united nations ducational, scientific and cultural organization the

international atomic energy agency abdus salam international centre for theoretical physics

SMR/1310 - 2

SPRING COLLEGE ON NUMERICAL METHODS IN ELECTRONIC STRUCTURE THEORY

(7 - 25 May 2001)

"Electronic excitations and response functions in solids and reduced dimensional systems"

presented by:

S. G. LOUIE

Department of Physics, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720

U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

Electronic Excitations and Response Functions in Solids and Reduced Dimensional Systems

Steven G. Louie

Department of Physics, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley, California 94720

Current Collaborators Michael Rohlfing Eric Chang Murilo Tiago Sohrab Ismail-Beigi JeLi Catalin Sparatu Lovin Bemedict

Outline

- Introduction
- Excited States and Spectroscopies
 - Quasiparticle excitations and the GW approximation
 - Excitonic effects in optical response and the Bethe-Salpeter equation
- Examples of Applications
 - Semiconductors and insulators
 - Conjugated polymers
 - Surfaces, clusters, and atoms
- Summary

Properties of Solids

Ground-state Properties:

Cohesive Structural Vibrational Magnetic structure Phase transformations

- Etot [{Ri}]
- Density Functional Theory (LDA, GGA)

Spectroscopic Properties:

Photoemission Tunneling

. . .

- N+1 Particle Problem
- Quasiparticle Approach (GW)

Optical

- N+2 Particle Problem
- Electron-hole interaction

Quasiparticle band structure:

describes individually excited holes and electrons $(\leftrightarrow \text{ One-particle Green function } G_1)$

Quasi-electron: $N \rightarrow N+1$ (inverse photoemission; tunneling)

Quasi-hole: $N \rightarrow N - 1$ (photoemission; tunneling)

Optical experiment (e.g., absorption):

- Creation of electron-hole pair: $N \rightarrow N^*$
- Electron-hole interaction
- Requires a two-particle approach on top of the QP band structure

Quasiparticle (QP) band structure calculations

• Density-functional theory:

$$\left\{-\nabla^2 + V_{\text{ext}} + V_{\text{Coul}} + V_{\text{xc}}\right\}\psi_{nk}^{\text{DFT}} = \varepsilon_{nk}^{\text{DFT}}\psi_{nk}^{\text{DFT}}$$

Hohenberg, Kohn; and Sham 1965

• Green-function approach + QP approximation:

$$\left\{-\nabla^2 + V_{\text{ext}} + V_{\text{Coul}} + \Sigma(\varepsilon_{nk}^{\text{QP}})\right\}\psi_{nk}^{\text{QP}} = \varepsilon_{nk}^{\text{QP}}\psi_{nk}^{\text{QP}}$$

 $\Sigma = iG_1 \mathcal{W}$ GW approximation for the self energy

 G_1 one-particle Green function $W = \epsilon^{-1}v$ screened Coulomb interaction Hedin 1965, Hybertsen and Louie 1985

$$W(\underline{\mathbf{x}},\underline{\mathbf{r}}',\omega) = \int \overline{\epsilon'(\underline{\mathbf{x}},\underline{\mathbf{r}}'',\omega)} \frac{e^{z}}{|\underline{\mathbf{x}}''-\underline{\mathbf{r}}'|} d\underline{\mathbf{r}}''$$

Quasiparticle Excitations

Kohn-Sham Eigenvalues ≠ QP Energies

Two simple examples:

<u>Homogeneous</u> Interacting Electron System

Standard K-S equation:

$$\begin{bmatrix} -\frac{1}{2} \nabla^2 + V_{\rm H} + \frac{\delta E_{\rm xc}}{\delta \rho(r)} \end{bmatrix} \psi(r) = \varepsilon_{\rm KS} \psi(r)$$

 $V_{xc}(r) = \frac{\delta E_{xc}}{\delta \rho(r)} = \text{constant} \implies \text{Free electron dispersion}$ $(m^* = m_e, \text{etc.}) \approx \text{Lifetime}$ Incorrect!

