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RADAR METHODS FOR INVESTIGATIONS OF THE LOWER AND MIDDLE
ATMOSPHERE AND THE THERMOSPHERE/IONOSPHERE

Typical operation parameters (approximate)

Radar Frequency Wavelength Average Antenna Height |
Method Range inm Power Dimension Region
. in kW in wavelengths

MF Radar MF-HF 150-50 0.01-1 1-10 M,LT/lo
HF Radar * HF 300-10 0.01-5 0.5-1 Th/lo
Coherent RadarA| HF-VHF 30-1 0.1-1 5-50 Th/lo
Meteor Radar HF-VHF 10-6 0.1-10 2-10 MLT
MST Radar VHF 6-7 1-100 5-50 MST
Incoherent
Scatter Radar VHF-UHF 6-0.25 100-300 100-300 MLT/lo
ST Radar VHF-SHF 6-0.1 1-500 10-500 ST
BL Radar UHF 0.3 0.01-0.1 10 T

MF = 0.3-3.0 MHz M = Mesosphere

HF = 3.0-30 MHz S = Stratosphere

VHF = 30-300 MHz T = Troposphere

UHF = 300-3000 MHz LT = Lower Thermosphere

SHF = 3-30 GHz Thio = Thermospherefionosphere

* = lonosonde A = lregularity Scatter

A0



HF Radar High Frequency Radar

(1) Ionosondes

Total reflection of radar waves in the 1onosphere
occurs when the radar frequency is equal to the
plasma frequency. Using vertically beaming radar
antennas, the ionospheric electron density profile
is measured. Applying suitably low radar frequen-
cies and sufficiently large radar power, the lower
E- and upper D-region electron density profiles
can be measured, too. Ionosondes had been the
traditional instruments to deduce the electron
density of the ionosphere. The modern systems are
for instance known as Digisondes or Dynasondes,
which are also applied in the same way as the MF
radars. These are also used in the Doppler and
spaced antenna mode to measure velocities.

(2) ’Coherent’ HF radar

Using ionosondes with oblique beam ground-back-
scatter as well as ’coherent’ backscatter from
lonospheric irregularities in the E- and F-region is
measured. Applying directional antennas and
measuring the Doppler shift allows deduction of
tonospheric velocities at larger ranges. This me-

thod is not suitable for studying the D-region
(mesosphere).

Aog
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’Coherent’ Radars

These are radars operating with oblique beam to
1lluminate. ionospheric irregularities in the E- and
F-region, which are aligned paralle] to the Earth’s
magnetic field. Many of such radars, operated
particularly around 50 MHz and 150 MHz, have
been specifically designed and operated to study
these plasma irregularities and the ionospheric
dynamics. Their name stems from the discrimina-
tion of the scattering process from incoherent
scatter. However, a better name would be for
instance: 'lonospheric irregularity scatter radars’.
This is not the special subject of this lecture, but
also VHF MST radars have been applied for the
purpose of studying the ionospheric irregularities.

The scattering process is highly aspect sensitive
(i.e. the scatter cross section decreases rapidly
when the radar beam points off the perpendicular
direction with respect to the Earth’s magnetic
field). Such studies are, thus, partlcularly con-
venient at the magnetic equator, since the MST
radars are usually pointing close to the vertical
direction, i.e. perpendicular to the magnetic field
at the equator. Also MST radars at mid-latitudes
have been applied for such investigations. Scatter
Cross sections, drift velocities of the scattermg
Irregularities and aspect sensitivity was for in-
Stance measured with these modified MST radars.



Fig. 1 Schematic view of the Chung-Li radar
beaming northward to meet perpendicularity to
the Earth's magnetic field in the E- and F-
region. M.E. indicates magnetic equator.

Vv
[AA \\\\v/
> dns e




l |

HEIGHT (km)

lonaspherc {rrogular(tics, SHR(-38t019).B3-25,93 317:39:17

150

48

358

388

288

i5e

{0e

sa

19:55:97
TINE(22 .530c)

-78.125

Hz -

+78.125

START 22:00:34  END 22:11:02

START 22:11:4¢  EMD 22:14:13 START 22:14:59 END 12:17:26

~22:28:35

- HJ Y . h ~2 §-‘ W S re
N T o S AT TRt bl

+225.40

'+ mfs .

- 225 4(

i -
2 ety

STARY I:M:18  EMD 22:36:45

Figure 2.

