beams were
used with the configuration shown in Figure la. The
tilt angles and azimuths were chosen so that the
sampling volumes at a constant height produced a
rectangular grid in the sky, as shown in Figure ib.
The beams were sampled on successive puises,
with the beams being sequenced in an eight-point
cycle. Coherent integration over 16 points was
performed giving an effective sampling time of
0.1638 s between successive points at any one
height on any one beam. A 16-bit coded pulse was
used to give 600-m resolution, and echoes were
sampled at ranges between 7.95 and 26.55 km at
600-m intervals, giving 32 range samples in all. Data
sets of 256 points were obtained between 2045 LT
. on October 17 and 0947 LT on October (8, cach sel
having a duration of 42 s. A 3-s gap then followed
while data transfer took place, and then the next set
of 256 points was collected. Only data collected
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Fig. 1. Beam configurations of the MU radar used during the
experiments reported in this text. (a) An artist’s impression of
the radar beams and (4) the regions of the atmosphere covered
by each beam at a fixed height.

between 2045 and 2250 LT on October 17 will be
discussed here.

OBSERVATIONS

Calculations of the mean levels of aspect sensi-
tivity recorded with the MU radar have been re-
ported elsewhere [Tsuda et al., 1986; Hocking et
al., 1990]. In the work by Hocking et al. [1990] a
parameler “* 8, was used to quantify the degree of
aspect sensitivity, where it was assumed that the
power received per unit steradian as a function of
off-vertical angle @ for a monostatic radar with a
very narrow beam would be proportional to exp
(—6%/8%). It was shown in that work that hourly
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(a) Inphase (real) and quadrature (imaginary) parts of the signal received by thie radar for the special

echo discussed in the Lext. The gaps represent data (ransfer intervals. (b} Typical amplitude variations for a

“normal’” signal. Note the much more rapid fading.

average values of 8, can be as small as 1°-2° in the
stratosphere at ~18 km altitude, and it was noted
that individual values of 8; can be even less than
this for short periods of time. This corresponds to
scatterer length-to-depth ratios in excess of 20
[Hocking et al., 1990]. Values for this ratio of say
5-10 can reasonably be ascribed to turbulence, but
values in excess of 20 to 30 indicate some other
cause for the scatterers. During a few particular
intervals, 8, became substantially less than 1°.
Probably the most striking example is illustrated by
the data shown in Figure 2a. This shows the
variation of inphase and quadrature components
recorded with the vertical beam of the MU radar at
arange of 19.35 km, in the time interval 2045 to 2050
LT on October 17, 1989. There are gaps in the data
at steps of about 45 s; these occurred during periods
of data transfer to the host computer. Note espe-
cially the very slow changes of the inphase and
quadrature components which often take a minute

to complete one cycle. Indeed, in the 1-min interval
highlighted by the horizontal bar and labeled *‘a®’
the inphase and quadrature components remained
in perfect phase quadrature. In contrast, Figure 254
shows the fading on an off-vertical beam (0°N; 5°E)
in the same period; fading is quite clearly much
faster. This is the first indication of the unique
nature of the signal shown in Figure 2 a. It should
also be noted that under normal operating condi-
tions the MU radar records 10-s data sets, and then
these data sets are spectrally analyzed. Yet for the
example shown in Figure 2a the vertical beam
hardly shows any variation in signal strength over a
period of 10 s, and after subtraction of the mean
values these data would normally be interpreted as
noise. Only by recording a full 5 min of data has it
been possible to observe this remarkably slowly
fading signal, and this is why such signals have not
been frequently observed before.

We were careful to check that this signal was not
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Fig. 3. (a) Mean autocorrelation functions for beams 1 {long-
dashed line). 2 (solid line), and 4 (short-dashed line} for the
period 2045 to 2050 LT and (b} the corresponding power spectra,
In each case the ordinate is scaled logarithmically, and the
numbers indicate decibels. The shaded section of Figure 3b is
discussed in the text.

due to a ground reflection. This was discussed in
more detail by Hocking et al. [1990] but will be
briefly commented on here. By examining many
cases of known ground reflections it was concluded
that genuine ground echoes do not fade substan-
tially over a 5-min period, so that the fading shown
in Figure 2 a is really due to atmospheric effects. It
is of course possible that the fading was due to
ground echoes ducted horizontally to the radar,
with temporal variations of the duct causing the
fading, but we feel this was not so. In any case the
MU radar has excellent sidelobe suppression,
which should effectively suppress any 'such hori-
zontally propagating signals.

Figure 3a shows the autocovariance function of
the signal shown in Figure 2 g, where the ordinate is
expressed in decibels. The function shown is the
modulus of the average of the autocovariance func-
tions for each of the six records (each of 42-s
duration) in the time interval 2045:17 to 2049:48.
Note that the function falls extremely slowly and
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only reaches a value of 0.5 times the zero-lag value
at o5 = 11.4 s. In contrast, the fading times on the
other beams are generally 2—4 s. To further demon-
strate the extremely slow fading associated with
this echo, Figure 34 shows the power spectra re-
corded with the vertical beam (beam 1) and two
off-vertical beams. The two off-vertical beams were
a beam tilted in the northward direction at 5° from
vertical (beam 2) and one tilted in the eastward
direction at 5° from vertical (beam 4). Fading on the
other beams (not shown) was even faster than that
on these two beams. Notice the very narrow nature
of the spectrum on the vertical beam near 0 Hz,
although it is also noteworthy that further from 0 Hz
and at low powers the spectrum matches that on
beam number 2. This ig highlighted by the shaded
section of the plot, the outer boundary of which
follows approximately the shape of both of these
spectra. This suggests that the signal on beam |
comprised a strong specular signal plus a weaker,
more diffuse background. Similar deductions may
be made by examining the autocorrelation function,
although the log plots used do tend to suppress the
effects of the weaker background signal, since the
effects of the diffuse background occur as a weak
peak resting on top of the slowly falling part of the
curve. The typical wind speed at this height and
time was 15 m s ! or less, and we may use the value
of the fading time of 11.4 s to estimate 6,, giving
8, = 0.3° [Hocking et al., 1990, equations (6) and
(7). If we use far-field (Fraunhofer) theory, this sug-
gests a horizontal correlation length of about 160 m
for the irregularities. In fact, for such small values
of 6, the more general treatment of Doviak and
Zrnic [1984] should be adopted, in which case the
horizontal correlation length is even larger. If we
assume that the scatterer is an oblate ellipsoid, then
it would have had a 1/e fuli-width of about 270 m
and a I/e full-depth of about 2.6 m (0.4A) [see
Hocking et al., 1990}, giving a length-to-depth ratio
of about 100. We also point out that this estimate
was made using the average autocovariance func-
tion for a 5-min period; if we had just used that for
the time interval denoted by *‘a’’ in Figure. 2a,
when the fading time was more like 60 s (the
autocovariance function did not ¢ven fall below 0.5
of its maximum for this interval), then 6, would
have been even smaller and the horizontal extent
even larger. It seems most unilikely that turbulence
could cause such elongated structures. Further-
more, ¢ven if it could, turbulence by its nature
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Fig. 4. The profiles 1o the right show both the mean power (2-hour average) and the power on the vertical
beam relative 1o that on a beam at 5°N (beam 2), for the period 245 to 2250 LT. To the left are shown the mean
autocovariance functions calculated using the first 5 min of the data set (2045-2050 LT).

involves a substantial amount of parcel motion, and
this would quickly reduce the fading time. In con-
trast, the scattering structure here seems to be not
only highly elongated horizontally but also ex-
tremely stable and very very slowly moving.

It is also worthwhile examining the environment
at heights above and below this layer. Figure 4
shows 2-hour averages of the power as a function of

height for a small region centered around the echo .

of interest, as well as the power observed with the
vertical beam relative to a .beam at 5° from the
zenith in the northward direction. The autocovari-
ance functions for beams 1, 2, 4, and 5 (see Figure
I) are also shown for a few heights above and below
the height of interest. The autocovariance for the
vertical beam is denoted by ‘‘v*’; the other beams
are not separately denoted because they were all
fairly similar. The unique nature of the autocovari-
ance function at height 20 stands out. It is notewor-
thy that the strongest powers came not from height
20, but rather heights 15-18. Thus the scatterers at
the height of interest were not particularly dominant

as far as backscattered power is concerned. How- .

ever, the aspect sensitivity was greatest at height
20, with the power of the beam at 5°N being 12 dB
less than on the vertical beam. The peaks in back-
scattered power do not correspond to the highest
degree of aspect sensitivity; in fact, the height of
strongest power (height 18) corresponds to the most

isotropic scatter, and it is likely that this was a layer
of turbulence. A value of 12 dB for the ratio of the
powers on the vertical beam to the beam at 5°N
corresponds to a value for 8, of 2.6°, but it should be
noted that this is an upper limit and is not inconsis-
teat with the estimate of &, made earlier using the
fading times. This is because the spectra in Figure
2b have already suggested that the signal was due to
very aspect-sensitive scatter (giving rise to the large
spike) and a more isotropic **background’’ of scat-
terers which also contributed to the power on the
5°N beam. Comparison of powers on the two beams
will be affected by this low-level quasi-isotropic
scalter, whereas use of fading times with a vertical
beam to determine 05 is essentially only sensitive to
the strong, highly aspect-sensitive scatter from
overhead. Such a conclusion is also consistent with
Hocking [1990), where it was shown that usually a
continuum of scatterer shapes exist, from highly
aspect sensitive to almost isotropic.

Until now the main models of specular reflectors

.have been due to Bolgiano [1968], Hines [1960], and

Van Zandt and Vincent [1983]. Before examining
these models, however, it is worth noting one more
point. While the echo behavior on the vertical beam
at height 20 suggests a very stable structure, the
echo power on the off-vertical beams at that height
is clearly not only due to noise. It is a rcal signal,
with distinctly different fading times and scattering
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propertics to that on the vertical beam. Il seems
that there is some form of more isotropic scatter
(possibly but not necessanly due 1o turbulence) being
reccived on the off-vertical beam. Thus any success-
ful model must not only explain the highly stratified
planc reflector but also must explain how it can exist
in the presence of, or at least close to, these more
Isotropic scalterers. Presumably, turbulence would
destroy such highly clongated structures if the wurbu-
lence existed in the same physical space as the struc-
ture. It should also be noted that Bolgiano |1968]
surmised thal if the specular reflectors were duc 1o a
sharp  edge of a turbulence layer, then the mixing
might be so strong that the air inside the layer could
become completely and adiabatically mixed, and
other guantities related to the refractive index could
also be mixed to constant values across the layer.
Henee very little turbulent scatter from within the
layer would be expected in such circumstances.

One could surmise that the turbulence might have
been spatially inhomogencous and did not cxist
directly over the radar. This could permit very
stable conditions immediately overhead, allowing
the stratified structure to exist, but elsewhere small
paiches of turbulence could contribute to the small
amount of backscatter observed with the off-ver-
tical beams. Nevertheless, such a model involves a
rather specilic and contrived sci of ¢circumstances,
and it would be preferable f a more general model
could be found which does not have such a degree
ol special requirements. The fact that other periods
of such stable echoes also occurred at other times
makes the above scenario even less likely. For
example, similar observations were made later in
the evening al 2240 at height 19 (18.75 km).

We must now turn to a more in-depth consider-
ation of various models which might explain the
obscrvations. In order to do this, however, it is
necessiry o wrn first to some theoretical develop-
ment.

