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The earth space environment
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The study of the atmospherii:
system

The atmospheric system is not normally studied as a
system but taking only into account one particular
element of the system as the ionospheric (ionized
species) properties or the chemical or dynamical
processes. |

This approach reduces the possibilities of a full

understanding of the atmospheric system behavior
as a whole.

i the

&) abdus salam international centre for theoretical physics




Atmospheric chemistry and
the middle atmosphere

The atmosphere of the Earth is made up of a large
number of chemical constituents.

The most abundant or major constituents are N, O,
and Ar.

Many more constituents are produced in the
atmosphere itself by photochemical processes or at

the surface by different natural processes or by
human activity.

The latter species are known as source gases. They
are as examples: H,0, CO, CH, N,0O, and CH,CI.
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The middle atmosphere

* The region of the middle atmosphere (20-100 km) is
chemically the most active one.

» The starting processes are photochemical reactions

due mainly by the solar electromagnetic radiation in
the UV and X regions of the spectrum.
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Main photochemical
processes

Photodissociation: AB+hv— A+B
(wavelenght > 130 nm)

Photoexcitation: AB+hv— AB*
(wavelenght < 310 nm)

Photoionization: A+hv > A" +e
(wavelenght < 100 nm)
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Penetration heights
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Chemical reactions in the
middle atmosphere

The initial photochemical processes start large

chains of chemical reactions among neutral and
ionized species in the middle atmosphere.

Reactions involving neutrals give rise to complex

families of Oxygen, Carbon, Hydrogen, Nitrogen and
Chlorine compounds.

Reactions involving ionized species generate series
of both positive and negative molecular ions. The

presence of these last species is the main chemical
characteristic of the D-region of the ionosphere.
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Initial steps of the oxygen

12

chemistry

Photodissociation of O, in the stratosphere and mesosphere—2<2424mm_,

produces atomic oxygen O

reacting with O, +M

atomic oxygen O >produces O,

Photodissociation of O, —<*™"" ;produces 0,('A,) + O('D)

deactivation of O,('A,) —

can produce infrarred emission at A =1.27um

(O and 03 generate series of reactions that involve

most families of compounds)
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Initial steps of hydrogen
chemistry

13

Photodissociation of water vapor in the upper mesosphere—-2"_,
produces H+OH (hydrogen free radicals)

. . 1
Water vapor in the stratosphere and mesosphere—22<"a¥t (D) ,
produces OH

OH radical with CH, —euehexdfon , sroduces methyl radical CH,

(Methyl radical initiates a chain of reactions that includes also Cl)
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Initial steps of carbon
chemistry

OH radical and O('D) reacting
with CH, in the stratosphere —hrough oxidation

produces methyl radical CH,

N

CH3 reacting in chain with 02 and NO through photodissociationﬁ\

produces O and finally O,

(this last mechanism produces photochemical smog
in the troposphere)
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Initial steps of nitrogen
chemistry

N, is photochemically inactive,
N,O is introduced in the stratosphere from
the soil by denitrification and vertical motion.

N,O reacting with O and O, — produces NO and NO,

(nitrogen oxides destroy catalytically O and O, and
react with other compounds)
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Basics of chlorine chemistry

Anthropogenic chloroftuorcarbons (CFC) (like CFCl,)
are produced at ground level and, being stable, are
transported toward the stratosphere.

These compounds are dissociated by UV radiation
or by reaction with O('D) producing free CI

Free Cl regenerates itseif reacting in chain with O, (forming the very active
ozone destroyer CIO), O and NO or generate inactive compounds like CINO,.

(Through these processes chlorine is an effective
destroyer of stratospheric O,)
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Anthropogenic CFC and their
lifetime

CFC-12 Most commonly used EFC's
111years *The size of the square reflects the relative contribution of each
compound to CFC-caused ozone depletion( UMEPdata, 1990}
f *The times are the lifetimes of the compound in the atmosphere
aams before it is broken down andfor removed
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Polar stratosphere

 During the winter polar night, sunlight does not
reach the south pole. A strong circumpolar wind
called “polar vortex” develops in the middle to lower

stratosphere. This has the effect of isolating the air
over the polar region.

* In absence of sunlight, the air within the polar vortex
can get very cold and Polar Stratospheric Clouds (or
PSCs for short) can form once the air temperature
gets to below about -80C. These clouds first form as
nitric acid trihydrate.
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Polar stratosphere and
chlorine

« As the temperature gets colder however, larger
droplets of water-ice with nitric acid dissolved in
them can form. However, their exact composition is
still the subject of intense scientific investigation.
PSCs are the medium on which reservoir chlorine
compounds: hydrochloric acid (HCI) and chlorine
nitrate (CIONO2) are converted into ozone-
destroying chlorine radicals (like CIO that is 100

times more abundant inside the polar vortex than at
diddle latitudes).
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Ozone destruction by CI
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Ozone destruction

- It is estimated that one free chlorine can degrade
over 100,000 molecules of ozone before it is removed
from the stratosphere or becomes part of an inactive
compound.