Ninc spectrograms started at 22:08:34 LT and ended
1475 scconds at the same range gatc of 107 km
Doppler shift in 112 falso

altitude. The vertical axis

the Doppler velocity in m/s) and the horizontal axis represents Lime.

at22:36:45 LT with a same time interval of
of cach pancl represents the radial

09



MF Radar Medium Frequency Radar

(1) The MF radar signal is partially reflected from
gradients or irregularities in the D-region electron
density profile (the D-region is the ionized part of
the mesosphere). It is used in the partial reflection
mode to measure electron density profiles in the

D-region with the differential absorption experi-

ment (DAE) and the differential phase experiment

(DPE): The ordinary and extra-ordinary wave un-

dergo different attenuation and partial reflection
depending on electron density, direction to the
Earth magnetic field and the neutral-electron col-
lision frequency (neutral density). For these mea-
surements the application of orthogonal polariza-
tions of the radar signal is needed.

(2) The MF radars are also used in the spaced
antenna mode to measure horizontal velocities in
the mesosphere and lower thermosphere. This
technique is now frequently applied for studies of
the dynamics of this region. For this measurement
a set of three receiving antennas is needed.
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Metedr Radar

Meteors coming in from space ablate as they en-
counter the lower thermosphere and upper meso-
sphere and produce ionized trails. Radar waves
are scattered or reflected from these trails, de-
pending whether the electron density in the trail is
underdense (plasma frequency smaller than radar
frequency) or overdense (plasma frequency larger
than radar frequency), respectively. The amplitude
of the underdense echo rises rapidly and decays
exponentially since diffusion causes the trail to
expand. Since the trail is carried with the neutral
wind, the radar signal experiences a Doppler shift."
By measuring this Doppler shift, the wind velocity
can be determined. The decay time of the signal
yields the diffusion coefficient.

The radar measurements have to be carried out
with directional antennas or in the interferometer
mode to determine the location of the meteor trail.

MST radars can also be used in the meteor radar
mode, either mono-static or bi-static.

Echoes from the high electron density surrounding
the meteor head can also be observed with very
powerful IS radars.
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IS Radar (ISR) Incoherent Scatter Radar

When the plasma frequency in the ionosphere is
smaller than the radar frequency, free electrons in
the 1onosphere act as Thomson scatterers, and the
scattered waves from all electrons in a unit |
volume superimpose randomly due to the thermal
motions of the electrons. Since the electrons are
part of the ionospheric plasma, the ions particular-
ly control the scattering process. In the middle
atmosphere the collisions between neutral particles
and 1onospheric particles are non-negligible and
the scattering process is collision-dominated. The
scatter cross section of incoherent scatter is very
small, and therefore high power-aperture radars
are needed. Due to restrictions given by plasma
parameters and by the sky noise level, the usable
frequency range for IS radars is between about

50 MHz and 1 GHz. Optimum frequencies are
around 400 to 500 MHz.

In the collision-dominated scattering regime, i.e.
in the mesosphere and lower thermosphere, the
electron density, jon drift (neutral) velocity, tem-
perature and neutral density, the negative ion
density and the ion mass can be measured.

Typical range resolution of 1 km and time resolu-
tion of 1 minute can be achieved.
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Particular coherent scatter during PMSE

Whereas the incoherent scatter results from inde-
pendent electrons in thermal equilibrium (thermal
scatter), in particular conditions of large cluster
1ons and other contaminants in the mesopause
region, the incoherent scattering process is
changed substantially and this process can be
called non-thermal scatter. The signal exhibits a
highly coherent nature and exceeds the common
incoherent and turbulence scatter level by many
orders of magnitude.

These Polar Mesosphere Summer Echoes (PMSE),
occurring in the very cold high-latitude mesopause
due to the formation of ion clusters and ice par-
ticles, should not be confused with the usual MST
radar echoes from turbulence induced irregulari-
ties in the D-region/mesosphere.

Although the difference to the conventional in-
coherent and turbulence scatter from the meso-
sphere is commonly agreed upon, this process,

occurring during so-called PMSE conditions is not
fully understood vyet.
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Total backscattered power P,

2
_ aeAePrar.o
5
4r r?

The total scatter cross section is
in the mesosphere and lower thermosphere

Depending on many, partially related, parameters
the scatter cross section for MST: g,
or the scatter cross section for ISR: g;

may dominate
and there is a transition region between both.

