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Michael Metcalf's Fortran 90 CNL Articles

ELEMENTS
Language Elements
EXPRESSION
Expressions and assigments
CONTROL
Control statements, units and procedures
PROCEDURES
Arguments, interface blocks and recursion
ARRAY
Array handling
POINTER
Pointers
SPECIFICATIONS
Specification statements
INTRINSICS
Intrinsic procedures

o
Input-output

Fuller details of all these items can be found in Fortran 90/95 Explained, M. Metcalf and J. Reid,
(Oxford, 1996), the book upon which these tutorials are based.

Version August 1995

M.G. (October 19th 1995)
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New specifiers

On the OPEN and INQUIRE statements there are new specifiers:

POSTITION= 'ASIS! 'REWIND' 'APPEND'
ACTION = 'READ' 'WRITE! 'READWRITE'
DELIM = 'APOSTROPHE' 'QUOTE' 'NONE'*

PAD = 'YES' 'NO'

and on the INQUIRE there are also

READ }
WRITE }'YES! 'NC!' ' UNKNOWN *
READWRITE= }

[

Finally, inquiry by I/O list (unformatted only) is possible:

INQUIRE (IOLENGTH = length) iteml, itemZ2, ...

R //WWWInTo.cemn.ch/asdoc! W W W/Tyy/mput-output.htmi

and this is useful to set RECL, or to check that a list 1s not too long. It is in the same

processor-dependent units and thus is a portability aid.

5/8/01 145 PM
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Input-output
by Michael Metcalf / CERN CN-AS

Non-advancing I/O

Normally, records of external, formatted files are positioned at their ends after a read or write
operation. This can now be overridden with the additional specifiers:

ADVANCE = ‘NO' (default is 'YES')
EOR = eor_label (optional, READ only)
SIZE = size (optional, READ only)

Ntp:/WWWINIo.Cern.chyasaoc/ W w w/tsy/mput-cutput.html

An example shows how to read a record three characters at a time, and to take action if there are fewer

than three left in the record:

CHARACTER(3) key
INTEGER unit, size
READ (unit, '(A3)', ADVANCE='NO', SIZE=size, EOR=66) key

! key is not in one record
66 key(size+l:) = "

and how to keep the cursor positioned after a prompt:

WRITE (*, *, ADVANCE='NO') 'Enter next prime number:'
READ (*, '(I10)"') prime_number

New edit descriptors
The first three new edit descriptors are modelled on the I edit descriptor:

¢ B - binary,
e O -octal,
e 7 - hexadecimal.

There are two new descriptors for real numbers:
¢ EN - engineering, multiple-of-three exponent:
0.0217 -—> 21.70E-03 (EN9.2)
e ES - scientific, leading nonzero digit:
0.0217 - 2.17E-02 (ES9.2)

and the G edit descriptor is generalized to all intrinsic types (E/F, L, L, A).

For entities of derived types, the programmer must elaborate a format for the ultimate components:

TYPE string
INTEGER length
CHARACTER (LEN=20) word
END TYPE string
TYPE (string) :: text
READ(*, '(I2, A)') text

5/8/01 1:45 PM
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Intrinsic procedures

by Michael Metcalf / CERN CN-AS

We have already met most of the new intrinsic functions before. Here, we deal only with their general
classification and with those that have so far been omitted.

All intrinsic procedures have keyword arguments:
CALL DATE_AND_TIME (TIME=t)

and many have optional arguments. They are grouped into four categories:

elemental - work on scalars or arrays, e.g. ABS(a);

inquiry - independent of value of argument (which maybe undefined), e.g. PRECISION(a);
transformational - array argument with array result of different shape, e.g. RESHAPE(a, b);
subroutines, e.g. SYSTEM_CLOCK.

b

The procedures not already introduced are::