Generalized K-S eigenvalues <u>not</u> unique
 Different K-S equations → new set of eigenvalues

GW Approximation
$$\Sigma = \frac{1}{6}$$

$$\Sigma(\vec{r},\vec{r}';E) = \frac{1}{2\pi} \int W(\vec{r},\vec{r}',\omega)G(\vec{r},\vec{r}',E+\omega)e^{i\delta\omega}d\omega$$

with

$$W(\vec{r},\vec{r}',\omega) = \int v(\vec{r},\vec{r}'')\epsilon^{-1}(\vec{r}'',\vec{r}',\omega)d^{3}r''$$

$$G(\vec{r}, \vec{r}', \omega) = \sum_{n\vec{k}} \frac{\Psi_{n\vec{k}} (\vec{r}) \Psi_{n\vec{k}}^{*} (\vec{r}')}{\omega - E_{n\vec{k}} - i\delta_{n\vec{k}}}$$

Require:

(1) Full dielectric matrix (local fields)

$$\varepsilon^{-1}(\vec{r}',\vec{r},\omega)$$
 or $\varepsilon^{-1}_{\vec{G}\vec{G}'}(\vec{q},\omega)$

(2) Good starting $\psi_{n\vec{k}}$ and $E_{n\vec{k}}$ to construct the Green's function G.

1		None None None None None None None None	
	LDA	QP	Expt
diamond	3.9	5.6	5.48
Si	0.52	1.16	1.17
Ge	< 0	0.73	0.744
LICI	6.0	9.1	9.4
AIAs	1.18	2.01	2.24
GaAs	0.56	1.42	1.52

Compare with Experiment

Density of States

computed by GW method gaussian broadening 0.6 eV (the experimental resolution)

computed
$$E_{d-d}^{gap} = 4.2 \text{ eV}$$

 $\Delta E_{peak} \approx 5.3 \text{ eV}$

Si(111) Surface.

Surface State Band Gap Si(111) 2×1

DFT-LDA

0.27 eV

Experiment

(a) $0.75 \pm .1 \text{ eV}$ (b) 0.47 eV(c) 0.45 eV(d) ~0.60 eV

- (a) Photoemission + Inverse photoemission (Uhrberg etal.; Perfetti, et al.)
- (b) Differential reflectivity (Ciccaci et al.)
- (c) Photo-thermal deflection (Olmstead and Amer)
- (d) Scanning tunneling spectroscopy (Feenstra) reanalyze

DFT-LDA E

Experiment

Bulk Si 0.5 eV 1.17 eV

Si(111) 2×1 Surface

Photoemission data
 Inverse photoemission data
 Theory
 Northrup, Hybertsent
 Louie

Lifetime au for a quasiparticle:

$$\tau_{n\mathbf{k}}^{-1} = 2\langle n\mathbf{k} | Im \mathbf{\Sigma}(E_{n\mathbf{k}}) | n\mathbf{k} \rangle$$

$$G_{n\mathbf{k}}(\omega) = \frac{1}{\omega - E_{n\mathbf{k}} + i\delta} \qquad \qquad W = \epsilon^{-1}v$$

• full frequency-dependent dielectric matrix $\epsilon_{G,G'}(q,\omega)$ calculated within RPA

References:

M.S. Hybertsen and S.G. Louie, PRB **34** (1986) 5390 P.M. Echenique et al., Chem Phys. **251** (2000) 1

QP lifetimes in graphite along several directions

Graphite AB stacking

Calculated average lifetime

• $\tau^{-1}(E)$ calculated by averaging $\tau_{n\mathbf{k}}^{-1}$ over all states having energy E.

• QP energies updated from DFT-LDA to GW.

• Energy dependence cannot be fit with simple power law $(E - E_F)^n$.

 Measured inverse lifetime can depend appreciably on the experimental setup.

