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Total energy and Kohn-Sham Hamiltonian of a crystal within DFT
Let us consider a crystal with N — oo unit cells of volume 2, periodically repeated, with lattice vectors R. (Pseudo-)Atoms of type p and
ionic charge Z, are located at d, in the unit cell. The system contains N }°, 7, electrons. Its electron states are described by N points k

in the Brillouin Zone. Assuming for simplicity a local electron-ion potential V*:
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where the electron charge density n(r) is given by

= ;I Y (r) (3)

(the sum is over the lowest 3°, Z, occupied states for a semiconductor or insulator, up to the Fermi surface for a metal). Integrals extend
on all space. The primed sum appearing in the ion-ion term excludes terms with d, + R —d, — R’ =0.
The Kohn-Sham equation is
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where the exchange-correlation potential V.(r) = (0 E;./dn(r)). For the LDA case only:
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From the Kohn-Sham equation we obtain, by summing over occupied states:
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and we can give an alternate formula for the total energy of a crystal:
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Plane-wave — Pseudopotential formalism
Let us consider the G-space representation of the wavefunctions:
1 .
I >=Y ¥(k+G)k+G >  ¥(k+G)=<k+G|tgh>  |k+G>=—=¢ktOr (8)
G vV
where V = NQ is the volume of the crystal. With these definitions, the normalizations are:
<k+Glk+ G >'=dqq, <yl >=1 if D |[¥(k+G)P=1. (9)
G
Let us define the Fourier trasform for a periodic function F(r) = Y g f(r — R) as:
1 . 1 )
F(G) = ~a /drF(r)e"Gr = 5/drf(r)e—’c"r =<k+G|F(r)|k+Gy>, G=G;-G, (10)
F(r) = Y F(G)€ee . (11)
G
We assume non local pseudopotential of general form V* = V,(r) + ¥ V,i(r,r’). The total energy per unit cell in reciprocal space is:
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where 5,(G) = ¥, 769 is the structure factor, and
n(G 1 .
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Note that we have assumed one atom of each kind. The generalization is straightforward: the structure factor becomes S,(G) = ¥;, e~ iCGdi

where %, runs over atoms of the same kind p.
Using eigenvalues sum, the total energy per unit cell is

Bt LS a0 = 250 (@) Vitarree @) + R 0(G) (60e @) = Vil G)) + S 32 b2 (14)
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In the plane-wave representation the Kohn-Sham equation becomes

Z<k+G|H—e|k+G'>\Il(k+G’)=0, or Z<k+G|H]k+G'>\IJ(k+G'):e\II(k+G) (15)

G/ G’
The matrix elements of the hamiltonian are

2
<k+G|H-¢c|k+G > = (_;—m(k+G)2 —e)aGG, +3°5,(G - G’)(VH(G el +Zv,,(k+G,k+G'))
u l
+ VHartree(G - G,) + V;:C(G - G,) (16)

Divergent Terms in the potential
The Hartree term, Vigptree(0), and local potential term, 3=, S, (0)V,(0), are separately divergent and must be treated in a special way. Let

us consider their sum V(r) = Vioe(r) + Viartree(r). Its G = 0 term is not divergent:

2
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where we used )

Vu(r) ~ _Z,;e for large r, —;V/n(r) => Z,. (18)

The «,, are parameters depending only on the pseudopotential.



Divergent Terms in the energy

The G = 0 terms of the ion-ion, Hartree, and local pseudopotential terms in the total energy are separately divergent and must be treated
in a special way. Let us call E;, the sum of all divergent terms.

First Step: split Eg, = Eg,), + Eg,)), with

52— [t n(x)n(r!)
E;) EV (r—d,)dr+ — N r— drdr’' (19)
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The first divergent term can be written as
B = [n()V (x)r. (21)
The G = 0 term of V(G) is not divergent and has been previously calculated:

~ Z,
V(G =0) QZ%, n(G=0)=2ujﬁ. (22)

We finally get for the G = 0 contribution what is usually called “aZ term”:

1(111); Q Z V(G Q(Z Zu)(z ) (23)
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Second step: write Et(if,), Egg,a,d + ngald EHartree, With
2 Z,Z e? 2,7, n
ED =5 b2 erfe(\/mld, —d, —R|), E® f(/7ld, —d, —R]) — % /23 22 (24
Ewald = MEV:R Id . d Rler C(\/_I I) Ewald = u,zu; Id _ d R|er (\/_l |) € T ; [z ( )

This identity is verified for any value of 7. The sum in Eﬁi,a,d includes the term with d, — d, — R = 0 (note the missing prime), that is

subtracted back in the second term of E) . (note that erf(z) — 2z/1/7 for small ).

The first Ewald term ESE;M is rapldly convergent in real space for any reasonable values of 7.
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The sum in Egi,a,d can be written as the interaction energy between point charges 7i(r) and the potential ®(r) produced by a gaussian

distribution of charges:

= | #(r r—e A(r) = r— r =£ Zyerf(y/nlr —d, — RY|)
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In reciprocal space, by using the Fourier transform

n\32 p e dre~G M
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one obtains
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The G = 0 contribution to Efgz,ald Exoriree:
1
Fo=Q (n(0)<1>(0) ~5h (O)VHa,t,ee(O)) (28)
is no longer divergent, because n(0) = 72(0) = X, Z,,/Q due to the neutrality of the system:
e? 1 erf(,/nlr —d, — R)l
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I

The integral appearing in the last expression can be found in tables:

/er_f(iz.r)__l.dr =47 /(erf(\/ﬁr) = 1)rdr = 47r$. (30)



Putting all pieces together, one obtains for E((ii),
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and for the total energy:
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If the sum of the eigenvalues is used, E((iil), is already calculated in the sum of eigenvalues, and the total energy becomes:

Etot 1

Nzﬁg%ﬁﬂ§W@WM®“%@»Hm- (33)