Bit inquiry
BIT_SIZE Number of bits in the model

Bit manipulation

BTEST Bit testing

IAND Logical AND

IBCLR Clear bit

IBITS Bit extraction
IBSET Set bit

IEOR Exclusive OR

I0R Inclusive OR

ISHFT Logical shift
ISHFTC Circular shift

NOT Logical complement

Transfer function, as in
INTEGER :: i = TRANSFER{'abcd', 0)
(replaces part of EQUIVALENCE)

Subroutines
DATE_AND_TIME Obtain date and/or time
MVBITS Copies bits
RANDOM_NUMBER Returns pseudorandom numbers
RANDOM__SEED Access to seed
SYSTEM_CLOCK Access to system clock

5/8/01 1:44 PM
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SUBROUTINE s({b, m, <)
USE mod ! contains a
REAL, DIMENSION(:, :) : b
REAL, DIMENSION(UBOUND(b, 1) + 5) X
INTEGER m
CHARACTER (LEN=%*) C
CHARACTER (LEN= m + LEN(c)) C
REAL (SELECTED_REAL_KIND(2*PRECISION(a

PUBLIC and PRIVATE

C
1)) oz

These attributes are used in specifications in modules to limit the scope of entities. The attribute form
is

REAL, PUBLIC 1 X, ¥, Z ! default
INTEGER, PRIVATE :: u, v, W

and the statement form is

PUBLIC :: x, ¥y, 2z, OPERATOR(.add.)
PRIVATE :: u, v, w, ASSIGNMENT (=), OPERATOR(*)

The statement form has to be used to limit access to operators, and can also be used to change the
overall default:

PRIVATE ! sets default for module
PUBLIC :: only_this

For derived types there are three possibilities: the type and its components are all PUBLIC, the type is
PUBLIC and its components PRIVATE (the type only is visible and one can change its details easily),
or all of it is PRIVATE (for internal use in the module only):

MODULE mine
PRIVATE
TYPE, PUBLIC :: list
REAL X, Yy
TYPE(list), POINTER :: next
END TYPE list
TYPE(list) :: tree

END.MODULE mine
USE statement

To gain access to entities in a module, we use the USE statement. It has options to resolve name
clashes if an imported name is the same as a local one:

USE mine, local_list => list

or to restrict the used entities to a specified set:
USE mine, ONLY : list

These may be combined:

USE mine, ONLY : local_list => list

M.G. (October 19th 1995)
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Specification Statements

by Michael Metcalf / CERN CN-AS

Implicit typing

The imlicit typing rules of FORTRAN 77 still hold. However, it is good practice to explicitly type all
variables, and this can be forced by inserting the statement

IMPLICIT NONE

at the beginning of each prorgam unit.

PARAMETER attribute

A named constant can be specified directly by adding the PARAMETER attribute and the constant
values to a type statement:

REAL, DIMENSION(3), PARAMETER :: field = (/ 0., 1., 2. /)
TYPE(triplet), PARAMETER :: t = &
triplet( 0., (/ 0., 0., 0. /) )

DATA statement

The DATA statement can be used also for arrays and variables of derived type. It is also the only way
to initialise just parts of such objects, as well as to initialise to binary, octal or hexadecimal values:

TYPE (triplet) :: tl1, t2

DATA tl/triplet({ 0., (/ 0., 1., 2. /) )/, t2%u/0./
DATA array(l:64) / 64*0/

paTa i, j, k/ B'01010101', ©'77+, Z‘'f£f'/

Characters

There are many variations on the way character arrays may be specified. The shortest and longest are

CHARACTER name{4, 5)*20
CHARACTER (KIND = kanji, LEN = 20), DIMENSION (4, 5) :: name

Initialization expressions

The values used in DATA and PARAMETER statements, or with these attributes, are constant
expressions that may include references to: array and structure constructors, elemental intrinsic

functions with integer or character arguments and results, and the six transformational functions
REPEAT, SELECTED_INT_KIND, TRIM, SELECTED_REAL_KIND, RESHAPE and TRANSFER:

INTEGER, PARAMETER :: long
array(3)