THEORY

Equations of fluid motion with viscosity
cad thermal conduction included
The {two-dimensional) equalions of motion for
small perturbations in a Boussinesqg viscous fujd
are (lfor cxample, HJ):
e’ I ap
(e}

ot o dx
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e’ I ap" p'g .
= = Uy (1h)
of o 4z py
du’ aw’
— =) (le)
dx dz
ap e s
— 4w = kVp' 1d
at a2 P (1)

where p is densily, p is pressure, « and w are
horizontal and vertical components of velocity, vis
kinemalic viscosity, « is thermal diffusivity, x and z
are horizontal and vertical Cartesian coordinates, ¢
is time, and ¢ is acceleration duc to gravity. We
assume that the mean wind is zero, and primed
quantitics refer 1o perturbations aboul the mean.
The symbol V2 represents a2/ax® + a2/az2. Note
that p' is the density difference between a displaced
parcel of air and its environment.,

The first two equations are the momcentum cqua-
lions, the third is the continuity equation for an
incompressible medium, and the fourth arises from
the equation of thermal transfer [e.g., Gill, 1982,
equation (4.4.7)]:

DO ]
— = xVO
Dt

with the usual Boussinesq condition dp’/py = —d®'/

A4, © being potential temperature. We note also
that 1/py dpidz = —1/@g dO/dz = —wjlg, where g is
the acceleration due to gravity and wy is the Brunt-
Vaisala frequency.

The simplest way to solve these equations is to
look for solutions with variables proportional to exp
{iltkx + mz — wi}}. In the case that the viscous and
heat conduction lerms arc small we may ignore the
terms ¥92u’, vV2w', and (K/py)V>p' and derive the
usual dispersion and polarization rclations for grav-
ity waves in the atmosphere le.g., sce HI; Hines,
1960].

However, the case when i is very large corre-
sponds Lo short vertical wavelengths, and the terms
like v (@2u'faz?) can no longer be ignored. _

In this paper we will be concentrating on solu-
tions with near-horizontal wave fronts, which will
have correspondingly small horizontal wavenum-
bers, s0 we can ignore terms like v (@2u'1i2x). Thus
for very short vertical wavelengths, terms like
» V2" become dominant, and (1) reduces 1o
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au’ atu' ) fal
—=v—F a
ot 922 2a)
awr alwr
——p 26
at az? (26)
Assuming a solution of the form &
L F]
u' = uj exp {itkx + mz — wr)} z
and substituting in (2 a) gives R

iw
n = — (3a)
v

,n.,2=(_\‘ﬁ\/§+\_.-/z_\/§)' |
(-2 vE-59)

The solution #' therefore describes a heavily
damped sinusoidal variation in the vertical with
wavelength

Az=‘\/§1r(\/ulw =2W(‘\/H’) ’ 4)

and with an exponential decay. In this case, T is the
period of the wave, = 2w w.

Note that we will assume for the time being that
w is purely real. This is not necessarily obvious, but
we shall take the view that since the waves are
heavily damped, they do not grow of their own
devices, but rather require forcing from other asso-
ciated (gravity) waves in order to exist. Since the
forcing wave has a real frequency, so will the
viscosity wave. We will discuss the issue of the
generation of the waves in more detail later in the
text; for now we wish simply to establish the
characteristics of the waves.

We will denote #iz as mg + im;, where i = (—1)"2,
An upward propagating wave (mp > 0) has a
positive value for m; and dissipates with increasing
height. An example is shown in Figure 5, both for a
wave alone and also for a wave superimposed on a
mean gradient. The abscissa can be any perturba-
tion variable, such as temperature, velocity, den-
sity, etc. Nole in the second case that the wave has
an almost ‘*steplike’’ appearance, and if the wave’s
amplitude had been a little less, it couid have been

or

(b

Amplitude
b}
3
O
&
X
Amplitude
Fig. 5. (a) “Amplitude” (which may represent velocity,

temperature, density, elc.) as a function of height for a typical
viscosity wave, (b) A similar wave superimposed on a mean
gradient.

_made to look even more so. This may be important

in explaining observations of ‘‘steps™ in atmo-
spheric wind and density profiles.

The wave arises because of a balance of the
acceferation term and the viscous drag term and has
much similarity to the weli-known case of simple
harmonic motion in a lossy medium, for the case
that the acceleration term and loss term dominate
over the force driving the motion. The motion
describes the relaxation back to an equilibrium state
after the medium has been perturbed. Such waves
arise, for exampie, when sound or gravily waves
reflect from any rigid surface; the. conditions of
no-slip and zero velocity normal to the surface, as
well as the requirement for continuous velocity
profiles, cannot be satisfied by the incident, re-
flected, and transmitted waves alone., Viscosily
waves are necessary to allow all these boundary
conditions to be met. The waves also have some
{but not complete) similarity .to the ‘‘evanescent
modes®’’ which arise in the optical case of total
reflection from an interface. We will propose that
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similar waves must arise even in the case of reflec-
tion from a “‘nonrigid’" reflecting layer such as a
discontinuity in the temperature gradient, as well as
in the case of certain gravity wave critical level
interactions.

Continuing our mathematical discussion, we note
that when shears are large, (1d) can be written as
%"

ap’

K
at 972

giving rise to a set of waves for which
1w
m= — (5
K

HJ refer to the waves described by (3) and (5) as
the “*viscosity” mode and the *‘thermal conduction

mode,’’ respectively.
If one solves (la)-(1d) for plane wave solutions,
the following dispersion relation results;

kv(m? + kY —jw(v + k)m? + k) — 0¥(m? + kY
+kwi=0 6)

where the term wp is the Brunt-Vaisala (angular)
frequency. This equation is a cubic in m?. In the
special case that « = 0 this reduces to

~iw()(m? + k) — ¥ m? + k) + Kwi=0 (7

A similar expression, with » replaced by «, re-
sults if we consider the opposite extreme with v = 0
and x nonzero.

Note that (7) differs slightly from HJ because we
have assumed solutions of the form exp {i(kx +
mz — wt)}, whereas HJ took solutions of the form
exp fi{wt — kx — mz)}). The expression (7) can be
rewritten as

m?= —k?—[i2(vi)) + \/1 +ix — 1] ®)
where
x = 4wp/w)? (vl = 0). &

This solution is exact for the case of general vand
for « = 0; it depends only on the ratios wg/w and
W, and k.

We will concentrate on this special case for
illustrative purposes. Of course, in the real atmo-
sphere, « and » are comparable (1/x = 0.7, the
Prandtl number), so it is unrealistic to take x = 0.
Nevertheless, it is much easier to solve the special

O3
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Fig. 6. Dispersion relfations between m and & for a viscosity
wave with Wwg = 12 and W = 57.3 m2. The gravity wave
branch is denoted by ‘‘g"’and the viscosity wave branch by **v.”*
The two arrows show typical wave vectors. The dashed-dotied
line shows the gravily wave dispersion relation for Boussinesq
waves in the absence of viscosity.

-

cases of k = 0 or v = 0; the dispersion relation for
the general case is a cubic in m? and is more difficult
to solve. We can illustrate all the principles we wish
to discuss with this simpler case; the effect of taking
both « and v as nonzero will simply alter some of
the scales discussed by simall amounts. Therefore
henceforth we will consider the case of k = 0. We
could have equally taken v as zero and left x # 0.
HJ discussed various special limiting cases of this
dispersion relation, but it is in fact easy to solve it
by computer. Figure 6 shows a sample plot of m as
a function of k for the four different wave solutions
which satisfy (8) and (9), for the case that wg/w = 12
and Yo = 57.3 m%. The exact conditions chosen
were for a wave period of 60 min (w = 1.75 x 107>
rad s~!), a Brunt Vaisala period of 5 min (wg =
0.021 rad s™!), and a kinematic viscosity of 0.1 m?
s~ !. The four solutions formed represent upward
and downward propagating gravity waves and up-
ward and downward propagating viscosity waves.
The dispersion relation for gravity waves in the
absence of viscosity are shown by the dashed-
dotted line of Figure 6. Note that the vertical
wavenumber of the viscosity wave is almost con-
stant [Re (m) =~ (1/2 2 )(w/v"?)] over a wide range of
k values. The viscous mode is always much more
heavily damped than the gravity wave of the same
horizontal wavelength. Viscous waves can exist
with any orientation given any particular value of
m, in contrast Lo gravity waves for which there is a
strong relation between £ and m for any given .
We wish to investigate whether the viscous modes
might be capable of causing specular reflection.
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Typical scales

It is instructive to determine typical values of A,
for various conditions, using {4). At about 20 km
altitude, v =2 X 1074 m2s™ ' if we take the wave
period as T = 5-60 min, then A, ~ 0.9-3.0 m. The
vertical phase velocity will be ~A,/T ~ 0.00lms™".
An individual wave will persist for a length of time
equal to or greater than the time taken for it to
propagate through its own wavelength (depending
on the duration of the applied forcing). In this
special case the lifetime will be at least ~3-60 min.
At 30 km altitude the kinematic viscosity coefficient
is about 6 x 1074 m? s7f, so A, = 1.5-5 m for
periods in the range 5 to 60 min.

At an altitude of 70 km, »~ 0.1 m? 57!, and so if
T ~ 5-60 min, then A, ~ 20-70 m. A

Note that in considering these typical scales we
have concentrated on using the molecular kinematic
viscosity ». This contrasts with HJ, who were
interested only in the planetary boundary layer and
so considered turbulent viscosity coefficients.

It is important to note that A, = 3 m is the Bragg
backscatter scale for 50-MHz VHF radio waves
incident in the atmosphere, and A, = 75 m is the
Bragg scale for 2-MHz radio waves. Thus already
we see that viscosity waves at 20-30 km altitude
could cause ‘‘specular’’ reflection at 50 MHz, and
viscosity waves at around 70 km altitude could
cause ‘‘specular” refiection for frequencies around
2 MHz. This simple agreement between the scales
of the viscous waves and the observations of the
heights of strongest specularity is quite remarkable.
We have yet to establish whether this reflection wili
be detectable, and this will be examined shortly.

For now we reiterate that the strongest degree of
aspect sensitivity so far reported for radio wave
reflection have been 50-MHz reflection from the
stratosphere [e.g., Roettger and Liu, 1978; Gage
and Green, 1978; Hocking et al., 1986, 1990] and
MF (2 MHz) reflection from around 60-80 km
altitude [e.g.. Gregery and Vincent, 1970; Vincent
and Belrose, 1978; Hocking, 1979]. Reports of as-
pect sensitivity at VHF in the mesosphere exist
le.g., Fukao et al., 1980; Royrvik, 1985], but the
degree of aspect sensitivity was not so pronounced
as at MF and could have been simply due to
anisotropic turbulence.

We will address these typical scales further in due
course. Nevertheless, it is clear that further study
of viscosity waves is now warranted, since they al

least have the right scales to explain the observa-
tions of specular reflection. They are also permitted
to have near-horizontal wave fronts.

Effect of viscosity and thermal
conduction on gravity waves

We have noted above that viscosity and thermal
conduction waves can have the correct scales and
orientations to cause specular reflection. We have
yet to discuss whether they imply strong enough
density perturbations to produce significant radar
backscatter, how they are generated, and indeed
where the waves are most likely to be found.

it is extremely useful at this point, however, to
discuss the effects of viscosity and thermal conduc-
tion on gravity waves. The inclusion of viscosity
and thermal conduction alters the dispersion rela-
tion for these waves in a very significant way,
especially for waves with very short vertical wave-
length.