We will try to explain why this is
the case and how one can dis-

criminate between these components.

ISEA-10.VGR March 14, 1995



Scatter cross section of incoherent (Thomson) scatter:

T
Ap = 69 - ()2
b (N)

£
N, = number density of free electrons
T, = electron temperature,
assumed to be equal to ion temperature
and neutra] temperature in- the mesosphere
r. = classical radius of electron (acting as’
an individual *Thomson scatterer’ with

cross section of 0.998-10% m?)

Ap = Debye length (ions forming a shielding
sphere around electron of radius Ap)

1SEA-03.VGR, March 14, £995
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The radar reflectivity y which is the
cross section ¢, per unit volume at the
wavelength A for pure volume scattering
from isotropic turbulence in the inertial
subrange:

‘1 =const - C2A"?

This relation (const = 0.4) hold only for
radar wavelengths which are larger than the
inner scale of the inertial subrange of turbu-
lence fluctuations. This inner scale depends
on turbulence intensity and the kinematic
viscosity. The latter increases as a function
of altitude, which places a lower limit to
radar wavelengths which can be used to
detect echoes from the middle atmosphere.
For scatter from fluctuations in the viscous
subrange, which result from fluctuations of
neutral turbulence an unified and appropriate
formalism to determine n is not available
yet, since the dependency on background
gradients of the other parameters is not quite
solved so far.
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MST Radar I
Mesosphere-Stratosphere-Troposphere Radar

These radars originate from the incoherent scatter
radar in Jicamarca, Peru, which in the early
19?0’8 detected non-incoherent scatter echoes
from the mesosphere and also echoes from the
stratosphere.

These radars are also known as VHF radars since
they are operated in the low VHF band (around
50 MHz), which allows to detect echoes from the
mesosphere in addition to those echoes from the
stratosphere and troposphere. Echoes are observed
from the cloudy as well as the clear air due to
scattering from refractive index irregularities in
electron density (mesosphere), neutral density and
temperature (stratosphere) and neutral density,
temperature and humidity (troposphere).

The observations with MST radars cover continu-
ously the altitude range between about 1 - 15 km
with a typical resolution of 150 - 1000 m in alti-
tude and a few seconds to some minutes in time.

Typically, their power-aperture product is between
107 and 10" Wm? (more than several 100 m”
antenna area and more than several ten kW peak
power) and their beam pointing direction 18 usual-
- ly not exceeding 20 degrees zenith angle.



MST Radar

These radars apply the special modes of Doppler
beam swing (DBS) and spaced antenna (SA), the
latter frequently in the interferometer mode.

They are used to measure for instance:
Morphology of turbulence

e.g. intensity, intermittency, thickness
and anisotropy

Stability
e.g. alr mass mixing zones (fronts),
inversion layers and tropopause

Velocity field:

mean horizohtal and vertical velocities
i.e., prevailing winds and tides

fluctuating (oscillating) velocities
1.e. gravity waves and turbulence

spatial and temporal covariances
1.e. momentum flux

II




ST Radar _S_tratosphere-_T_roposphere Radar

These radars are simply the smaller version of
MST radars and work at the same principle. Their
power-aperture product is smaller (less than about
10’ Wm? at VHF), which significantly limits thejr
capability to detect weak mesospheric echoes.
Most of these ST radars are operated at low VHF
(50 MHz) but some also in the UHF band at 400-
450 MHz. The latter are not at all capable to
detect mesospheric echoes, however.

Wind Profilers

The ST radars, which are originally employed
only as research instruments, have been developed
Into operational instruments, which are called

Wind Profilers. Their principle is very comparable
to that of the ST radars.

The Wind Profilers are operated in the low VHF
band but more frequently in the UHF band around
400-450 MHz. They are designed to be operated
unattendedly with a high time between failure and
are manufactured commercially.

The data are analyzed on-line and the mean wind
profiles are provided in real-time for meteoro-
logical applications in forecasting.
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Figure 9. Principle geometry of two antenna beam directions ko1 and koz at
zenith angles & and -5 for the deduction of the horizontal velocity compo-
nent u and the vertical velocity component w. The measured radial velocity

components vi1 and vz consist of the projactions u' and w' of the U and w w
velocity components, respectively.
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Lightning radar studies

Essentially narrow beam X-, C-, S-, and UHF
weather radars at wavelengths between 3 cm and
68 cm had been used to study scatter from light-
ning. It is assumed that the scatter results from the
high electron density generated in the lightning
channels. There is evidently quite some similarity
with scatter from meteor trails, however, due to
the dendritic structure of lightning channels and
their very short lifetime, the scattering process is
much more difficult to understand.