SELECTED_REAL_KIND(12), &
(/ 1, 2, 3 /)

o

Specification expressions

It is possible to specify details of variables using any non-constant, scalar, integer expression that may
also include inquiry function references:

5/8/01 1 44 PM
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The source code of an extended example of the use of pointers to support a data structure is 1n
appxg.f90 Aug 12th 1994 m.g.

jof5 5/8/01 1:44 PM
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rows%next i illegal

would be such an object, but with an irregular storage pattern. For this reason they are not allowed.
However, we can achieve the same effect by defining a derived data type with a pointer as its sole
component:

TYPE row
REAL, POINTER :: r{:)
END TYPE

and then defining arrays of this data type:
TYPE (row) :: s(n), t{(n)
where the storage for the rows can be allocated by, for instance,

DOi=1,n
ALLOCATE (t(i)%r(1l:1)) ! Allocate row i of length 1
END DO

The array assignment
s =t

is then equivalent to the pointer assignments
5(1)%r => t(i)%r

for all components.

Pointers as dynamic aliases

Given an array
REAL, TARGET :: table(100,100)

that is frequently referenced with the fixed subscripts
table(m:n, p:q)

these references may be replaced by

REAL, DIMENSION(:, :), POINTER :: window

wiﬁdow => table(m:n, p:q)
The subscripts of window are 1:n-m+1, 1:g-p+1. Similarly, for
tardu
(as defined in Part 7), we can use, say,
taru => tars%u
to point at all the u components of tar, and subscript it as
taru(l, 2)

The subscripts are as those of tar itself. (This replaces yet more of EQUIVALENCE.)

tofS 5/8/01 1:44 PM
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causes current to overwrite first and is equivalent to

first%value = current%$value
first%index = current%index
first%next => current%next

Pointer arguments

If an actual argument is a pointer then, if the dummy argument is also a pointer,

it must have same rank,

it receives its association status from the actual argument,

it returns its final association status to the actual argument (note: the target may be undefined!),
it may not have the INTENT attribute (it would be ambiguous),

it requires an interface block.

If the dammy argument is not a pointer, it becomes associated with the target of the actual argument:
REAL, POINTER :: a (:,:)
ALL&CATE (a(80, 80))
CAL£ sub(a)

SUBROUTINE sub(c)
REAL c(:, :)

Pointer functions

Function results may also have the POINTER attribute; this is useful if the result size depends on
calculations performed in the function, as in

USE data_handler
REAL x(100)
REAL, POINTER :: vy{:)

& => compact (x)
where the module data_handler contains

FUNCTION compact (x)
REAL, POINTER :: compact(:)
REAL x(:)
! A procedure to remove duplicates from the array x
INTEGER n
: ! Find the number of distinct values, n
ALLOCATE (compact (n))
: ! Copy the distinct values into compact
END FUNCTION compact

The result can be used in an expression (but must be associated with a defined target).

Arrays of pointers

These do not exist as such: given
TYPE (entry) :: rows(n)

then

5/8/01 144 PM
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chain$%$index chain%next%index
chain%next chain%next%next

but we would normally define additional pointers to point at, for instance, the first and current entries
in the list.

Association
A pointer's association status is one of

e undefined (initial state);
e associated (after allocation or a pointer assignment);
e disassociated:

DEALLOCATE (p. Q) ! for returning storage
NULLIFY (p, q) ! for setting to 'null’

Some care has to be taken not to leave a pointer 'dangling' by use of DEALLOCATE on 1ts target
without NULLIFYing any other pointer referring to it.