Hines [1960] and Van Zandt and Vincent [1983]
proposed that gravity waves of very long period and
short vertical wavelength may be responsible for
the specular reflections. Van Zandt and Vincent
[1983] argued that waves could exist arbitrarily
close to horizontal, provided that the period was
long enough and the vertical wavelength short
enough. However, Hocking et al. [1990] argued that
in the stratosphere the effects of viscosity would be
to damp waves with phase fronts closer than 2°-3°
from horizontal. In the mesosphere, phase froats
closer to horizontal than 6° should be heavily
damped.

However, examination of the new dispersion
relations shows that not only- are such waves
strongly damped, but indeed they cannot even
exist. The effect of viscosity is to tilt the phase
fronts to a steeper angle than would have been the
case in the inviscid situation.

Let us consider a particularly useful example.
Consider a gravity wave with a vertical wavelength
of 3 m in the stratosphere, so that Re (m) = 27/3 =~
2.0rad m~'. Consider a kinematic viscosity of 103
m? s~! (typical of the value at about 30 km alti-
tude). Then in the case where viscosity is not
included, the angle of the wave fronts to the vertical
is B =~ tan "' (w/wp), where wp is the Brunt-Vaisala
frequency, or alternatively, 6 = tan~! (T/Tg),
where Ty is the B-V period and T is the wave
period. This becomes more exact as T increases.
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Fig. 7. Tiit angle of gravity wave wave fronts from the
E

horizontal as a function of wave period for a vertical wavelength
close to 3 m at around 30 km altitude, using both Boussinesq
theory (8g) and the more general dispersion relation which
includes the effects of viscosity (6g). The shaded area shows a
region of **forbidden’’ wave front tilts, This occurs because the
intrinsic periods of the waves cannot exceed 1200 min.

However, when viscosity is included, then the
angle is 6, = tan ! [k/Re (m)], where Re (/) needs
to be calculated from the exact dispersion relation.

We can evaluate 8, as a function of period for a
particular vertical wavelength by repeatedly plot-
ting graphs like Figure 6 and reading off values of &
for the desired value of m, and then using each (&,
) pair to deduce 6,. When we do this and when 6,
and 0z are calculated and plotted as a function of
the period T for a value of mg = 2.0m ™', (assuming
Ty = 5 min) Figure 7 results; Notice that whiie the
inviscid theory allows wave fronts as close as 0.1°
to horizontal (when the period is about 20 hours) the
more exact dispersion relation including viscosity
shows that the wave fronts can be no closer to the
horizontal than 1.8° when the period is 20 hours.
The period of 20 hours is of the order of or more
than the inertial period for most latitudes of the
Earth, and so we must conclude that gravity waves
with vertical wavelengths of 3 m cannot exist in the
middle stratosphere with wave fronts closer than 2°
to vertical. It is not simply a matter of their being
heavily damped; they simply cannot exist because
of the way that the inclusion of viscosity steepens
the wave fronts. Furthermore, even those gravity
waves which do exist with wave fronts close to
horizontal are heavily damped. Figure 8 shows the
I/e depth of these waves for the same choice of »
and wg as for Figure 7. Note that the waves
dissipate quickly, indicating that any waves which
exist must be generated in situ. The waves are not
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damped as heavily as the viscous waves, of course,
as indicated by the arrow denoted by “*v’* in Figure
8. Of course, we should also have included a
Coriolis forcing in (1a) and (16), which means in
fact that at very long periods 8, will be different to
the value shown in Figure 8, but even the Coriolis
term is unlikely to bring 6, back to angles less than

1°.

Reflection efficiency

It seems clear at this stage that gravity waves
cannot be the cause of radar reflection from the
vertical, since waves with periods less than about
10 hours and vertical wavelengths of 3 m must have
tilt angles greater than about 3°~4° from horizontal
in the stratosphere. This would leave a “‘hole”
around vertical from which no specular reflection
would occur, with a half width of about 3°, and such
a hole would surely have been observed experimen-
tally if it indeed existed. It is also clear that viscos-
ity waves can exist with the correct scales and can
be aligned horizontally, so these could be the cause
of the reflecting structures. We have yet to discuss
the cause of the viscosity waves, since these waves
represent a relaxation from a perturbed state, and
something must cause the initial perturbation. We
also must discuss why the viscosity waves must
show a preference for horizontal alignment, as
experimental studies of aspect sensitivity show,
despite the fact that they are free to exist with any
orientation. But before addressing these issues, it is
necessary to determine whether such viscosity

£
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Fig. 8. The /e depth of gravily waves as a funciion of tilt
angle for a vertical wavelength of 3s1. The arrow on the ordinate
denoted by v shows the /e depth for & viscosity wave with
vertical wavelength of 3rm, when v = 1073 m2 5!,
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waves can in fact cause sufficient radio wave reflec-
tion to be detectable by a ground-based radar.

Density perturbations

Solving (la)<(Ic) for assumed solutions propor-
tional to exp {i(kx + mz — wt)}, it can be shown that
the density perturbations for viscosity waves are
related to the horizontal perturbation velocity
through the relation .

1 k
ﬂhz_-ﬂ[l+,'(i)(m2+kz)J(-m—+—-—) W (10)
Po g o k mj/-

Generally, we are interested in the case where
m > k (i.e., horizontal wavelengths much larger
than vertical wavelengths), so

p—=~£[l+i:(mz+kz)qu‘ (an
Po g w k

As k= 0, | + i(Mw)(m? + k) — 0 for the
viscosity wave branch (by equation (3a)) and in fact
approaches zero faster than k, so purely horizontal
wave fronts imply no density perturbations in the
vertical direction. This is reasonable, since density
perturbations arise because the vertical velocity
carries air at lower heights adiabatically up to
regions of lesser density, and when k = 0, w' = 0.
Note that although m > k, we could not replace
(m? + k%) by m? alone, because then (11).would be

identically zero. For the gravity wave branch,

iva(m? + k%) < 1, so (9) becomes

P iw m

—= -y (12)
Po g k
and using mfk = wplw gives
1] ms
— o —f — (13)
Pa g

a result which is well known. For wg = 0.02 rad
s™!, pllpg =2 x 1073 ',

However, for the viscosity wave branch, no such
simplification is possible. Although 1 + #( Ww)m? =
0 for k = 0, the term is nonzero for k > 0. Therefore
we have taken a particularly interesting case and
calculated p'/py numerically. The results are shown
in Figure 9. A wave period of 60 min was assumed,
with a Brunt-Vaisala period of 5 min and a kine-
matic viscosity coefficient of 2 x 1074 m? s ', This
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Fig. 9. Plots of dispersion relalion between m and &, as well
as plots of the density fiuctuations as a function of &, for the case
y=2x10"*m?s™!, wg =0.02rad s~' (T = 5 min) and a wave
period T of 60 min. The particular case of k = 0.02 rad m ™' (A,
= 315 m) is highlighted.

rom

B-V period and viscosity coefficient apply at an
altitude of 20 km, and the choice of wave period
produces a viscosity wave with vertical wavelength
equal to 3 m. The resultant plots for Re (m), Im (m),
and Re [p'/(pou’)] and Im [p'/(pyu’)] are shown in
Figure 9. Notice that the gravity wave branch
produces density perturbations of about 0.2% of «'
(SI units), as expected, with the fluctuation being
about 90° out of phase with u'. However, for the
viscosity wave branch we notc that the rcal and
imaginary components are comparable, suggesting
a phase difference of ~452.relative to «’. The
magnitude of (p'/pgu’) is ~0.1% at k = 0.14 (A, = 45
m) and ~0.02% at k = 0.02 (A, = 315 m). In the first
case the phase fronts are tilted at 3.5° to the
horizontal and in the second at 0.5°. We shall
discuss whether such a wave is capable of causing
detectable VHF radar reflection shortly, but it is
worth noting that since |[T*/T| = |p'/p| (Where T is
temperature) a 0.1% density fluctuation corre-
sponds to a temperature fluctuation of about 0.3°C.

Another important example is that of a 75-m
wave at around 70 km altitude, since these waves
would cause ‘‘specular reflection’ at 2 MHz. How-
ever, in that case it is not the neutral density
perturbation which is required, but rather the elec-
tron density perturbation. Let N denole electron
density, and N’ the perturbation from the back-
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ground. The displacement of a parcel of air or
electrons due to a wave is

w' —ik
s‘=fw' df=——=—y' (14)

wm

Note that because the real and imaginary parts of
#ir for the viscosity wave branch are very nearly
equal and have the same sign, the real and imagi-
nary parts of s" will also have equal magnitudes and
the same signs. The parcel of air will expand
adiabatically, which will contribute to N’. Further-
more, if there is an electron density gradient, then
the parcel of electrons is moved to a new height
where the background electron density is different.
Therefore the relevant density gradient depends not
only on the degree of adiabatic expansion during
displacement but also on the mean electron density
gradient. The new difference in electron density
between the parcel and the ‘‘normal” background
electron density is thus [Hocking, 1985]:.

N =s'M, (15a)
where
wi dN Ndp
My=|N——— 4+ ——| (15h)
g dz pd:

N can in fact be the density of any tracer, including
air. It is in fact more common to express the
gradient in lerms of the difference of the back-
ground minus the parcel densities, which is -M,,
S0 ‘

N' = —~s'My (16)

where My = —M, is the potential electron density
gradient. In the case that N = p, My, "= M, =
—pwhlg. For the gravity wave branch, w'/e =
—u'lwg, and so

, W m; —ipu'wg
pE=—"\P— )
—iw \" ¢ g

17)

which is consistent with (13).

However, in the ionosphere the electron density
gradients can be quite steep and dominate over
Nwplg and Nipldpldz}, so we must use the more
general formula

(18)
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Indeed, we could have used this formula earlier to
derive typical density fluctuations at 20 km; taking
N =p, My = —pojlg, Im| = 22"}, & = 223600,
and k = 0.14 gives p'/pou’ = —~kw}/ (imwg) or p'lpgu’
= (.001, consistent with our graphical value - of
0.1%.

Using an electron density profile obtained from
rocket experiments and reported by Mechtly et al.
(1972], Hocking [1981] has evaluated values of M N
at around 70-80 km. A typical value for |M | at 70
km altitude is 107 2-10"! m~!. Taking v = 0.1 m?
s ! and a wave period of 75 min (w = 1.4 x 107
gives a viscosity wave with a vertical wavelength,
A, of 75 m, which is the Bragg scale for backscatter
of 2-MHz radiation. We arc interested mainly in
waves with near-horizontal wave fronts, so taking
k/m = 0.02 (phase fronts tilted at about I° to
horizontal) and ' = 1 m s ™! gives a value for N’ of
about 0.1-1 cm ™3, or about a 0.1-1% fluctuation
relative to the background. The value of &' has been
chosen somewhat arbitrarily at this stage; even
larger fluctuations may be possible if u' is larger.
These amounts of fluctuation are comparable to
observed fluctuations of around | to 5% reported by
Manson et al. [1969].

Backscatter reflection coefficients

For a refractive index profile n(z) the amplitude
and form of the reflected signal r(z) is given by

1 dn
() =g9(2)® 32 (19}

where ® refers to convolution [Hocking and Vin-
cent, 1982a, b; Hocking and Roettger, 1983) and
g(z) describes the radar pulse.

We must now convert the density perturbations
deduced in the previous section to refractive index
fluctuations, in order to determine the radar reflec-
tivity of these structures. Previous estimates of
reflection coefficients for typical electron density
perturbations have assumed that the fluctuations
are actually due to (often experimentally unre-
solved) steps in refractive index [e.g., Manson et
al., 1969; Hocking and Vincent, 1982a, b], but a
viscosity wave ““tuned’’ to the radar's Bragg scale
could be even more efficicnt than a step. We will
now proceed to see if this is true.