* S. Xu et al., PRL **76** (1996) 483 ** T. Hertel et al., in preparation

Time Dependent Density Functional Theory

TDLDA

Optical Absorption Cross Section

Solve the Bethe-Salpeter equation for the two-particle Green's function $G_2 \implies$ electron-hole excitations:

• excitation energy Ω_S of $|N, S\rangle$

$$\Omega_{S} = E_{N,S} - E_{N,O}$$
$$|N,S\rangle = \sum_{m,n} A_{S}(m,n) a_{m}^{+} b_{n}^{+} |N,O\rangle$$

• Bethe-Salpeter equation for electron-hole amplitude

$$\chi_{S}(\underline{\mathbf{r}},\underline{\mathbf{r}'}) = \sum_{nm} A_{S}(m,n) \phi_{m}(\underline{\mathbf{r}}) \phi_{n}^{*}(\underline{\mathbf{r}'})$$

• dipole transition matrix element

$$\begin{split} \left< \vec{p}_{op} \right>_{S} &= \left< N, S \left| \vec{p}_{op} \right| N, 0 \right> \\ &= \sum_{nm} A_{S}(m, n) \left< \phi_{n} \left| \vec{p} \right| \phi_{m} \right> \end{split}$$

absorption cross section

$$f(E) \sim \sum_{S} \left| \left\langle \vec{p}_{op} \right\rangle_{S} \right|^{2} \delta(E - \Omega_{S})$$

References:

- G. Strinati, Phys. Rev. B 29, 5718 (1984)
- M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 80, 3320 (1998)
- M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 81, 2312 (1998)
- S. Albrecht, L. Reining, R. Del Sole, and G. Onida, Phys. Rev. Lett. 80, 4510 (1998)
- L. X. Benedict, E. L. Shirley, and R. B. Bohn, Phys. Rev. Lett. **80**, 4514 (1998)

Theoretical Framework

• Coupled electron-hole excitations:

$$\begin{split} |S\rangle &= \sum_{v}^{\text{elec hole}} A_{vc}^{S} \hat{a}_{v}^{\dagger} \hat{b}_{c}^{\dagger} |0\rangle \\ |0\rangle \text{ ground state of many-electron system} \\ \hat{a}_{v}^{\dagger}, \hat{b}_{c}^{\dagger} \text{ creates quasi-hole, -electron} \\ A_{vc}^{S} \text{ coupling coefficients} \end{split}$$

• The Bethe-Salpeter Equation for the two-particle Green's function G₂ yields:

$$(\varepsilon_{c}^{\mathsf{QP}} - \varepsilon_{v}^{\mathsf{QP}})A_{vc}^{S} + \sum_{v'c'} \langle vc|K^{eh}|v'c'\rangle A_{v'c'}^{S} = \Omega^{S}A_{vc}^{S}$$

G. Strinati, Phys. Rev. B 29, 5718 (1984).

 $\begin{pmatrix} c & c \\ c & c \end{pmatrix}$

 $\varepsilon_c^{\rm QP}$, $\varepsilon_v^{\rm QP}$ single-quasiparticle energies K^{eh} electron-hole interaction

 $\implies \Omega^S$ excitation energies

• \Longrightarrow Optical absorption spectrum: $\epsilon_2(\omega)$

Computational Details

- GW quasiparticle calculation ($\Sigma = iG_1W$; $W \stackrel{(\mathbf{r}, \mathbf{r}', \omega)}{=} \int e^{-i} \langle \mathbf{r}, \mathbf{r}', \omega \rangle \mathcal{T} \langle \mathbf{r}', \mathbf{r}'$
 - Electron-hole interaction kernel:

$$\begin{split} \langle vc|K^{eh}|v'c'\rangle &= \int d^3r d^3r' \ \psi_c^*(\mathbf{r})\psi_v(\mathbf{r}) \ v(\mathbf{r},\mathbf{r}') \ \psi_{c'}(\mathbf{r}')\psi_{v'}^*(\mathbf{r}') \\ & \text{exchange term} \end{split}$$

$$-\int d^3r d^3r' \,\psi_c^*(\mathbf{r})\psi_{c'}(\mathbf{r}) \,W^{[\Omega_S]}(\mathbf{r},\mathbf{r}') \,\psi_v(\mathbf{r}')\psi_{v'}^*(\mathbf{r}')$$

screened direct term

Optical spectrum:

• Free transitions $v\mathbf{k} \longrightarrow c\mathbf{k}$:

$$\begin{split} \epsilon_2(\omega) &= \frac{4\pi e^2}{\omega^2} \sum_{vck} |M_{vck}|^2 \,\delta(\omega - (\varepsilon_{ck}^{\text{QP}} - \varepsilon_{vk}^{\text{QP}})) \\ M_{vck} &= \vec{\lambda} \cdot \langle v\mathbf{k} | \vec{V} | c\mathbf{k} \rangle \\ \vec{\lambda} \text{ polarization vector of the light} \\ \vec{V} \text{ velocity operator} \end{split}$$

• Coupled transitions $|S\rangle$:

$$\epsilon_2(\omega) \ = \ rac{4\pi e^2}{\omega^2} \ \sum\limits_S \ |M_S|^2 \ \delta(\omega-\Omega_S)$$

$$M_S = \vec{\lambda} \cdot \langle 0 | \vec{V} | S \rangle = \sum_{vck} A^S_{vck} M_{vck}$$

• $\epsilon_2 \longrightarrow \epsilon_1, n, k, R, T, A, \dots$

Nonlocal Potentials, Electromagnetic Fields and Gauge Invariance

Nonlocal pseudopotential formalism:

$$H^{\circ} = \frac{\vec{p}^2}{2m} + V(\vec{r}) + V_{NL}(\vec{r}, \vec{r'})$$

With E-M perturbations:
$$\vec{p} \rightarrow \vec{p} - \frac{q}{c}\vec{A}$$

 $V_{NL} \rightarrow \left[e^{\frac{iq}{c}\int_{\vec{r}'}^{\vec{r}}\vec{A} \cdot d\vec{\ell}}\right]V_{NL}(\vec{r},\vec{r}')$
 $straight-line$
 $path integral$
Choose $\vec{\nabla} \cdot \vec{A} = 0$: $H = H^{\circ} + H_{int}$

$$H_{int} = -\frac{q}{mc}\vec{A}\cdot\vec{p} + \frac{q^2}{2mc^2}\vec{A}^2 + \left[e^{\frac{iq}{c}\int_{\vec{r}'}^{\vec{r}}\vec{A}\cdot d\vec{\ell}} - 1\right]V_{NL}(\vec{r},\vec{r}')$$

For a slowly varying, small \vec{A} (to 2nd order in \vec{A}):

$$H_{int} \approx -\frac{q}{c}\vec{A}(\vec{r})\cdot\vec{V} + \frac{q^2}{2c^2}\left[\frac{A^2(\vec{r})}{m} - [(\vec{r} - \vec{r}')\cdot\vec{A}]^2 V_{NL}(\vec{r},\vec{r}')\right]$$

where $\vec{V} = [\vec{r}, H^\circ]/i\hbar = \frac{\vec{p}}{m} + [\vec{r}, V_{NL}]/i\hbar$

Atomic Magnetic Susceptibility

$$\chi = -\frac{\partial^2 E}{\partial B^2} \Big|_{B=0} \vec{B} = \vec{\nabla} \times \vec{A}$$

Gauge:
$$\vec{A} = -(0, 0, x + x_0) B$$
 $\vec{\nabla} \times \vec{A} = B\hat{g}$

Xo (a.u.)	H,	$H_1 + H_2$	H,+H2+H3	All Electron
	7.84	7.74	7.75	770
2	-9.71	7.34	7.75	7 1.15
4	-62.37	6.15	7.7.5	

Optical Absorption Spectrum of GaAs

Calculation: 3 occupied, 6 empty bands Exp.: Aspnes and Sturge, Phys. Rev. B 27, 985 (1983).

GaAs: the joined density-of-states (JDOS)

Effects of the electron-hole interaction:

- Only marginal changes in the JDOS
- Coherent (constructive, destructive) coupling of the dipole moments

Optical Absorption Spectrum of GaAs at E_q

Includes LS interaction; 1000 out of 100M k-points. Exp.: M. D. Sturge, Phys. Rev. 127, 768 (1962)

Optical Spectrum of SiO₂

Poly-Phenylene-Vinylene (PPV)

- Most important conducting polymer:
 - LED's, Optoelectronics
 - Photovoltaics

calculated at the X point; 0.6 Å above atomic plane

Exp.: D. A. Halladay et al., Synthetic Metals 55-57, 954 (1993).