The intrinsic function ASSOCIATED can test the association status of a defined pointer:
IF (ASSOCIATED (pointer)) THEN
or between a defined pointer and a defined target (which may, itself, be a pointer):

IF (ASSOCIATED(pointer, target)) THEN
Pointers in expressions and assignments

For intrinsic types we can 'sweep' pointers over different sets of target data using the same code
without any data movement. Given the matrix manipulation y = B C z, we can write the following code
(although, in this case, the same result could be achieved more simply by other means):

REAL, TARGET :: b{(10,10), c{(10,10), r(10), s(10, z{(10)
REAL, POINTER :: af{:,:), x{(:}, v{:)
INTEGER mult

DO mult = 1, 2

IF (mult == 1) THEN
y =>r ! no data movement
a =» ¢
X => 7

ELSE
Yy => 8 ! no data movement
a =>Db
X => r

END IF

y = MATMUL(a, Xx) ! common calculation

END DO

For objects of derived type we have to distinguish between pointer and normal assignment. In

TYPE (entry), POINTER :: farst, current

first => current
the assignment causes first to point at current, whereas

first = current

5/8/01 1 44 PM
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Pointers

by Michael Metcalf / CERN CN-AS

Basics

Pointers are variables with the POINTER attribute; they are not a distinct data type (and so no 'pointer
arithmetic' is possible).

REAL, POINTER :: var

They are conceptually a descriptor listing the attributes of the objects (targets) that the pointer may
point to, and the address, if any, of a target. They have no associated storage until it is allocated or
otherwise associated (by pointer assignment, see below):

ALLOCATE (var)
and they are dereferenced automatically, so no special symbol required. In
var = var + 2.3

the value of the target of var is used and modified. Pointers cannot be transferred via I/O. The
statement

WRITE *, var

writes the value of the target of var and not the pointer descriptor itself.

A pointer can point to other pointers, and hence to their targets, or to a static object that has the
TARGET attribute:

REAL, POINTER :: object

REAL, TARGET :: target_obj

var => object ! pointer assignment
var => target_obj

but they are strongly typed:

INTEGER, POINTER :: int_var
var => int_var ! 1llegal - types must match

and, similarly, for arrays the ranks as well as the type must agree.

A pointer can be a component of a derived type:

TYPE entry ! type for sparse matrix
REAL value
INTEGER index
TYPE (entry)., POINTER :: next ! note recursion

END TYPE entry
and we can define the beginning of a linked chain of such entries:
TYPE(entry), POINTER :: chain
After suitable allocations and definitions, the first two entries could be addressed as

chain%value chain%next%value

5/8/01 1:44 PM
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Array reshape
RESHAPE
Array manipulation

CSHIFT
EOSHIFT
TRANSPOSE

Array location

MAXTL.OC
MINLOC

M.G. (October 19th 1995)

5of5
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Reshape an array

Circular shift
End-off shift
Transpose of an array of rank two

Location of first maximum value in an array
Location of first minimum value in an array

5/8/01 1:44 PM
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REAL a(l10, 10)

a(i, 1:n) ! part of one row

a{(l:m, Jj) ! part of one column

a(i, : ) ! whole row

a{i, 1:n:3) ! every third element of row
a(i, 10:1:-1) ! row in reverse order

al (/ 1, 7, 3, 2 /)y, 1) | vector subscript

a(l, 2:11:2) ! 11 is legal as not referenced
al:, 1:7) { rank two section

Note that a vector subscript with duplicate values cannot appear on the left-hand side of an assignment
as it would be ambiguous. Thus,

b (/1, 7,3, 7/y)= (1,2, 3,41/)

is illegal. Also, a section with a vector subscript must not be supplied as an actual argument to an OUT
or INOUT dummy argument. Arrays of arrays are not allowed:

targdu i illegal

We note that a given value in an array can be referenced both as an element and as a section:

a{l, 1) ! scalar (rank zero)
a(l:1, 1) ! array section (rank one)

depending on the circumstances or requirements. By qualifying objects of derived type, we obtain
elements or sections depending on the rule stated earlier:

tar%u
tar{l, 1)%u

I array section (structure component)
! component of an array element

Arrays intrinsic functions

Vector and matrix multiply

DOT_PRODUCT
MATMUL

Array reduction

ALL
ANY

COUNT
MAXVAL
MINVAL
PRODUCT
SUM

Array inquiry

ALLOCATED
LBOUND
SHAPE
SIZE
UBOUND

Array construction

tol§

MERGE
PACK
SPREAD
UNPACK

Dot product of 2 rank-one arrays
Matrix multiplication

True if all values are true

True if any value is true. Example:
IF (ANY( a > b)) THEN

Number of true elements in array

Maximum value in an array

Minimum value in an array

Product of array elements

Sum of array elements

Array allocation status

Lower dimension bounds of an array
Shape of an array (or scalar)