Stratospheric case: For the stratospheric case
the refractive index is given by
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n=1+77.9x10"%/T (20)

- . oy Hr?“f!' -
where p is the pressure in pasgals and T is the
temperature [e.g.. Larsen, 1990}. Humidity fluctu-
ations have been ignored since these are negligible
in the stratosphere. If a layer of the atmosphere is
displaced by a wave, it will have a new refractive
index difference compared to the background. The
difference will be 8n = —M, 8z, where the refractive
index gradient is

M, = 77.9 x 10%K;s)M,, = 0.02236M,  (21)

where p(z) is the density in kg m ™, Kj = 287.05 is
a modified form of Boltzmann’s constant {Hough-
ton, 1977, Appendix A], and M is the potential
density gradient. Note that, as in (16), M, and M,
refer to gradients of the difference of the back-
ground value less that of a displaced parcel,
whereas we seek the value for the parcel less the
background. (As an alternative derivation, we may
note {e.g., Larsen, 1990] that the potential refrac-
tive index gradient is

oG )]

o
= —77.9 % 107%Kpp —
g

M,

1 d®
~77.9x 107%K3p Y

=77.9 x 107KsM, (22)

as in (21)). Thus the effective refractive index
gradient produced by the wave is

V-] @3)
dz dz
CAbe J—M"-&)

Suppose that
iw'(z) = Re {;f;‘eli(mz + .{.]]}
= uye ™" cos (mpz + ¢) 24)

where we have taken i), as real, ¢ = kx — of, and
m = mg + im;. We are only interested in the
vertical profile since we treat the problem of back-
scatter in this case as one of reflection from a nearly
horizontal reflector, and so it reduces to a one-
dimensional (vertical) problem.

It has already been seen that mg = m;, and we
will take this to be exactly true for convenience,
Figure 9 showed that the density has about a /4
phase difference with respect to uy, since the real
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and imaginary parts of the density amplitude were
about equal. Although not obvious from Figure 9,
the real and imaginary components of the density
fluctuation amplitude also have the same sign. We
can also see this from (14), where it was seen that s’
had real and imaginary components which were
equal. Thus we may write that the density pertur-
bations will be of the form

= lpéle —mil Re {el-(mnl + 4+ 1n'4)} (25)

where

pk=\/m=\/ipk=\/ipi

pr and p; being the real and imaginary parts of pj.
Then using (21) and differentiating p’ from (25) gives
the gradient of the refractive index due to the wave
as

dn .
i 0.0224|p4] Re {im ellmz+ ¢ + w4}
z

and since

iSwrld

l'rrliv ny e

My 3 =my €
{where m, is the magnitude of m), we produce the
relation

dn
&- = —0.0224|p,;|‘\/5mge""“‘ cos (mgz + &) (26)
z

where we have taken m; = mpg, and mg > 0 refers
to an upward propagating wave (wave dissipates
with increasing height).

Typical values of p)(z) have been deduced earlier
and were seen to be of the order of 0.02% to 0.1% of
poi’y, where uy is the maximum horizontal pertur-
bation velocity associated with the viscosity wave
and py is the background density.

As an illustrative example, we shall choose ¢ =
#f2, in which case the reflection function is

BOOHZJ’fp 4] e 277 - sin (i" )

0.1 2w
r =-2wdA .
= e *sin | — 27
x IPAI ()‘ Z) 27)

v v

2

where mg = m; = 12 [V{(w/v)], and we have
denoted the vertical wavelength of the viscosity
wave as A,.

If we assume that the transmitted puisc expressed
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in z coordinates (z = ct/2) is g(z) = ¢ ¥/ ¢os
(4m2/A), where A is the radar wavelength, then the
reflected profile is

—ziaz? Iydn
e ¢ cos (41erA)®E " (28)

We can most easily evaluate this convolution by
Fourier transforming each function, multiplying in
the Fourier domain, and re-Fourier transforming
[e.g., Hocking and Roettger, 1983]. For clarity, we
do not present this derivation here and simply state
the result. A proof can be found in the appendix,
where we show that the reflection coefficient is

R = 0.0064|p} | = 0.285n; (29)

The maximum excursion of p(z) (and therefore
n(z))is not p} . The maximum occurs at z = 0, where
(by (25), with ¢ = =/2) p'(0) = |p4|/V2 =p}, say.
Thus we can write that the reflection coefficient is

R =0.4ny, (30)
where 1), is the magnitude of the maximum devia-
tion of the refractive index from the mean..

This compares to a reflection coefficient of 0.5 n),
for a sharp step with refractive index change of ).
Thus the viscosity wave is indeed a reflector with an
efficiency of reflection comparable to that of a step.
In reality, it is likely that viscosity waves may exist
in pairs, with one radiating upward from its source
region and one downward, and organized so that
dnidz and n(z) are both continuous across z = Q.
Such a pair of waves would be an even more
efficient reflector, by as much as twice that of a
single wave, if the spacing of the two waves is right.
Thus viscosity waves can indeed be quite efficient
reflectors. A step in n(z) has the characteristic that
it reflects all radar wavelengths with similar effi-
ciency, but a viscosity wave is “*tuned’” to a range
of wavelengths and is more efficient over that range.
It should be noted from Figure 10 that the range of
wavelengths over which efficient scatter can occur
is not very narrow; variations in the radar wave-
length by a factor of 1.5 to 2 times still allow
reasonable efficiency of reflection. In fact, the haif-
power half width of Figure 10 is about 0.56/A,. Thus
radars with wavelengths between 2(0.44A,) and
2(1.56A ) will all receive powers which are within a
factor of 2 of those of the “'besl tuned’ radar. A
VHF radar operaling at 50 MHz will reccive powers
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Power density [linear scale]

-3 -2 -t 0 12 3

Reciprocal wavelength [1/1]

Fig. t0. Three typical refractive-index profiles used to deter-
mine the reflection efficiency of viscosity waves in the atmo-
sphere (solid lines) and their gradients (dashed-dotted lines). The
gradients have been rescaled by 20 times. In the lower figure the
power spectra deduced by Fourier transforming a typical pulse
{narrow line) and the reflection profile (broad curve) are shown.

which are within a factor of 2 of those of the *‘best
tuned”’ radar if the viscosity waves have wave-
lengths in the range 1.3 to 4.7 m.

The above analytical discussion has concentrated
on a particular profile of n(z), but others are possi-
ble. In order to be a little more general, several
different profiles were chosen, and the pulse was
numerically convolved with these profiles to deter-
mine the reflection efficiency. The top three profiles
in Figure 10 show three such examples. Some of
these profiles consist of two viscosity waves joined
(effectively radiating up and down from z = 0) to
make dn/dz continuous across z = 0. In each case
the efficiency of reflection-was between | and 2.5
times that of a step. (For purposes of comparison,
the change in refractive index across the step was
chosen to be equal to the maximum deviation of the
refractive index from the mean in the case of the
viscosily wave.) Of particular inlerest is the middle

o s
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case, where it was found that the reflection coeffi-
cient was 0.55 ny = 0.78 nj,. This is a pair of waves
radiating up and down from z = 0, with profiles
chosen to match the case discussed in (27). We
therefore expect a reflection coefficient of twice that
given in (29), or about 0.57 nj,. This agreement
confirms the accuracy of the numerical integrations.

We note here that the profiles chosen in Figure 10
are only chosen for the purposes of determining
reflection coefficients. The first two at least satisfy
conlinuity of the refractive index gradients; the
third does not. In reality, we expect continuity of at
least the gradient and probably the second deriva-
tive, so that these profiles may not be entirely
representative of the real situation. The actual
structure would need to be determined by experi-
ment or numerical simulation, but there is scope for
neither of these here. However, we are confident
that these profiles are adequate choices for first-
order determinations of typical reflection coeffi-
cients, and for this reason they have served their
purpose adequately.

For A, = 3 m (m = 2 rad m~ ") and |oy| =
0.02% — 0.1% of pyu', (see earlier) the effective
reflection coefficient at 20 km altitude (where py =

0.05 kg m ) is
R~ 0.64 % 1077w, — 3.2 x 1077} ')

To be useful, we need to convert this number to
an “‘effective turbulent refractive index structure
constant,” C2, since most radar data are presented
in terms of this parameter. '

C? can be deduced from R through the relation
fe.g., Hocking and Vinceni, 1982b]. .

R?=0.381""2C292,L (32)

where L is the pulse fength and 85 is the radar
polar diagram (two way) half-power half width: In
our case, L = 600 m and 8, = 1.2°,

Thus C? = 21.5 R?, so

C2~9x 107 us)? to 2 x 1071 %u})% (33)

Typical values for C2 at 20 km altitude are
~10~18 - 1077 m~?? [e.g., Hocking et al., 1986;
Nastrom et al., 1982]. Thus a horizontal perturba-
tion velocity of the order of 1 cm s ™! would produce
backscatter typical of that measured with a VHF
radar at 20 km altitude. Such velocities are not large
and can realistically be expected to-occur in the

atmosphere at these heights. For example, typical
gravity wave perturbation velocities at these
heights are in the order of several meters per
second, so a viscosity wave with a horizontal per-
turbation velocity of a few centimelers per second
is quite reasonable. Note that a viscosity wave
perturbation of 1-2 cm s~! and wavelength of
around 1.5 m corresponds to a Richardson number
of about Ri = wh/ (mRu)2 > 1 and so0 is a stable
wave.

We therefore conclude that reflections from vis-
cosity waves can and should occur at 20 km altitude
and would be detected by a VHF radar.

D region case: In this case we again apply (19)
but need a new expression for dn/dz. In this case,

n=—N 34

is the perturbation refractive index. In the high-
frequency limit,

(35

where r, is the classical electron radius [e.g., Hock-
ing and Vincent, 1982], but in the case of frequen-
cies around 2 MHz, 3n/aN must be evaluated by the
Sen-Wyller equations [e.g., Sen and Wyller, 1960]
(also see Hocking and Vincent [1982]). It is actually
tnore convenient to rewrite (18) as

~u'k
n=—M, (36)
mw
where M,, = on/laN My.
We again take the viscosily wave front to be
almost horizontal, and a vertical profile of the
refractive index is then

k .

n'(z) = —u} Re {——— (M,)efm* *’} a7
imaw -

The gradient of n’ is then

dn' Ky |
— = —uj Re 1| =) — im(M,)e™2* #) 3, (38)
dz m/ iw

As for the stratospheric case, we choose a simple
example and take ¢ = 72, so that
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dn &
== =0.5u; — (—M,)e ™ sin (mgz) {39q)
dz w

B -

I dn
—— =0.58 sin {a7)e %2

- (396)

where |8 = [(k/w) M, u}], and ) = a, = 2m/A, as
for the stratospheric case (appendix).

We may now follow the same discussions as for
the stratospheric case, and then the effectjve reflec-
tion coefficient is approximately

kN A,
R =0d|Ba, = 0.4( ) o (M )iy (40)
m

w

Hocking [1981] has presented typical values for
M, (or they can be evaluated using the values of
IMy| = 0.1% — 1% N deduced earlier), and at 70 km
altitude, [M,| ~ 107 m~!.