« These inactive compounds, for example CIONO2, are
collectively called ‘reservoirs'. They hold chlorine in
an inactive form but can release a free chlorine by
photodissociation by solar radiation.

i the

&) abdus salam international centre for theoretical physics




22

The so called “ozone hole”

. Dramatic loss of ozone in the lower stratosphere
over Antarctica was first noticed in the 1970s by a
research group from the British Antarctic Survey
(BAS).

- Recent results from the European campaign
SESAME (1994-95) indicate significant ozone loss
within the Arctic vortex.
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 Firm evidence has been produced that there had
been an ozone decrease over the heavily populated
northern mid-latitudes (30-60N). However, unlike the
sudden and near total loss of ozone over Antarctica
at certain altitudes, the loss of ozone in mid-latitudes
iIs much less and much slower - only a few
percentage per year.
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Ozone measurements: the2
Dobson Unit

Area Covered by
Column

1 Dobson Unit (DU) is
defined to be 0.01
mm thickness at
STP(0 deg C and 1
atmosphere

pressure)

All the Ozone over a certain
area is compressed down to
0°C and 1 atm pressure.

It forms aslab 3mm thick,
corresponding to 300 DU.
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Ozone deplition minima
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Evolution of ozone deplitionﬂ
minimum (1)
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Evolution of ozone deplition
minimum (2)
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Southern hemisphere ozone
deplition area (1)

2000 Southern Hemisphere Ozone Hole Area

NOAA SBUV2
Current Year Compuared Against Past 18 Years

Miliion Sgq Km Updated through Nov 13, 2000
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Southern hemisphere ozone
deplition area (2)
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Northern hemisphere
ozone (1)
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Northern hemisphere
ozone (2)

Column O2¢ene Over the Canadian &rctic {(10-20 km)
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Evolution of global
ozone (1)

Global Deviations 1964 - 1956
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Evolution of global
ozone (2)
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Basic chemical kinetics of 3

Photoionization:

A+hv— AT te
Photoionization rate:

d(A) _ _
—at - JalA=a

where:
(A) concentration in cm™3
J A photoionization coefficient in sl

q ion-pair production rate
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from

id‘t\_):_JAdt is In(A)= -J.t+c

if (A)=(A)0 att=0:

and

_1
’L'A-—j:

(A)=(A), I\t

Is the lifetime of specie Ain s

iz the
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For a single solar wavelenght ionizing

species A :

J,=n -0l e

n, quantum efficiency of photoionization

o, absorption cross section for photoionization
I intensity of incident ionizing radiation

T = IcraN(s)ds optical depth

o, total absorption cross section
s slant path of the ray
x  solar zenith angle
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lonization processes in the
lower ionosphere

La (1215 A) ionizes NO

EUV (1027 -1118 A) ionize O,('A )

EUV ionize O, and N,

X -rays (2-8 A) ionize all constituents
Galactic Cosmic Rays ionize all constituents

Energetic Solar / Auroral particles ionize all constituents
X-raysly -rays from neutron stars (including flares) ionize all constituents
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lonization rates in the lower
ionosphere (day and night
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lonization of NO

For the ionization of NO in the lower ionosphere:
I (La)=(3£1)x10" cm?s™

Opo =2X10"cm™

Ca0, = 1x10cm™

if:

No, (s, x) is the integrated molecular concentration

along the path s at a zenith solar angle ¥

Jyo = (6 £2)x107" exp[-1x1 0N, (s,1)] s”
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Two bodies reaction

General two bodies reaction:
A+B_*%.,C+D

Rate of reaction (molec cm'3s'1)

d(C) _d(D)_ _(d(A))_ _(d(B))|_
£1-90) () {48 oy

where kr is the rate constant (cm'3molec'1s'1)

-k_(B)
(A)= (A)ge "

1 .
Tp= in s

A k(@)
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Production and loss of a

species

X+hv_$_> A + Products

k
A+B_1 . Products

k
A+B+M__2 .Products

K
A+F_3 ,Products

K
G+H—4 A +Products
d(

#:JX(XHk 4(G)(H)—K (A)(B) -k, (A)(C)(M)-k,(A)(F)

i o A _ 1
lifetime of species A: TA= k1(B)+k2(C)(M)+k3(F)
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Steady state

If the chemical timelife of species A is short
compared with transport times and if the
concentration of B,C,F,G and H are not changing
over the time considered, photochemical stationary
state (steady state) can be assumed.