Total number of elements in an array
Upper dimension bounds of an array

Merge under mask
Pack an array into an array of rank
Replicate array by adding a dimension

Unpack an array of rank one into an array under mask

5/8/01 1-44 PM
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Often, we need to mask an assignment. This we can do using the WHERE, either as a statement:

WHERE (a /= 0.0) a = 1.0/a | avoid division by 0

(note: test is element-by-element, not on whole array), or as a construct:

WHERE (a /= 0.0)
.0/a

or

WHERE (a /= 0.0)
a=1.0/a
ELSEWHERE
a = HUGE(a)
END WHERE

Array elements

Simple case: given

REAL, DIMENSION(100, 100) :: a

1
a ! all arrays same shape
R

we can reference a single element as, for instance, a(l, 1). For a derived-data type like

TYPE triplet
REAL u
REAL, DIMENSION(3) :: du
END TYPE triplet

we can declare an array of that type:

TYPE(triplet), DIMENSION(10, 20) :: tar

and a reference like
tar(n, 2)
is an element (a scalar!) of type triplet, but
tar(n, 2)%du
is an array of type real, and

tar(n, 2)%du(2)

is an element of it. The basic rule to remember is that an array element always has a subscript or

subscripts qualifying at least the last name.
Array subobjects (sections)

The general form of subscript for an array section is

[lower] : [upper] [:stride]

as in

5/8/01 1.44 PM
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SUBROUTINE swap{a, b)

REAL, DIMENSION(:) it a, b
REAL, DIMENSION(SIZE(a)) :: work
work = a

a=>»

b = work

END SUBROUTINE swap

The actual storage is maintained on a stack.

ALLOCATABLE and ALLOCATE

Fortran 90 provides dynamic allocation of storage; it relies on a heap storage mechanism (and replaces
another use of EQUIVALENCE). An example, for establishing a work array for a whole program, is

MODULE work_array

INTEGER n

REAL, DIMENSION(:,:,:), ALLOCATABLE :: work
END MODULE
PROGRAM main

USE work_array

READ (input, *) n

ALLOCATE (work(n, 2*n, 3*n), STAT=status)

DEALLOCATE {work)

The work array can be propagated through the whole program via a USE statement in each program
unit. We may specify an explicit lower bound and allocate several entities in one statement. To free
dead storage we write, for instance,

DEALLOCATE (a, b)

We will meet this later, in the context of pointers.

Elemental operations and assignments

We have already met whole array assignments and operations:

REAL, DIMENSION(10) :: a, Db
a=0. ! scalar broadcast; elemental assignment
b = sqgrt{a) ! intrinsic function result as array object

In the second assignment, an intrinsic function returns an array-valued result for an array-valued
argument. We can write array-valued functions ourselves (they require an explicit interface):

PROGRAM test

REAL, DIMENSION(3) :: a = {(/ 1., 2., 3./}, &
b= (/2., 2., 2. /)Y,
r = f(a, b)
PRINT *, r
CONTAINS
FUNCTION f({c, 4)
REAL, DIMENSION(:) :: ¢, d
REAL, DIMENSION(SIZE{c)) :: £
£ = ¢*d ! {or some more useful functio of ¢ and d)

END FUNCTION f
END PROGRAM test

WHERE

lof5 5/8/01 1 44 PM
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Array Handling

by Michael Metcalf / CERN CN-AS

Array handling is included in Fortran 90 for two main reasons:
e the notational convenience it provides, bringing he code closer to the underlying mathematical
® gg?gq;e additional optimization opportunities it gives compilers (although there are plenty of

opportunities for degrading optimization too!).