Consider a viscosity wave with a period of ~75
min(w= 1.4 X 10‘3) andtake v=0.1ms ™! (giving
A, = 75 m). If we take &/m = 0.02, which corre-
sponds to a 1° tilt of the phase fronts to the
horizontal, then & = 1.7 x 1073 rad m~!, and so

R=6x10"%; 41)

Thus if uy ~2ms~!, R ~ 107°. The Richardson
number is again >1 for this choice of u},. Reflection
coefficients actually measured at 70 km altitude are
typically ~107% — 107* [e.g., Hocking, 1979;
Hocking and Vincent, 1982a, b], so this value of R
is quile reasonable, although the estimate of uy is
only a guess. If the electron density gradient is
steeper, M, can be even more and therefore so can
R. In the case of steep electron gradients of the
order of 1 m~!, as certainly occur from time to
time, even values of u)y of a few tens of centimeters
per second could give measurable reflected signals.
A value of u)y = 10 — 20 cm s™! is not at all
unreasonable; it is only a few percent of typical
gravity wave amplitudes at 70 km altitude.

Thus we again conclude that provided conditions
exist which are capable of producing viscosity
waves, they will penerally be detectable with a
2-MHz radar.

GENERATION MECHANISMS AND LIKELY LOCATION
OF WAVES

Up until this point, we have simply assumed that
the viscosity waves do exist. We must now address
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the issue of how they are created; clearly, they must
be generated in situ, because their highly damped
nature forbids propagation over large distances.
There are at least two regions in which we might
expect waves of this type to occur.

First, we expect that just as viscosity waves must
arise in any reflection from a rigid surface in order
to allow the conditions of no-slip, zero normal
velocity, and continuous velocity profiles to be
satisfied, so they will arise in reflection from a
stratified change in Brunt-Vaisala frequency (or
e¢ven mean wind speed), and we therefore expect
viscosity waves to eccur to some extent at places
where gravity wave reflection occurs.

Second, we expect these waves to exist wherever
gravity waves become highly nonlinear, and a likely
candidate is a critical level. Gravity waves often
break into turbulence before they actually reach a
critical level, but this need not always be the case,
and we will consider the case for which we have a
critical level existing in an already very stable
region of the atmosphere.

We shall consider the second mechanism first.
Bowman et al. [1980] have investigated coupling
between various wave modes at a critical level.
They particularly studied critical levels for which
the Richardson number was greater than unity, but
they also assumed that the major diffusion was by
turbulence. The formalization and results they de-
veloped apply directly to our model, except that we
assume that the critical level takes place in a region
where there is no background turbulence and the
flow is purely laminar so that diffusion takes place
by molecutar transport. This will not be true of most
critical levels, but then we only require it to be true
occasionally to explain the occasional occurrences
of strong specular echoes. A key result from Bow-
man et al. [1980] is that the coupling between any
incident gravity wave and the resultant viscosity
and thermal-conduction modes is quite strong in
such a critical level interaction. The viscosity
waves also play a key role in allowing some prop-
agation of the gravity wave through the layer, but
this is not the key point of our work, and the simple
fact that gravity waves are capable of generating
these highly damped modes is our main concern
here.

Klostermeyer [1980] also performed a numerical
examination of the process of critical layer interac-
tion of a gravity in the stratosphere. He assumed a
turbulent eddy diffusion coefficient of 0.5 m? s/,
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supposing that the air is always weakly turbulent. In
our case, however, we assume no turbulence at all
at the level of interaction, and Klostermeyer’s cal-
culations can be translated to a height of 70 km,
where the molecular kinematic diffusion coefficient
is around I m? s~!'. His Figures 3 and 6 show
structure which looks remarkably like Figures 5a and
54 in this text. Indeed Figure 6 from Klostermeyer's
work appears 1o have two viscosity waves, an upward
propagating one at the top of the layer and a down-
ward propagating one at the bottom. Even the vertical
wavelengths of the waves seem about right.

More recently, Hooke and Jones [1991] have
studied gravity wave—viscosity wave interactions in
the ocean and again found that there is substantial
intermode coupling between gravity waves and vis-
cosity waves. In their case they concentrated on
regions of large velocity shear and concluded that
viscosity waves could readily be generated in such
regions. Hooke and Jones proposed that the gravity
wave—viscosity wave interaction '‘bootstrapped’™ it-
self, with initial small perturbations on the shear
starting the viscosity wave growth off, and then the
gravity wave—viscosity wave interaction growing
from that point.

In contrast, Fritts and Geller [1976] examined
critical level interactions and concluded that viscos-
ity would tend to “*smooth out™ the velocity per-
turbations around the region. However, the authors
estimated accuracies of around a few percent. On
the other hand, the velocity fluctuations required to
explain the specutar echoes in say the stratosphere
are only around [ cm s ~1 and therefore may well be
of the order of 1 or a few percent of the amplitude of
the incident gravity wave. Thus while it is likely
that viscosity will produce some smoothing of the
velocity profile, we still anticipate that viscosity
waves will exist. We do not doubt the general thrust
of the work by Fritts and Geller but simply consider
that it may not have the accuracy to detect the very
small perturbations produced by the viscosity
waves we are discussing. There may well-be some
room for conflict between the papers by Bowman et
al. [1980), Hooke and Jones [1991], and Fritts and
Geller [1976], but we consider that each is accurate
for the regime considered therein, However, we
consider the first two papers as supporling our
assertion that viscosity waves will indeed be gener-
ated at critical levels and regions of large shear.

We therefore propose that a gravily wave inci-
dent al a critical level will represent a forcing which

will drive the viscosity waves with a frequency
equal to its own, and this is why we have assumed
a purely real frequency to date. We expect that the
incident gravity wave will drive and support the
viscosity waves until either the wave dies out or it
grows so large that it breaks into turbulence.

We now turn to the issue of the generation of
viscosity waves at reflection levels. HJ have out-
lined in some detail how reflection from a solid
reflector like the ground generates viscosity waves.
In the case of a sudden change in mean Brunt-
Vaisala as a function of height a similar reflection
level exists, except in this case the level is not solid
and is therefore capable of being distorted by the
incident gravity wave. This will reduce the effi-
ciency of production of visgosily waves, but we do
not expect it to reduce to zero. Continuity of both
pressure and vertical velocity across the interface,
as well as a *'no-slip’’ condition, will require the
existence of viscosity waves. Of course, for any
significant reflection to occur the sudden change in
Brunt-Vaisala frequency must take place in some-
thing less than a quarter of the vertical wavelength
of the incident gravily wave, but once reflection
does occur, the vertical wavelength of the resultant
viscosity wave is dependent only on the frequency
of the incident gravity wave and not its wavelength.
Furthermore, at any one height all gravity waves of
the same period produce viscosity waves with a
single vertical wavelength, independent of the hor-
izontal and vertical wavelengths of the gravity
waves. Thus all waves of the same period act
coherently to ensure that a moderately substantial
viscosity wave is produced. Finally, it is important
to remember that the viscosity waves need only
produce small changes in refractive index, so even
if the gravity waves only have reflection coefficients
of a few percent, this may still be enough to produce
viscosity waves with the necessary refractive index
perturbations. We again emphasize that the resultant
viscosity wave need only have amplitudes equal to
one or a few percent of the incident wave in order to
produce the observed reflection levels. It is also true
that viscosity waves may not always be generated
most efficiently at heights where the gravity waves are
best reflected. For example; -a gravity wave is re-
flected most efficiently at a turning level, where its
vertical wavelength tends to infinity, but we do not
anticipate that strong viscosity waves will be gener-
ated in this case. Viscosity waves will be generated
most efficiently where the changes in Brunt-Vaisala
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frequency and/or wind speed are most sudden. This is
consistent with the expectation by Hooke and Jones
[1991] that strong wind shears will be a region of
substantial viscosity wave generation.

We consider that the above references support
the concept of viscosity waves being forced by
gravity wave nonlinearities and reflections. We
have not, however, developed a model to determine
the exact values of these viscosity wave ampli-
tudes; at this stage our primary purpose is to verify
that such waves may indeed be produced, and the
above references iltustrate that this is so. To de-
velop a model capable of predicting the viscosity,
wave amplitudes would require accuracies better
than 1%, and this is not possible at present.

The viscosity waves will tend to have phase
fronts aligned along the planes of the reflection
level, and these reflection levels are likely to be
nearly horizontally stratified, so it follows that the
viscosity waves will be also. Thus the viscosity
waves will tend to be aligned horizontally but not
completely so. A range of waves will be produced,
with differing tilts. We have already noted that there
must be small tilts of the gradient discontinuity with
respect to the planes of constant refractive index in
order to produce backscatter; perfectly horizontal
reflecting layers in a perfectly stratified atmospherc
would produce no reflection.

We have also seen that the typical scalcs ex-
pected for viscosity waves match the Bragg scales
for VHF radars at 20 km altitude and HF radars at
70 km altitude, which is consistent with our hypoth-
esis. There is enough agreement between the wave-
lengths of the viscosity waves and the Bragg scale
of 50-MHz radars to make the model highly plausi-
ble, but if the bandwidth of the viscosity waves had
been extremely narrow, it may have been claimed
that it was too much of a coincidence that 50-MHz
VHF radars just ‘*happen' to be at the correct
frequency. However, the band is not very narrow;
we note from Figure 10 that the bandwidth of the
spectral peak of the viscosity waves is quite broad
(around *50% of the central wavelength), so it does
not require a high level of coincidence for VHF
radars to be of the correct frequency.

Thus viscosity waves can exist throughout the
whole lower stratosphere with vertical wavelengths
which are capable of causing radar backscatter of
50-MHz radar signals, and they will tend to exist in
laminar regions. 1t is well known that the most
stable region of the stratosphere occurs at ~15-20
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km altitude (for example, see review diagram by
Chakrabarty et al. [1987]), and the turbulent diffu-
sion coefficient is generally least at these heights, so
it may not be surprising that this is a region where
these viscosity waves are frequently found. We also
know that turbulence in the stratosphere tends to be
a very stratified phenomenon, with layers of turbu-
lence interspersed with layers of laminar flow. Thus
it is not surprising that the specular reflectors may
appear at times to occur not too far from turbulent
layers, just by nature of the interieaving of turbulent
and nonturbulent layers.

Explanation of the MU radar observations

At this stage we are nowrin a position to make a
proposal to explain our observations which were
discussed earlier. Figure 4 has indicated that the
particularly stable region under study occurred
some- distance above a layer of narrow backscatter.
The region of strong backscatter had some aspect
sensitivity, but it was in fact the least aspect sensi-
tive of any of the heights in Figure 4, We therefore
surmise that this stronger echo was produced by a
layer of turbulence, with some degree of aniso-
tropy. Various authors {Hocking et al., 1984; Hock-
ing, 1985; Woodman and Chu, 1989; Hocking, 1990]
have proposed that turbulence tends to be isotropic
in the middle of a layer, but toward the top and
bottom it is more anisotropic, and we surmise that
the same is true in this case. Turbulent layers tend
to oscillate with a period of the order of the Brunt-
Vaisala period [Pao, 1973], and this results in some
radiation of gravity waves. Furthermore, the turbu-
lent motions themselves also produce (weak) radi-
ation of gravity waves over a wide range of frequen-
cies and wavenumbers [Weinstock, 1978].

