

the

abdus salam

international centre for theoretical physics

H4. SMR/1247 Lecture Note: 26

WORKSHOP ON PHYSICS OF MESOSPHERE-STRATOSPHERE-TROPOSPHERE INTERACTIONS WITH SPECIAL EMPHASIS ON MST RADAR TECHNIQUES

(13 - 24 November 2000)

D-REGION MEASUREMENTS

Prof. Sandro M. Radicella

Head, Aeronomy and Radiopropagation laboratory
The Abdus Salam International Centre (ICTP)
Trieste
ITALY

D-region measurements

Sandro M Radicella Head, Aeronomy and Radiopropagation Laboratory

D-region

- A critical parameter for ionospheric physics studies and applications is the electron concentration distribution in space and time.
- Electron concentration in the D-region has been measured by means of different rocket techniques but also by using ground measurements like the partial reflection technique using MF radars.

D-region electron concentration (ground)

the

D-region electron concentration (rocket)

4

High variability of D-region electron concentration (day)

the

High variability of D-region electron concentration (night)

D-region electron concentration (emp. model)

Characteristics of electron concentration profiles

- The main feature of the profile is an inflection point and a steep gradient in the region between 80 and 90 km.
- The presence of the step is still more defined during nighttime conditions.
- Another characteristic is the high day-to-day variability of the profile.

D-region related radio measurements

- lonospheric propagation of radio waves can be used to monitor D-region behaviour.
- Different techniques allow to study the overall variability of the electron concentration but do not permit to obtain vertical profiles.
- Two techniques will be reported: absorption of manmade emissions at Low and High Frequencies and RIOMETER measurements.

Ionospheric absorption (1)

 Absorption is the process by which the energy of radio waves (mostly in HF band: 3-30 MHz)is converted into heat and electromagnetic noise by electron collisions with neutral molecules and ions. Most of the absorption occurs in the ionospheric D region (50 - 90 km altitude).

Ionospheric absorption (2)

$$L_a = -8.68 \int \kappa \, ds$$

in the absence of geomagnetic field the Appleton formula gives:

$$\kappa = 4.6 \times 10^{-2} \frac{\text{N} v}{\mu(\omega^2 + v^2)}$$
 in dB per km

where

- μ the refractive index (real)
- v the electron collision frequency
- ω is the angular wave frequency in radians/s

Nondeviative and deviative absorption

1) Nondeviative absorption when $\mu \approx$ 1 and N ν large (HF and VHF waves absorption in the D-region)

$$k = 1.15 \times 10^{-3} \frac{Nv}{f^2}$$

where f is the wave frequency in Hz.

Nondeviative absorption is proportional to the inverse f².

2) Deviative absorption near the top of the wave trajectory when $\mu \rightarrow$ O

Basic equation

For nondeviative absorption:

$$L_a = 8.68 \int \kappa ds = \frac{-9.98}{f_2} \int N v ds$$

La measures $\int N v ds$

$$\nu = (6.4 \pm 0.4)10^7 \mathrm{p}$$

where p is the pressure in mb.

Collision frequency and electron concentration

abdus salam international centre for theoretical

physics

Dependence of absorption on electron concentration

- In the ionospheric D region the product of the electron density and the electron/neutral collision frequency attains a maximum.
- Within this region the pressure is relatively constant over time, so variations in the local electron concentration drive the total amount of absorption.

15

Measurements of absorption (CONTINOUS WAVE method)

- It is based on the recording of the signal of a CW trasmitter.
 - Such transmitters are widely available
 - Frequencies used are between 0.2 and 7 MHz.
- The systems are calibrated by assuming zero absorption at night.

CONTINOUS WAVE method, diurnal variation

Day-to-day variation of absorption (1) Different loc. and freq..

the

Day-to-day variation of absorption (2) Diff. month and freq.

CONTINOUS WAVE method, effect of solar eclipse

Global distribution of radio absorption

physics

Seasonal variation of absorption (winter anomaly)

Winter anomaly effect in electron concentration

the

physics

Hemispheric asymmetry in winter anomaly

the

abdus salam international centre for theoretical

physics

Effect of a solar flare (1)

Effect of solar flare (2)

Effect of solar flare on the electron concentration (SID)

Effect of solar flare on different HF signals

28

Measurements of absorption (RIOMETER)

- "Relative ionospheric opacity meter" measures the intensity of wideband deep space noise that impinges on the Earth.
- The received noise is a function of sidereal time.
- The absorption is the difference between the cosmic signal and that of a calibration noise source.

RIOMETER measurements

- Riometer measurements are usually made at frequencies in the range of 20 to 50 MHz;
- The absorption of radio energy at these frequencies is sensitive to changes in electron density in the D and E-regions.
- The effects are integrated over a large portion of the ionosphere, so small scale details of the actual physical distribution of electron density are lost.

RIOMETER operation

 The RIOMETER picks up the natural radio noise produced by stars, planets (Jupiter in particular), and the sun.

the

Solar Flare and RIOMETER measurements

Solar Flare and RIOMETER measurements

- The solar flare produces a cloud of ionized gas in the lower ionosphere, which may be thick enough to absorb the sky noise that the riometer is measuring.
- As a result, the noise that the riometer records will drop.

Imaging RIOMETER

An imaging riometer is actually an array of riometers set up in such a way that they produce a two-dimensional image of the cloud of ionization.

Imaging RIOMETER

The image above shows a set of sky noise maps from the imaging riometer at Poker Flat. The Milky Way galaxy shows up as a bright band, similar to the way it appears to our eyes at night. It is obscured by a cloud of ionization in the ionosphere for more than half an hour, then reappears

Riometer - Measuring Relative Ionospheric Opacity t=10 minutes: t=20 minutes: Milky Way can be seen Milky Way is still clear. Solar flare makes the Milky Way begins to in radio image (38 MHz) reappear ... t=40 minutes: t=50 minutes: t=60 minutes: t=70 minutes: ... but then fades out again. Milky way begins to Almost back to normal. Milky way is clearly visible again.

the

Little Radio Energy Detected -

abdus salam international centre for theoretical physics

Color Scale

35

- Much Radio Energy Detected

Same references: Books and papers

Books

- K. Rawer (ed); "Encyclopedia of Physics, Geophysics III", Vol 49/7, Springer-Verlag 1984
- K. Davies; "ionospheric Radio", Peter Peregrinus Ltd for IEE, 1990

Papers

- M. Friedrich and K.M. Torkar; "An empirical model of the non-auroral D-region", Adv. Space Res. Vol 13, pp (3)97, 1993
- E.R.Williams et al.; "The ionosphere: morphology, development and coupling", JATP vol 49, 7/8, pp 777, 1987

Same references: Books and papers

- A.K. Knyazev, Z.Ts. Rapaport, V.M. Sinelnikov and M. Friedrich; "Rocket electron density profiles over Volgograd, Heiss Island and Esrange during the DYANA campaign", A JATP Vol 56, 13/14, pp 1923, 1994
- Z.Ts. Rapaport and V.M. Sinelnikov; "Experimental electron concentration profiles of the middle latitude lower ionosphere and the winter anomaly" Intern. J. of Geomagnetism and Aeronomy, Vol 1, 1998

·		