At the same time, major extensions of the functionality in this area have been added. We have already
met whole arrays in Parts 2 and 3 of this series - here we develop the theme.

Zero-sized arrays

A zero-sized array is handled by Fortran 90 as a legitimate object, without special coding by the
programmer. Thus, in

DO i = 1,n

x{i) = b(i) / a(i, 1)

b(i+l:n) = b{(i+l:n) - a(i+l:n, i) * x(i)
END DO

no special code is required for the final iteration where i = n. We note that a zero-sized array is
regarded as being defined; however, an array of shape (0,2) is not conformable with one of shape (0,3),
whereas

x(1:0) = 3

is a valid 'do nothing' statement.

Assumed-shape arrays

These are an extension and replacement for assumed-size arrays. Given an actual argument like:
REAL, DIMENSION{0:10, 0:20) :: a
CALL sub(a)

the corresponding dummy argument specification defines only the type and rank of the array, not its
size. This information has to be made available by an explicit interface, often using an interface block
(see Arguments, interface blocks and recursion). Thus we write just

SUBROUTINE sub(da)
REAL, DIMENSION(:, :) :: da

and this is as if da were dimensioned (11,21). However, we can specify any lower bound and the array
maps accordingly. The shape, not bounds, is passed. where the default lower bound is 1 and the default
upper bound is the corresponding extent.

Automatic arrays

A partial replacement for the uses to which EQUIVALENCE is put is provided by this facility, useful
for local, temporary arrays, as in

lof5 5/8/01 1:44 PM
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FUNCTION £fy({vy)

USE func I module func contains function £
REAL fy, v
yval =y
fvy = integrate(f, xbounds)
END

Direct recursion is when a procedure calls itself, as in

RECURSIVE FUNCTION factorial(n) RESULT(res)
INTEGER res, n
IF(n.EQ.1) THEN

res = 1
ELSE

res = n*factorial(n-1)
END IF

END

Here, we note the RESULT clause and termination test.

M.G. (October 19th 1995)
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f = func(x) t invocation of the user function.

END FUNCTION minimum

An explicit interface is obligatory for:
e optional and keyword arguments;
e POINTER and TARGET arguments (see later article);
e POINTER function result (later);
e new-style array arguments and array functions (later).

It allows full checks at compile time between actual and dummy arguments.

Overloading and generic interfaces

Interface blocks provide the mechanism by which we are able to define generic names for specific
procedures:

INTERFACE gamma ! generic name
FUNCTION sgamma (X) ! gpecific name
REAL (SELECTED_REAL_KIND( 6})) sgamma, X
END
FUNCTION dgamma (X) ! gpecific name
REAL (SELECTED_REAL_KIND({12)) dgamma, X
END

END INTERFACE

where a given set of specific names corresponding to a generic name must all be of functions or all of
subroutines. If this interface is within a module, then it is simply

INTERFACE gamma
MODULE PROCEDURE sgamma, dgamma
END INTERFACE

We can use existing names, e.g. SIN, and the compiler sorts out the correct association.

We have already seen the use of interface blocks for defined operators and assignment (see Part 3).

Recursion

Indirect recursion is useful for multi-dimensional integration. For
volume = integrate({fy, ybounds)
We might have

RECURSIVE FUNCTION integrate(f, bounds)
I Integrate f(x) from bounds(l) to bounds(2)
REAL integrate

INTERFACE
FUNCTION f (x)
REAL £, x

END FUNCTION £
END INTERFACE
REAL, DIMENSION(2), INTENT(IN} :: bounds

END FUNCTION integrate

and to integrate f(x, y) over a rectangle:

5/8/01 1:44 PM
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END MODULE interval_ arithmetic
and the simple statement
USE interval_arithmetic

provides use association to all the module's entities. Module subprograms may, in turn, contain internal
subprograms.