We propose that the highly specular echo ob-
served was due to viscosity waves produced in a
very laminar (nonturbulent) region immediately
above the localized turbulent layer discussed
above. The fact that the specular echo discussed
earlier occurred in a region of light winds (substan-
tially less than 15 m s _') might be evidence that the
echo was due to viscosity waves formed by oro-
graphically generated waves from below encounter-
ing a critical level region. Within the nearby turbu-
lent layer, viscosity waves could have been
produced too, but because of the larger turbulent
diffusion coefficient (i-10 m2s™") they would have
had scales of the order of 60-100 m. Furthermore,
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even if their scales were appropriaie, the turbulence
would produce corrugations on the wave fronts and
prevent specular reflection. Hence we will concen-
trate on those viscosity waves formed in laminar
regions of the atmosphere.

This proposal explains why specular reflectors
occur, and why the specular reflectors occur adja-
cent to but not in turbulent layers. We have already
seen that gravily waves are confined to have wave
fronts at least 2° or more from horizontal, so these
cannot explain the specular reflectors. The idea of
sharp edges on the turbulent layers [Bolgiano, 1968]
has been largely superseded by the idea of anisotro-
pic turbulence on the top and bottom of the layer, and
in any case cannot explain the observations shown in
Figure 4, where the specular reflections occur some
distance above the turbulent layer.

One feature left unexplained is the fact that even
at range number 20, where the specular echoes
occurred, the off-vertical beams still recorded some
signal. We have already surmized that this is a
region of laminar flow, so we cannot propose that
there is weak turbulence. Nevertheless, we have
already noted that the region is full of weak gravity
waves (some perhaps radiated from the nearby
turbulent layer), There are then two possible causes
for this weak off-vertical scatter. First, it is unlikely
that the reflecting layer will be perfectly fiat. kt will
contain fluctuations and wobbles, so the phase
fronts of the viscosity waves will contain similar
such deviations. These will cause off-vertical scat-
ter. lndeed, significant off-vertical scatter occurs
even if there are ‘‘wobbles’ on the scale of one
eighth of the radar wavelength; in the stratosphere
and for the case of 50-MHz backscatter this is less
than ! m. We propose that some of the off-vertical
scatter is due to these undulations. '

Second, we also propose that some of the signal
observed on the off-vertical beams is.due to weak
Bragg reflection of the radio signals from short scale
gravity waves. The waves will be fairly weak in
intensity, because they will be the longest period,
shortest vertical wavelength waves, and fairly heav-
ily dampened. In fact, even these gravity waves
cannot have propagated far; the 1/e depth of gravity
waves with vertical wavelengths of 3 mis only a few
meters (Figure 8). More likely, they are the result of
nonlinear interactions between longer wavelength
waves produced by the nearby turbulent layer, and
perhaps also from nonlinear breakdown of other
atmospheric waves which are in the vicinity. Klos-

termeyer [1990] has discussed how gravity waves
may break down by the parametric subharmonic
instability. Exactly, how these gravity waves arise
here is not our direct concern; the important point is
that these waves and the viscosity waves can coex-
ist without destroying each other. Note that these
gravity waves can in fact be generated at all heights,
but at heights where there is any [evel of turbulence
the enhanced diffusion will ensure that they arc
evenly more strongly damped, and furthermore
their effects will be masked by the backscatter
produced by the turbulence. They are most likely to
survive and be noticed in a laminar region. Indeed,
even in the laminar region, gravity waves with
significant tilts will have phase fronts which pass
into the nearby turbuient Jegions, and these waves
will therefore be partly destroyed by turbulent
destruction of the waves in these nearby turbulent
regions. Thus these weaker gravity waves will not
generally be a cause of radar backscatter and will
only produce a distinguishable radar signal when
they exist in nonturbulent regions.

Figure 11 summarizes the main features of this
model. We note that the model explains the exist-
ence of very stable layers, and shows why VHF
echoes tend to be most aspect sensitive at —15-18
km altitude [Hocking et al., 1986, 1990]. it also
explains why MF echoes (~2 MHz) show strong
aspect sensitivity at ~70-80 km altitude, and our
calculated levels of backscatter have been shown to
match experimental observations. We propose that
the lesser degree of anisotropy observed by, for
example, Fukao et al. [1980] and Royrvik [1985] at
VHF in the mesosphere were probably due to
anisotropic turbulence.

We have yet to quantify the expected ratio of
vertical to off-vertical scatter, but this would re-
quire detailed model calculations to determine the
nature of the spectrum of 3-m scale gravity waves in
the surrounding region. This is beyond the scope of
the current work.

TESTS OF THE MODEL

Possible further experimental tests of the model
would include searches for more examples like that
discussed in the early part of this paper. Simulta-
neous in situ and radar studies would be helpful to
see if the specular reflections really do occur in very
stable, nonturbulent regions.

Another useful prediction of the model could also
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Fig. 11. Schematic picture of small-scale dynamics in a
moderately stable stratified region of the atmosphere, The sets of
parallel lines like those indicated by “*G™" represent gravity wave
packets. The phase velocities (c} and group velocities (vg) of the
waves are shown by the two sets of arrows. The region “'T"*
represents a turbulent layer, gencrated in this case by the longer
wavelength gravity wave shown by the shaded wave fronts;
elsewhere, the atmosphere is quite stable. The turbulence is
statistically isotropic near the center and more anisotropic
toward the edges. Some of the gravily waves shown are radiated
by the turbulent layer, although the majority have propagated
here from elsewhere. Adjacent to the turbulent layer is a laminar
region which contains an *‘interface region® where the Brunt-
Vaisala frequency undergoes a (stable) change, and this is
indicated by the dashed-dotied line. At this level, partial reflec-
tion of gravity waves occurs, a5 shown by the expanded diagram
of the box “'V,” and viscosily waves associated with these
reflections are shown therein. These viscosity waves cause the
**specular echoes’” observed with atmospheric radars. The plane
along which the Brunt-Vaisala frequency changes has a slight
tilt, in order that the viscosity waves can produce density
perturbations, and also contains undulations. These undulations
give the surface a certiin degree of “‘roughness*” and contribute
{0 the weaker off-vertical scatter observed.
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be tested. There has been some effort dedicated to
searching for radio echoes from above 30 km alti-
tude. Our model makes some prediction about the
best radar frequencies to use for such a search,
assuming that the radar will receive backscatter
from viscosity waves. For example, at a height of 50
km, v = 0.016 m? s ™!, and taking @ ~ 0.02 — 0.002
rad s ! we see that we expect viscosity waves with
vertical wavelengths in the range 8 to 25 m. Thus
frequencies in the range 6 to 20 MHz should be used
to search for echoes from these heights.

Another useful prediction concerns the case of
generation of viscosity waves at a critical level. The
model predicts that viscosity waves will occur while
the surrounding region is still laminar, but one
might expect that eventually the gravity wave will
grow in amplitude and break. Thus occasions
should occur in which the specuiarly reflecting layer
is observed to break up into turbulence.

Finally, it is possible that there may be a narrow
“*hole”” around the vertical direction, from which
little specular reflection occurs. This is because we
have seen that if the planes of constant refractive
index and the viscosity wave wave fronts are par-
allel, no refractive index perturbations will occur.
The planes of constant refractive index tend to be
near to horizontal on many occasions, so that
horizontally aligned viscosity waves will produce
no scatter in such circumstances. Nevertheless,
there will also be occasions when the background
refractive index isopleths are not horizontal, in
which case reflection from overhead is possible.
But as a general rule, there will always be some
direction, close to vertical, from which no specular
reflection occurs, and this will indicate the tilt of the
contours of constant background refractive index.
Interferometry would be a good means to search for
such a “‘hole.” There are just a few tests which
could be applied to test our modeét further.

CONCLUSIONS

A model to explain the cause of specular refiec-
tion of radar signals from the atmosphere and lower
ionosphere has been proposed. We suggest that
these signals are due to *‘viscosity’ and ‘‘thermal
conduction” waves, these waves arising in regions
of laminar flow at locations where gravily waves are
reflected or critically absorbed. Provided that the
flow in the region is nonturbulent, these waves will
maintain their structure for lengths of time compa-
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rable to or greater than their period, which may be
of the order of 5 to 60 min.

We have noted the following important points.

1. Viscosity waves will exist with vertical wave-
lengths which depend only on the viscosity coeffi-
cient and the wave period and can have any orien-
tation. However, in the real atmosphere they will be
aligned along planes where either the mean temper-
ature gradient or the mean wind change, and such
planes will tend to be near-horizontal. Typical ver-
tical wavelengths are {-5 m at 20-30 km altitude
(i.e., around the Bragg scale for 50-MHz radars)
and around 70 m at 70 km altitude (i.e., approxi-
mately the Bragg scale for 2-MHz radars). It has
been noted that these scales are consistent with the
fact that the highest degree of aspect sensitivity yet
observed is at 50 MHz in the stratosphere and 2
MHz in the mesosphere.

2. Gravity waves cannot be the cause of the
enhanced reflection from the vertical, since the
effects of viscosity cause a steepening of the wave
fronts compared to the inviscid theory, and gravity
waves with vertical wavelengths of 3 m cannot exist
any closer to about 2°-3° from horizontal 'in the
stratosphere. Viscosity waves can have any orien-
tation, although in order to produce density fluctu-
ations which can be observed with a radar, they
must have a small tilt from horizontal; or, more
specificafly, must have a tilt with respect to the
isopleths of constant mean refractive index. It is
possible that this latter quantity could be tilted
slightly, so in order to produce radar reflection it is
only necessary that the isopleths of mean refractive
index and the planes where the temperature-gradient
changes occur are not the same. We have therefore
proposed that viscosity waves are the cause of reflec-
tions from overhead and that these viscosity waves
are produced in laminar regions in which either criti-
cal fevel interactions occur (prior to the breakdown of
the wave at the critical level) or gravity wave reflec-
tion occurs. Off-vertical scatter may be produced by
“wrinkles"’ at the gravity wave reflection level and by
weak small-scale gravity waves.

3. Calculations of the reflection coefficients of
such viscosity waves indicate that they are indeed
capable of causing the observed signals.

Figure 11 summarizes the model, showing adjoin-
ing turbulent and laminar regions. The turbulent
region contains scatterers which vary in aspect ratio
as a function of distance from its center [e.g.,
Hocking et al., 1984; Hocking, 1985; Woodman and

Chu, 1989]. In the laminar region, viscosity waves
are produced during partial reflection of gravity
waves from gravity wave reflection levels {for ex-
ample, moderately rapid changes in the Brunt-
Vaisala frequency and/or the wind speed) and in the
vicinity of critical level interactions; weak off-ver-
tical reflection is produced by ‘‘wrinkles’’ in the
phase fronts of the viscosity waves and by gravity
waves of very short vertical wavelengths which exist
there. These weak gravity waves may be produced by
gravity waves generated by the nearby turbulent layer
and also by nonlinear breakdown of other waves
which exist in the region. The details of the model
have been described in the previous section.

Several features are in need of further investiga-
tion but are beyond the scope of this paper. These
include proper inclusion of both nonzero viscosity
and thermal conductivity, which leads to a cubic
dispersion relation in m?, and a more detailed
calculation of the relative ratio of viscosity wave
scatter to off-vertical scatter.