Electron-hole Wavefunctions in PPV

At 2.4 eV (below E_g): Exciton
At 4.0 eV and higher: Resonant states

Singlet and Triplet Excitons

- Spin-singlet excitons (excitable by light): observe repulsive exchange interaction
- Spin-triplet excitons: No exchange interaction

Polyacetylene: Singlet Dipole

Triplet $E_i^S \qquad E_g - E_i^S \qquad E_i^T \qquad E_g - E_i^T$ $\Delta_{S \Leftrightarrow T}$ 1.7 0.4 **0.9 1.2** 0.8 1.8 0.3 1.7 0.4 0.1

PPV:

	Singlet		Triplet		
Dipole	E_i^S	$E_g - E_i^S$	E_i^T	$E_g - E_i^T$	$\Delta_{S \nleftrightarrow T}$
۲	2.4	0.9	1.5	1.8	0.9
460 00000000	2.8	a may b d and a second a second a second a second a second a second a second a second a second a secon	2.7	0.6	0.1

 Even (
 <u>´</u> dipole-allowed) states: Electron and hole are close to each other ⇒ Strong exchange interaction

Österbacka, Wohlgenannt, Chimin + Vardeny (1999)

Structure of the Si(111) 2x1 Surface

Side view

Quasiparticle Surface-State Bands of Si(111)2x1

 Exp.: R. Uhrberg et al (1982); P. Perfetti et al (1987) Eg = 0.65 eV (< Eg(bulk) = 1.17 eV)
 J Surface state QP gap
 Rohlfing & Louie (1999)

Si(111) 2×1 Surface

Experimental differential reflectivity spectrum (Ciccacci et al., 1986)

•
$$\Delta R/R = (R_{clean} - R_{ox})/R_{ox}$$

- Reflectivity associated with surface states
- QP results \rightarrow onset at 0.65 eV $\pm 2 - peak structure$

Artificial broadening : 0.05 eV Exp.: P. Chiaradia et al., PRL **52**, 1145 (1984)

- Discrete exciton spectrum
- Optical spectrum dominated by lowest exciton
- Surface exciton binding energy: 0.25 eV
- Bulk exciton binding energy: 15 meV

Rohlfing & Louie (1999)

Surface Exciton Two-particle Amplitude - Side View (Distribution of electron relative to the hole for state at 0.43 eV)

Surface Exciton Two-particle Amplitude - Top View (Distribution of electron relative to the hole for state at 0.43 eV)

Across the chains - 8 A

Rohlfing & Louie (1999)

Absorption Spectrum of Si Clusters

- melacing electron-hole interaction
- Huge excitonic binding energy: $\sim 5 \text{ eV}$

Optical Excitation Energies of SiH_4 and Si_2H_6

	This work	Experiment
	[eV]	[eV]
SiH ₄ :	9.0	8.8
	10.2	9.7
	11.2	10.7
Si_2H_6 :	anard y	7.6
	9 .0	8.4
	9.6-9.8	9.5, 9.9

Exp.: U. Itoh, Y. Toyoshima, and H. Onuki, J. Chem. Phys. 85, 4867 (1986).

Noble-gas Atom Ionization Energies and First Neutral Excitation Energies (in eV)

		This Work	Expt
He:	I	. 24.7	24.6
	E _s E _T	20.8 19.8	20.6 19.8
Ne:	I	21.5	21.6
	E _s E _T	16.9 16.7	16.9 16.7
Ar:	I	15.9	15.8
	E _s E _T	12.0 11.8	11.8 11.6

I = Ionization energy

 $E_s = Singlet excitation$

 E_{T} = Triplet excitation

Summary

- Density functional theory provides valuable input to many-body perturbation theory calculation of excited-state properties.
- GW approximation yields highly accurate first-principles quasiparticle energies for many materials systems, to a level of ~0.1 eV.
- Evaluation of the Bethe-Salpeter equation provides *ab initio* and quantitative results on exciton states and optical response of crystals, surfaces, polymers, and clusters.
- Combination of DFT and MBPT → excited state properties.