Arguments

We may specify the intent of dummy arguments:

SUBROUTINE shuffle (ncards, cards)
INTEGER, INTENT (IN) :: ncards
INTEGER, INTENT{(QUT), DIMENSION(ncards) :: cards

Also, INOUT is possible: here the actual argument must be a variable (unlike the default case where it
may be a constant).

Arguments may be optional:

SUBROUTINE mincon(n, £, x, upper, lower, equalities, &
inequalities, convex, xstart)
REAL, OPTIONAL, DIMENSION :: upper, lower

allows us to call mincon by

CALL mincon (n, £, x, upper)

IF (PRESENT (lower)) THEN I test for presence of actual argument

Arguments may be keyword rather than positional (which come first):
CALL mincon(n, £, x, equalities=0, xstart=x0)

Optional and keyword arguments are handled by explicit interfaces, that is with internal or module
procedures or with interface blocks.

Interface blocks

Any reference to an internal or module subprogram is through an interface that is 'explicit' (that is, the -
compiler can see all the details). A reference to an external (or dummy) procedure is usually 'implicit'
(the compiler assumes the details). However, we can provide an explicit interface in this case too. It is
a copy of the header, specifications and END statement of the procedure concerned, either placed in a
module or inserted directly:

REAL FUNCTION minimum({a, b, func)
! returns the minimum value of the function func(x)
! in the interval (a,b)
REAL, INTENT(in) :: a, b
INTERFACE
REAL FUNCTION func({x)
REAL, INTENT(IN) :: x
END FUNCTION func
END INTERFACE
REAL f,x
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Program units and procedures

by Michael Metcalf / CERN CN-ASD

In order to discuss this topic we need some definitions. In logical terms, an executable program
consists of one main program and zero or more subprograms (or procedures) - these do something.
Subprograms are either functions or subroutines, which are either external, internal or module
subroutines. (External subroutines are what we know from FORTRAN 77.)

From an organizational point of view, however, a complete program consists of program units. These
are either main programs, external subprograms or modules and can be separately compiled.

An internal subprogram is one contained in another (at a maximum of one level of nesting) and
provides a replacement for the statement function:

SUBROUTINE outer
REAL x, v

CONTAINS
SUBRQUTINE inner
REAL v
vy = x + 1,

END SUBRQUTINE inner ! SUBROUTINE mandatory
END SUBROUTINE outer

We say that outer is the host of inner, and that inner obtains access to entities in outer by host
association (e.g. to x), whereas y is a local variable to inner.

The scope of a named entity is a scoping unit, here outer less inner, and inner.

The names of program units and external procedures are global, and the names of implied-DO
variables have a scope of the statement that contains them.

Modules are used to package

global data (replaces COMMON and BLOCK DATA);

type definitions (themselves a scoping unit);

subprograms (which among other things replaces the use of ENTRY);
interface blocks (another scoping unit, see next article);

namelist groups (later in the series).

An example of a module containing a type defition, interface block and function subprogram is:

MODULE interval_arithmetic
TYPE interval
REAL lower, upper
END TYPE interval
INTERFACE OPERATOR(+)
MODULE PROCEDURE add_intervals
END INTERFACE

CONTAINS

FUNCTION add_intervals{a,b)
TYPE(interval), INTENT(IN) :: a, b

TYPE(interval) add_intervals
add_intervals%$lower = a%lower + b%lower
add_intervals%$upper = a%$upper + b%upper

END FUNCTION add_intervals ! FUNCTION mandatory
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Control statements

by Michael Metcalf / CERN CN-AS

The CASE construct is a replcement for the computed GOTO, but is better structured and does not
require the use of statement labels:

SELECT CASE (number) ! NUMBER of type integer

CASE (:-1) ! all values below 0
n_sgign = -1

CASE (0) t only O
n_sign = 0

CASE (1:) ! all values above 0
n_sign =1

END SELECT

Each CASE selector list may contain a list and/or range of integers, character or logical constants,
whose values may not overlap within or between selectors:

CASE (1, 2, 7, 10:17, 23)
A default is available:
CASE DEFAULT

There is only one evaluation, and only one match.