APPENDIX

In this appendix we seek to evaluate (28) in the
main body of the text. We choose to Fourier
transform each function of the convolution and find

their product. -
The Fourier transform of e ~Z/27 cos (dwz/A) is

P(§) = % e~ TADNETTNT 4 ,;_ e THBDNE- W) (A1)

where ¢ is the reciprocal wavelength, and the Fou-
rier transform of B sin (a;z) e ~™* (with a value of
zero for z < 0) is
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If @; << &, then this function has two maxita close
o £ = *lay/(2m)], at which point V(8 =~ B/ 2ay),
since only one of the two additive portioas of (30)
contributes any significant vaiue in this case. In our
case, however, a; = a; = myg, so we cannot use
this simple argument directly. The spectrum corre-
sponding to V(9 is shown in Figure 10 for the case
of @) = @; = mg. Note that this function is much
broader than the Fourier transform of the pulse (a
exp {—(£~2/0)?} (A 2)?), which is shown in Figure 10
as the narrow “‘spikelike’’ function. The peaks of
V(&) are still close to *[a,/(2%)], but substituting
say & = a;/2w into (A2) shows that the values of
V({) at the peaks is about (82a,)(~1/(1 + 4) + 1) =
0.4f/a;. We have chosen the spectrum correspond-
ing to the pulse to be centered at £ = 2, = a7,
since backscatter will be most efficient in this case.

Because of the broad nature of V(& compared
with £(£), the product of the two Fourier transforms
is approximately the same as that of the pulse alone
but multiplied by 0.48/a,. Therefore the reflected
pulse is the same in form as the transmitted pulse
but reduced in amplitude by 0.48/a; times, or, in
other words, the reflection coefficient is 0.48/a.

In reality, the actual reflection will be a little less
than this if we properly Fourier transform the
product of these two functions, because the Fourier
transform of 1/2 dn/dz is not flat, but the reduction
will only be a few percent, V(& being so much
broader than the Fourier transform of the pulse.

Inour case, 8= 0.1p4)/A,, and a| = a, = 27A,.
Thus the reflection coefficient is

R = 0.48/a; = 0.0064|p}| = 0.285n, (A3)
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SOME NEW PERSPECTIVES ON VISCOSITY AND THERMAL CONDUCTION WAVES AS
A CAUSE OF ‘SPECULAR’ REFLECTORS IN RADAR STUDIES OF THE ATMOSPHERE

W.K. Hocking

Dept. of Physics, University of Western Ontario, London, Ont., N64 3K7, Canada

Abstract

Following recent observations of sheet-like structures in the atmosphere using balloons [Luce et
al., 1995}, it is possible to re-ezamine the possibility of specular reflection being caused by viscosity
and thermal conduction waves in the atmosphere. New developments in this model are presented.

1. Introduction

The concept of damped diffusive waves as a cause of specular reflections of radio signals from
the middle atmosphere was first introduced by Hocking et al,, [1991] - here-after referred to as
H91. Since publication of that work, some new developments have occurred, which permit new
perspectives on this model. In addition, there were some efrors in the original paper, which will
also be addressed.

First, we will attend to the ervors jn the original paper. Que is typographical, one is conceptual
but has no bearing on the results of the paper, and a third is very important aad has significant
bearing on the the stratospheric portion of the work - although it does not alter the final conclusions
too much. This last factor causes no changes in relation to the ionospheric analyses performed in
Hol.

These errors are listed below, with the most significant one mentioned first,

(i) The first, and most important error, is that “p” in equation (20) of H91 should be the
pressure in millibars, not Pascals.

(i) The least significant error, which is purely typographical, is in the first line of equation (22),
in which the brackets have been printed in the wrong order. The bracketed sections should appear
as

(R )& + 1))
(iii) Finally, equation (23) should be written as

£=-ug

where s’ is the vertical displacement of a parcel due to a wave at height z, and is not the same
as z. &' is also given by equation (14).

Consequences ~

(i) Item (iii} {s not used anywhere in the paper, and so has no consequences.

(ii) Item (ii) is purely typographical and has no consequences.

(i) Item (i) is very significant, and means that a few of the constants used in the paper are
in error by factors of 102 {and in some cases 104), Interestingly, as will be shown, because the
comparisons with experiment were in essence “order of magnitude™ only, even these changes do not
permit viscosity waves to be discounted as observable entities, It has to be admitted, however, that
rather more specific conditions are needed for them to be seen - although it turns out that these
special conditions are pot uncommon.

This error affects the following equations in the original paper. 1 will yse the symbols 'VW’ in
front of equations from the original paper to emphasize their origin.
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(a) Equation (VW22) - all occurrences of 77.9 X 10~ should read 77.9 x 107%
(b) The second equation following (VW25) should read

4= 224%x107 | o)y | Re{imei(m=te+m/4}}

(¢) Equation (VW26): 0.0224 should be 2.24 X 10—*

(d) Equation (VW27): 0.0112 should read 1.12 X 10~4 (upper line), and in the lastline 0.1 should
be replaced with 10-3.

Equations (VW28), (VW29) and (VW30) are perfectly satisfactory as they are, but the very last
line of the appendix {which relates to these equations) should read

R = 0.48/a; = 6.4 x 10~ | p, |= 0.2857/

Note that the term 0.285 is unchanged.

Finally, the section from equations (VW31) to (VW33), and the text up to “D-region case”,
peeds to be re-addressed, and this will now be done. We will also examine the new developments
which have placed the possibility of the existence of these damped waves in a new light.

2. Can we detect viscosity waves?

In the original paper [H91)], we asked this same question, and concluded that the waves could
indeed be responsible for the specular reflections observed. In view of the above corrections, these
conclusions need to be re-addressed. However, rather than simply repeating the work from that
paper, but with new values for the parameters, a better procedure has been developed to more
clearly answer the above question. This procedure also improves our understanding of fig. VW9
and equation (VW11) in the original paper. Thus this section is not a correction, but an addition
and an improvement over the orignal work. ‘

First, let us return to the expressions

n=M,d and p = Ms 1)

where 5 = :“’;:; = 'm""u’ is the vertical excursion of a displaced parcel of air. (Note that the
relation ku' + mw' = 0 is valid for both viscosity waves and gravity waves for an incompressible
gas, since it comes directly from the continnity equation).

Then from (1), »' = %:p’ = 77.9x 1078 K} p’ ( see the modified equation (VW22)). This also

means that & = ﬁ‘:% We have already discussed this expression in relation to the equation
following (VW25) (including (VW26) and (VW27)).
-
But now let us look at the expression p' = M,s’ in more detail. We also know that M, = -%"-’1
e.g. see (VW15b) and the discussion which follows that equation.

Thus

! _ —wh wh k1
£ = SR = it oy (2)

Note that for fixed wg, m and w, ':% o k. This is consistent with fig. VW9, where p' shows an
almost linear variation with k.

Note that this simple relation between p’ and & was not recognized in the discussion following
equation (VW13), and in fact is not at all evident from (VW11), since that equation does not even
appear to involve wp! :

But in fact (2) can be derived from (VW11) provided that (VW8) and (VW9) are used for m.
To see this, write (VW8) as

83
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m? = k2 = %;[:!:(l + % -1 (3)

where we haved used a binomial expansion for the square root.
Then taking the negative choice of the %, which corresponds to the viscosity waves, we have

tTw

2_ _p2_ W o ix
m* =~k 2,_,[ 2+ 2] (4)
Hence -—
2 g2 i 9. X
mi i = 220 - iX) (5)

We wish to incorporate this information into (VW11), so multiply both sides of the previous
equation by iZ and re-arrange to give

i L (m? 4+ k?) = X
1+lw(m +k)_:4 (6)
Substitution into (VW11) and applying (VW9) then gives
LA 0 N NIRCIC AL
L= T = YLy, @

or

o0 = —g—;;mu (8)

Finally, £ ~ ir (see (VW3a)), so that

———u, (9)
which is (2).

We are now in a better position to pursue the discussion following equation (VW31). We begin
with our estimate of the peak refiection coefficient as R = 6.4x 1075 | pf, | (via (A3) from H91),
so that

wi k1 o
gimjw™
For example, take pg = 0.05 kg m™~3 at 20 &m altitude, w} = 4 x 104 rod2s-2, g = 9.8 ms=?,

and [ m | = 27/1.5 metre™!. If we use 2 period of say 60 min ( w = 27/3600 rads™!), and take
the horizontal wavelength to be 50 m, then

R=6.4x10"%p (10)

R~22x10"% (11)

(compared to VW31). Note that using these values of m and k (vertical wavelength = 1.5 m,
horizontal wavelength of 50 ™) carresponds to a tilt angle for the Phase fronts of 2° from horizontal,
Then using C? = 21.5R? (see just prior to (VW33) in the original paper) we have

C2 x 107164} (12)

for our choice of radar and wave parameters. .
A horizontal perturbation velocity of #) = 10 em s~! would then produce a value for C2 =
107'® m=?/2, However, the Richardson number in this case would be
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Ri = wh/(mpu)? = (4 x 1074/([2n/1.5] x 0.1)%) (13)

or R;=2x10"%

Thus such a wave should be unstable, so this might suggest that viscosity waves are not impor-
tant in the stratosphere under normal circumstances, negating the original statements in H9..

However, new experimental data have appeared since the original paper was written, and these
data allow us to re-examine these equations from a new perspective. Luce et al. [1995] have
presented balloon data which show small step-like structures which could be related to viscosity
waves. They have shown that these structures are much more prolific than was originally assumed
in H9!, so at any one time there may be several in a radar volume. Furthermore, in the immediate
surrounding area the temperature gradient can be very high - up to 20 K km~!. Thus w} can be
as high as 1073 rad? s~!. These large values for the Brunt-Vaisala frequency have two effects -
first, they strengthen the efficiency of backscatter of these viscosity waves, and secondly they also
allow the waves to grow to larger amplitudes before becoming unstable. For example, if w} is 1073,
then (11) becomes

R=5.5x10"%u} (14)

and so C2 ~ 6 x 1071%4%.

If in addition there are say 4 or 5 such viscosity waves within the radar pulse length, then C2
could be 4 or 5 times larger (larger if the signals from some of the reflectors interfere constructively),
so in this case we could have

C? ~3x 1071%3, (15)

where we have assumed that all viscosity waves have approximately equal amplitudes u4. To
produce a value for C? of 1071% in this case requires a typical value for the velocity amplitude of
only , ~ 1.Tem s~*. Then the Richardson mumber is R~ 10-3/{2x/1.5 .017)? ~ 0.2.

Thus in this case the waves are close to stable. A slight increase in the horizontal wavenumber
k, or a decrease in w (see 10), or an increase in wp, or an increase in the number of waves, could
easily permit viscosity waves which are stable to be detectable with a VHF radar.

As an interesting aside, it is interesting to contemplate the nature of the Miles-Howard stability
theorem. The condition R; = 0.25 is a necessary condition for turbulence, but not sufficient. This
meaas turbulence can occur, but does not have to. Perturbations in the flow are required to trigger
the turbulence. In the case of a well-organized motion like viscosity waves, existing in a very
stable background, is it not possible that the perturbationé pecessary to imitiate the turbulence
may not develop? if this is true, then is it not also possible that the viscosity waves could maintain
themselves even under conditions in which the Richardson number is less than 0.25 (on condition
that the mean Richardson number in the surrounding area is typically much greater than 0.25)7

Regardless of the last point, we see in conclusion that viscosity waves can cause measurable
radar backscatter in the stratosphere - but under more specialized conditions than proposed in
the original paper. Nevertheless, the observation of very specular radio wave reflectors is itself a
relatively rare event, so the need for special conditions is not a drawback for the theory.
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THE FORMATION OF LAYERED STRUCTURES
BY PARAMETRIC INSTABILITY OF
FINITE-AMPLITUDE GRAVITY WAVES

J. Klostermeyer

Max-Planck-Institut fiir Acronomie, D-3411 Katlenburg-Lindau, Germany

ABSTRACT

—

VHF Doppler radars occasionally indicate the presence of almost monochromatic long-period gravity waves
in the mesosphere. The radar echo intensity occurs in the form of nearly horizontally extended layers which
are assumed to be generated by enhanced turbulence although the Richardson numbers are significantiy
larger than unily, excluding both shear and static instahilities as primary mechanisms for transilion to tur-
bulence. In good agreement with these observations, the theory of parametric instability of finile-ainplitude
monochromatic gravily waves predicts [ast growing anisolropic small-scale disturbances whose sizc is limited
by molecutar dissipation. The disturbances form turbulent layers maving wilh the phase velocily of the pri-
mary wave. They are “[rozen” in the primary wave flow (Taylor's hypothesis) and thus confirm ihe general
assumption that the fluid velocity can be obtained from the Doppler shift of backscattered radar cchoes.