At these relatively short wavelengths (< 68 cim)
‘used so far, the power of the scatter power from
lightning is usually in the same order as that of the
echo from the surrounding precipitation.

It was recently shown that lightning echoes can
also be significantly studied with VHF ST radars.
However, here the coherent integration time has to
be substantially reduced, since a time resolution of
a few milliseconds is needed to investigate the
highly non-stationary lightning echo. By means of
radar interferometry the three-dimensional light-
ning structure can be studied.
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Doppler Weather Radars

These radars are applied to investigate the tropo- .
spheric structure and dynamics by detecting scatter
from precipitation (rain, hail and snow), occasio-
nally also from the clear and cloudy air. The
operating frequencies are above 1 GHz, since the
scatter cross section of precipitation is inversely
proportional to the fourth power of the wave-
length. These radars are using parabolic dish
antennas, which have to be pointed at all azimuth
directions, usually at lower elevation angles. This
research direction is mostly known as Radar Mete-

 orology, which will not be treated in the context

i of this lecture (reference is made to the book

” "Radar in Meteorology", published by the Ameri-

AT

can Meteo_rological Society).
ST radars for studies of precipitation

However, ST VHF and UHF radars are also
detecting ‘echoes from precipitation, which allows
to determine for instance rain drop size distributi-
ons. The echoes from strong precipitation are
about equal in amplitude to the usual ST radar
echoes from the clear and cloudy air. It is essen-
tal that these echoes from precipitation can be
S$€parated from the common echoes in the Doppler
Spectra due to their fall velocity (measurable with
the vertical beams of the ST radars), which is

Usually larger than the air velocity.
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The reflectivities for clear air and precipitation can
be estimated from the formulas

7. =0.38\713C,2

Np = ws)\_“IKl *Z

where 77; is the reflectivity for turbulent scatter and 1,
is the reflectivity for scatter from precipitation
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Plots of Z as a function of R computed using Mie scattering (solid lincs) or Rayleigh
scattering (dashed linc) for MP drop-size distributions (from (Wexler and Atlas, 1963]).
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BLR Boundary Layer Radar
Boundary Layer Radars operate at higher frequen-
cies than the ST radars, usually around 1 GHz.
Their advantage is essentially instrumental, since
lower altitudes can be sampled (< 100 m) and the
range resolution is increased (< 30 m), and the
antenna size is much smaller due to the higher
frequency. Otherwise these BLRs are principally
equivalent to the ST radars. The BLRs cannot
reach as high as ST radars, essentially due to their
- smaller power-aperture product, but also due to

§ . smaller scatter cross section of the clear air,
B which decreases with wavelength and altitude.

.'-- However, these BLRs are particularly designed
§ and operated to study the planetary boundary

. layer, which has given them their name. They are
8 also quite sensitive to precipitation due to their
g shorter operation wavelength.

. FM-CW Radar

Frequency-Modulated Continuous Wave Radar
These kinds of radars are also used to study par-
ticularly the planetary boundary layer and allow a
very high range resolution due the application of
wide-bandwidth frequency-modulation. They are
Operated at frequencies of several GHz in a quasi-

g Mmonostatic mode (due to the application of CW,

L the receiving and transmitting antennas have to be
. Separated/decoupled).

A
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Bi-static radar observations

In almost all cases of radar studies of the atmo-
sphere, mono-static radars are used (i.e., the radar
transmitter and receiver are at the same location).
Bi-static radar observations are made by separat-
ing the radar receiver (antenna) from the radar
transmitter (antenna). The advantage of such
observations is that a CW signal can be transmit-
ted, which increases the average power and in
turn the sensitivity. It is essential to assure over-
lapping of the beams of the transmitting and the
receiving antennas. With a single beam receiving
antenna of limited beam width, only a small com-
mon volume can be measured at a time. With
narrow antenna beams this allows a high spatial
resolution, which can be increased further by long
binary coding of the transmitted signal. Only S-
band bi-static radar observations of stratospheric
turbulence are known.