In this case species A is iIn Instantaneous
equilibrium and its concentration is determined by
its sources and sinks.
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Continuity equations

45

d(A) ZP ZL(A) 0

2P
ZL

(A) =

Jy +K,(G)(H)
ki(B) +k,(C)(M) +k, (F)

(A) =

o the
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Basic reactions
in the lower ionosphere

XY+hv—>XYT +e Photoionization

X+e" - X*+2e lonization by energetic particles
Xt+Yo>YH+X Charge exchange

X* +e—neutrals lon-electron recombination
etZ+M—->Z"+M Attachment

Z"+hv—>2Z+e Photodetchment

Z+M —-Z+M+e Collisional detachment

X*+2Z- > neutrals lon-ion recombination

X*.M+H0— X" -HO+M lon clustering (ion hydration)

o the
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Recombination processes

Radiative recombination:

04
X"'+e——-R—~>X+hv

Dissociative recombination:

94
XYt +e— D x4V

lon-ion recombination:

+ - O‘i
XY  +2Z2°—1 sneutrals
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lonic composition

lonic compesition of the atmosphere

“ « Due to the complex ionic
=T chemistry ionic species both
w00 |- positive and negative are
e important minor
constituents of the
200 |-
rogion atmosphere.
100 E-region
0
80 o elepcirtargrrnp;on D-region
70 hih;r--------
o?der },?;‘;r%r;
60~ HO* clusters l
H,0*.{H,0},
50 1 1 1 | 1
10' 107 10° 10% 10¢ 10° eme?
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lonized species continuity
equations

Assume that:
(N") Concentration of positive ions
(N ) Concentration of negative ions
(e) Concentration of electrons
(N,) Concentration of neutrals forming
Initial negative ions
B,  Electron-neutral attachment rate coefficient
K, Total detachment processes rate
o, lon—ion recombination rate coefficient

i the
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Electron and ion continuityso

d(N*)
dt
d(N’)

=q- aD(N+)(e) - ai(N+)(e) =~ Uy (N+)(e)

——1 =B (N,)(e)-K,(N) - (N)N)

dt
d(e)
dt

=q+K,(N") - o (N")(e) - 5, (N, )(e)

=q-|ap(N7)-B,(N,) +K A |(e)

where:
O = Olp + QLA

(N')
A=
(e)

i the
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Electron to negative ions ratio

for steady state conditions is:

1= B.(N,) electron neutral attachment rate
K, total detachment rate

when A —0(k,(N,) >0or N — 0) then:

9% =q-o,(N")(e) thatis the continuity

equation in absence of negative ions (E-region)
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A different “effective”

continuity equations system

9%1 =Y, 9~ Byxle)—ap(e)(N)
d_g::l = Bew(e) - o (NT)(N")

(N")=(N")+(e)

Bete = Zﬁi(N)"{’l—Ai} ins”

B,  attachment rate constant which produces
the i- st initial negative ion
(N)" neutral species concentration with n depending
upon the reaction type ( two-body, three -body, etc.)
A, weighted dechament rates function of neutrals
concentration and rate constants
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A simplified negative ions
reaction scheme

(e)+0,+0,—*50, +0,
0,+0—23e+0,

0, +0,('A,)—*—e+20,
0, +0,—+ 50, +0,

0, +0,+M—*50,-0,” +M

O, +NO,——>NO, +0,

0, +0—250,” +0,
0, +0—t—e+20,
0, +0,—“ 5e+30,
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Effective attachment
coefficient

By solving the continuity equations that corresponds

to the previous set of reactions for electrons and

the negative ions that produces electrons by detachment:

k,(0,'A,) N k,(O,)
A A-B

ﬁeﬂ = k1(02)2 1- [ka (0) + k9(03)]

where
A =k,(O) +k3(021Ag) +k,(0,) +k,(0,)(M) +k,(NO,)

B =k, (0) +k,(0) +k,(0;)

and

A= k3(021A9) + k4(03)
A A-B

[ka (0) +k, (03)]

m the
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Sodankyla lon Chemistry
Modeling the Chemistry of the Lower lonosphere

HegH2012(CO2)
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HH{H2008

Posit& ifp reaction scheme
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Sodankyla lon Chemistry
Modeling the Chemistry of the Lower lonosphere
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Same references: Books and
a paper

Books

« W. Dieminger,G.K. Hartmann and R. Leitinger; “The
Upper Atmosphere, Data Analysis and
Interpretation”, Springer -Verlag, 1996

« T. Shimazaki; “ Minor constituents in the middle
atmosphere”, D. Reidel P.C., 1985

* G. Brasseur and S. Solomon; “ Aeronomy of the
middle atmosphere”, D. Reidel P. C., 1986

Referenced paper

* S. M. Radicella and V. Restbergs, "Oxygen allotropes
concentrations and electron density profiles in the
nighttime D-region”, Journal of Atmospheric and
Terrestrial Physics, MGL 43, p. 1-6. (1981).
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Same references: web pages

 The Science of Ozone Depletion in
http://www.epa.gov/docs/ozone/science/science.htmi

 The ozone hole tourin
http://Iwww.atm.ch.cam.ac.uk/tour/index.html

» lon chemistry of the terrestrial atmosphere in
http://www.jh-inst.cas.cz/~spanel/atmosph.htm

- Sodankyld lon Chemistry, Modelling the Chemistry of
the Lower lonosphere in
http://space.sgo.fi/SIC/sic.html
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