INTRODUCTION

In recenl years, sensitive VHF Doppler radars operaling at frequencies near 50 Mllz have provided valuable
information about large-amplitude internal gravily waves in the atmosphere. In particular, the radar mea-
surements occasionally indicale the presence of almost monochromatic long-period waves that seem to be
generated in the troposphere by unidentified source mechanisms and propagate through the stratosphere with
exponentially increasing amplitude up lo a mesospheric breaking level above which the wave amplitude re-
mains almost constanl or decreases slightly /1/. Then the radar ccho intensily al mesuvspheric heights reveals
almost horizontally extended layers that have vertical distances cqual to the apparent vertical wavelength and
in general tend Lo move downwards with Lhe vertical phase trace velocity of the long: period wave. “Typical
periods and vertical wavelengths range from 1 to 10 h and 3 to 20 km, respectively /2,34/. Case studics
show in particular. that the most inlense echo layers lie well below the wave breaking level, i.e. within the
stalically atable wave field /5/. In addilion, the wave-perturbed Tichardson number at these leights is signif-
icantly larger than unily so that also shear instability cannot occur. Finally, the cchio layers are somelimes al
heights where both the wave-perturbed Vaisili-Brunt frequency and the Richardson number are close.lo local
maxima excluding any explanation in terms of a linear superposition of the large-amplitude wave and other
small-amplitude components of the wave spectrum giving tise to statically ot dyhamically unstable height
intervals. In the following, we therefore consider the effect of parametric instability which is the basic insta-
bility mechanism in finite-amplitude gravily waves rather than static or shear instability. We thus adhere to
the idea that enhanced radar echo power is generated by enhanced neutral air Lurbuletice, but the transition

mechanism differs [rom Lhe conventional ones.

THEORY OF PARAMETRIC INSTABILITY

Since with one exception, Lhe next seclion contains only results computed from a two-dimensional model,
the following description is restricted to this model. Details can be found in the papers by Micd /6/ and
Klostermeyer /7,8/ so that for brevily, we can confine ourselves Lo the most imporlant aspecls.

The mathematically simplest model is an unbounded inviscid Boussinesq fluid which yiclda a fairly faithful
representation of atmospheric gravily waves with eufficiently small wavelengths /9/. We introduce the stream
funclion ¥ and buoyancy U by

w= (-0, B=-Fy )

"
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(N2 I. Klustermeyer

with v, g aned g denoting, respectively, the fnid velocily, density and gravitational acceleration, P is the
densily of the reference state in which the fluid is at rest. Here and in the following, the subseripts z, z and ¢
denote partial derivatives. The flwid motion is described by
VviQ, + B, = v, Vi, - v, vy, (2a)
B| - NEWS = "I":Ba - q’sz‘ (21))

where N is the Vaisili-Brant frequency of the reference slate and is assumed to be constant. Then tle

finite-amplitude wave
¥=Acosd, B=-NUw"'Acos? (3)

wilth ¢ = lr 4 mz - wt is an exact solulion of (2} if the wavenumber vector k = {t,m} and the angular
lrequency w satisfy the dispersion equation

w? = N¥cos? (4)

where & is Lhe angle between k and the herizontal (Fig. 1),
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Iig. 1. Primary wavenumber vector k Fig. 2. Resonant sum interaction diagram

(0,1) aud PFloguet wavemuniber vector k, ~for a primary wave with a propagalion angle

{evsin A, cvcos B) in €,y coordinates. 0 = —72°. Any poinl on a branch delines a res-
onant lriad includitig the primary (k) and the
Floquet wave (k,). "F'he stippled areas around
branches A and C indicate triads giving rise to
fast growing parametric instabilities.

nn

‘l'o test the stability of the finite-amplitude gravity wave (3) we put
U=Acos®+9, B=-Nlw"Acos® 4 b, (5)

The perturbation quantities ¥ and b are obtained by substituting (5) into (2). After introducing the dimen-
sionless variables

(%.7) = k(z,2), T= Nt, B= KN, B=kN-2B, M = k*(2N)"'A (6) i
and a rotated coordinate system (€, 7} such that the 7 axis coincides with k (Fig. 1), we get
Vi + sinObg + cos 0b, = 2M sin S(v¢ + Vi) (7a) A
b, ~ sinOe — cos i, = 2M sin D(t; + b;) (7Th) §
where the tilde of the dimcusiouless variable has been omitted. Floquet theory yields solutions of the form
(,8) = eflsinbiracotnliet 57 (4, 1,)e"e. (8)
j=—oc0

We assume solutions that are bounded in space. Then the complex frequency o and Fourier coeflicients (), &)
can be obtained from a linear eigenproblem /7/. Equation (8) contains an infinite number of perturbation
waves. The wave with j = 0 is called the Floquet wave and propagates with a wavenumber a at an angle A to
Uie primary wavenumber vector k (Fig. 1). Ligensolutions wilh Re(o) > 0 represent paratnetrically unstable
modes, and it can be shown that for vanishingly small primary wave amplitudes M, parametric inatability
reduces lo nonlinear resonant interaction (Fig. 2) /6,9/.
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FORMATION AND PROPERTIES OF LAYERED STRUCTURES

Next, we consider solutions of (7) for a propagation angle § = —72° (i.e. w = 0.3N) and a wave amplitude
M = 0.4. Then the Richardson number is everywhere larger than 1.57 so that shear and static instabilities

cannot occur in the primary wave field.
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Fig. 3. Growth rate contours in the a, § plane. Fig. 4. Contours of the buoyancy disturbance
The contour levels are chosen such that during b in the £,y plane for (&, §) = (20, 11.3%). Doth
one primary wave period T' = 2r/w, the am- axes extend over 2X where A = 2x/k is Lhe
piitude increase is approximately equal to, re- primary wavelenglh. Continuous (dashed} con-

spectively, 0.50, 0.75, 0.85 and 0.90 times the tours indicale b > 0(< 0).
maximum amplitude increase. The restriction

to B > 0° is possible because of the aymmetry

relations (14) in /8/.

Figure 3 shows the growth rale Re(o) as a function of the wavenumber o and the propagation angle g of the
Floguet wave. Desides a secondary maximum at (o, 8) = (0.59, 34°), large growth rates occur al o > 3 and
£ = 11°, and further computations indicate that in the absence of dissipation, the levels of strong growth rates
near # = 11° extend to infinite o giving rise to a roughly fivefold amplitude increase during one priinary wave
period. The [ast growing large-scale instability al & = 0.59 and the small-scale instabilitics al large o originate
from triad interactions in the stippled areas of the interaction diagram in Fig. 2. Parametric instability thus
gives rise to randomly superposed small-scale disturbances whose size is only limited by molecular dissipation.
The energy transfer from the primary wave to all disturbance scales occurs simultaneously rather than via
a turbulent energy cascade. Nevertheless, such a broad wavenumber spectrum is typical of turbulence. in
particular, since parametric instabilities produce Bragg scattering of radar pulses, a finite-amplitude gravity
wave makes its own appearance without needing shear or static instability as a primary mechanism for the
transition to turbulence.

Figure 4 shows contours of the buoyancy disturbance in the ¢, 7 plane for the fastest growing mode with a
Floquet wavenumber & = 20. This value has been chosen becanse on Lhe one hand, it is much larger Lhan Lhe
primary wavenumber which is unity whereas on the other hand, the small-scale structure can still be resolved
in the conlour plot. Since 0 = —~72°, the ¢ axis and the layers in Fig. 4 are inclined by 18° to the horizontal,
Generally, the inclination is $0° — |4| and therefore decreases witli increasing primary wave period which is
cqual to 2r/cos 8 in dimcnsionless units. igure 4 indicates that the layers as a whole occur periodically in
space with wavenumber vector k and in Lime with angular frequency w and thus move with Lhe phase velocity
of the primary wave. It will be shown below that this is not true for the finc structure. The contour lines close
to Lhe local maxima and minima of the buoyancy disturbance rcsemble ellipses with the major axes almost
parallel to the primary wave [ronts. Therefore we expect that in the £, 7 plane, any Bragg scattering from the
fine structure is highly aspect sensilive. Without going into details, we nole that Lhete is a strong decrease
of Re(c) as the Floquel vector is rotated out of the ¢, 5 plane (Fig. 5) so thal all small-scale disturbance
imodes arc essentially two-dimensional. For a quantitative asseasment of the aspect sensilivity of Tirngg acal-
tcring, however, Lhe reflractive index disturbances have to be evalualed. For the mesosphere, this requires the
solution of the ion continuily cqualion and, near the mesopause, has Lo involve Lhe effects of a casende mecha-
nism that produces an inerlial subrange in the electron gas extending well beyond that of the neutral gas /10/.
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Fig. 6. Dislurbance wave frequency, o'

Iig. 5. Growth rate fle(c) vs. 7 where -y denotes the
(----}, and advection by primary wave fluid

angle by which the Floquel vector is rolated out of
the £,5 plane. The circles indicate results obtained velocity, k- u ( ~ - }, vs. primary wave
from a yet unpublished three-dimensional model of phase angle & for (a, 8) = (20, 11.3°). The
parametric instability for @ = 20. The angle 8 was deviation between both curves is due to a
free to adjust such that Re(s) takes its maximum local failure of the WKB approximation.

value for any given value of 7.

In atinospheric radar studies it is generally assumed that the temporal Auctuations at a fixed location are
entirely due Lo a “frozen” field of turbulence that is advected by the mean flow (Taylor's hypothesis), i.e.

a

- — =-u-Vv.

&~ " (%)
We will show thal (9) also holds for the fast growing small-scale instability modes. The Floquet solution (8)
indicates that for o » 1, the instability modes consist of a high-wavenumber oscillation {first factor on the
right of (8)) that is moduiated by a Fourier series with the periodicity of the primary wave. Consequently
the Floquet solution can be approximated by a WKB solution

a(n, )eivlend) (10)

where a is a slowly varying amplitude and ¢ a rapidly varying phase angle so thal we can define a space and

time dependent wavenumber vector and angular frequency by
K = (i, n), &' =~y {11)

With the dimeunsionless fuid velocity of the primary wave, u, we obtain approximations for the Lime derivalive

and Lhe adveclive term from 8
a:—iw’, u-v=1ik'.u. {12)
Figure 6 shows both w’ and k’-u as functions of the phase angle ® in the interval [0,2x]. There is good
agreemnent between hoth quantities except near & = 0.85x where w' tends towards very large values. Detailed
invesligations indicate that the strong deviations between w' and k'-u are due to a local failure of the WKB
approximation to the temporal variation of Lhe Floguet solution. The small-scale parametric disturbances
thus are “frozen” in the primary wave flow so that the space and time dependent fluid velocity can be derived
from the Doppler shifl of radar echoes taking into account the aspect sensitivity of the scatlering process.
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