Dual Doppler radar

This technique seems to have some similarity to
bi-static radar observations, since radars at sepa-
rate locations are used. However, these are oper-
ated in mono-static mode, i.e measuring the radar
reflectivity and the radial velocity along each
single radar beam. This technique has not been
used (and may not be very suitable) in MST radar
applications, but only in Doppler weather radar
observations, for instance to study severe storms.
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RASS Radio Acoustic Sounding System

Radar waves are scattered from refractive index
variations at halt the radar wavelength (Bragg con-
dition for mono-static backscatter). These vari-
ations can be artificially created by means of
acoustic (sound) waves. The acoustic waves pro-
pagate longitudinally with the velocity of sound. If
the wave vectors of the radar wave and the acou-
stic wave match, the radar echo will be enhanced.

The Bragg pattern moves with the sound velocity
and the background wind velocity. Due to this
velocity the radar wave scattered back from the
Bragg pattern undergoes a Doppler shift. By mea-
suring this Doppler shift the velocity can be deter-
mined. Considering the wind velocity, measured
independently with the standard ST radar tech-
nique, the sound velocity can be determined .
Since the sound velocity depends on temperature,
the latter can be measured with this method.

The basic requirement of matching wave vectors is
difficult to obtain: The attenuation and variation of
the propagation path of the acoustic wave often
makes the measurement even more demanding.
This technique has been successfully applied with
VHF and UHF radars. A high power acoustic
transmitter is needed (acoustic frequencies are in
around 100 Hz) to be operated with the ST radar.
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Fig. 9.2a Contours of RASS echo power caused by acoustic waves
at frequencies between 88 and 101 Hz measured with 46.5-MHz MU
radar between 1-3 August 1985. :

Fig. 9.2b  Temperature profile derived from the RASS echoes,shown
in Fig. 9.2a compared with a temperature profile obtained from ra-
diosonde measurements (closed circles) (from Matuura et al., 1986;
reprinted by permission from Nature, Vo, 323, PP- 426428, copyright
©1986, Macmillan Magazines Ltd).
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APl  Artificial Periodic Inhomogeneities

HF radio waves transmitted vertically into the iono-
sphere are undergoing total reflection when they
reach the level of critical frequency (radio wave
frequency is equal to the plasma frequency). With
~ the upward travelling wave the reflected wave forms
a standing wave pattern. This periodic wave struc-
- ture modulates the electron density (in the D-region
. by electron heating, which affects the electron attach-
L ment to the neutrals) and forms a Bragg screen, from
Fwhich such HF waves matching the Bragg condition
fin the ionosphere (half the wavelength equals the
spatial electron density variation scale) are back-
jicattered. The scatter cross section is artificially ‘
fenhanced by this process. The technique of API had

%

 been successfully tested in such a way that the stand-
f ing wave pattern is built up over several seconds by
b a powerful transmitter (e.g. an ionospheric heating

§ or modification facility). When the modification

b transmiitter is turned off, the pattern still remains for
| a while and can be sensed by a sounding MF/HF

f radar wave. By measuring the amplitude decay time
L of API echoes from the D-region the electron attach-
p nent and detachment coefficients can be determined
[ and the Doppler shift gives the vertical velocity.

. This technique should be applicable in conditions

b Where incoherent and coherent scatter from the
 Mesosphere would be too weak to be detectable. It

Il
i

I could constitute a useful complement to incoherent
y Scatter and MST radars |

Bt
]

1~



Summary of measured parameters and derived information from the AP] technique

Height Reai A 1 o Derived Information

All heights Virtual height vs frequency Electron density
Fregion Amplitude, phase vs time Electron, ion temperature
E region Phase vs time " Vertical wind velocity
Amplitude vs time Ambipolar diffusion coefficien
D region Phase vs time Vertical wind velocity
Amplitude vs time Cocfficient of electron altachment

and détachment

19931022 11:47:12—1 1:49:20 4.91280 MHz
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Fig. 2. Contour plot of backscattered power at 4.9128 MHz, showing the decay of APl in the
height range 80-100 km. The spacing between vertical lines is 5.15. Each vertical linc marks

pulscs and 100 Hz repetition period.
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Radars provide a most suitable
image of many atmospheric features
of the lower, middle and upper

' atmosphere
and they have become essential
ground-based tools for unique
atmospheric research

and meteorological operations