A simplified but sufficient form of the DO construct is illustrated by

outer: DO

inner: DO i =3, k, 1 { only integers
IF (...) CYCLE
IF (...) EXIT outer

END DO inner
END DO outer

where we note that loops may be named so that the EXIT and CYCLE statements may specify which
loop is meant.

Many, but not all, simple loops can be replaced by array expressions and assignments, or by new
intrinsic functions. For instance

tot = 0.
DO 1 =m, n

tot = tot + a(i)
END DO

becomes simply

tot = SUM( a{m:n) )
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vector machines. Of course, any operators for arrays of derived type must be defined.

There are some new real intrinsic functions that are useful for numeric computations:

CEILING FL.OOR MODULO (also integer)
EXPONENT FRACTION

NEAREST RRSPACING SPACING

SCALE SET _EXPONENT

Like all FORTRAN 77 functions (SIN, ABS, etc.), except LEN, these are array valued for array
arguments (i.e. are elemental).

M.G. (October 19th 1995)

5/8/01 143 PM



sortran YU {utonal BuUp/twwwinfo.cern.ch/asaoc/ W W W/IyU/expressions-assignments. numl

association by an interface block, also in the module (we shall return to this later). For the moment,
here is an example of an interface for string concatenation

INTERFACE OPERATOR(//)
MODULE PROCEDURE string_concat
END INTERFACE

and an example of part of a module containing the definitions of character-to-string and
string-to-character assignment. The string concatenation function was shown already in Language
Llements.

MODULE string_type
TYPE string
INTEGER length
CHARACTER (LEN=80) :: string_data
END TYPE string
INTERFACE ASSIGNMENT (=)
MODULE PROCEDURE c_to_s_assign, s_to_c_assign
END INTERFACE
INTERFACE OPERATOR(//)
MODULE PROCEDURE string_concat
END INTERFACE

CONTAINS
SUBROUTINE c_to_s_assign(s, c)
TYPE {(string), INTENT(OUT) t:0 s
CHARACTER (LEN=*), INTENT{IN) [HE -

s¥string_data = ¢
s%length = LEN{(c)
END SUBROUTINE c_to_s_assign
SUBRQUTINE s_to_c_assign(c, s)
TYPE (string), INTENT (IN) 1108
CHARACTER (LEN=*), INTENT(OUT) :: cC
c = s%string data(l:s%length)
END SUBROUTINE s_to_c_assign
FUNCTION string_concat(sl, s2)

END FUNCTION string_concat
END MODULE string_type

Defined operators such as these are required for the expressions that are allowed too 1n structure
constructors (see Part 1):

strl = string(2, charl//char2) ! structure constructor

So far we have discussed scalar variables. In the case of arrays then, as long as they are of the same
shape (conformable), operations and assignments are extended in an obvious way, on an
element-by-element basis. For

REAL, DIMENSION(10, 20) :: a, b, ¢
REAL, DIMENSION(5) tr VvV, w
LOGICAL flag (10, 20)
can write
a=>b ! whole array assignment
¢ = a/b ! whole array division and assignment
c = 0. ! whole array assignment of scalar value
w=v + 1. ! whole array addition to scalar wvalue
w = 5/v + a{l:5, 5) ! array division, and addition to section
flag = a== ! whole array relational test and assignment
¢{1:8, 5:10) = a(2:9, 5:10) + b(1l:8, 15:20)

array section addition and assignment

i
! overlapping section assignment

v{2:5) = v{l:4)

The order of expression evaluation is not specified in order to allow for optimization on parallel and
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Expressions and assignments

by Michael Metcalf / CERN CN-AS

The rules for scalar numeric expresions and assignments, as known from FORTRAN 77, are extended
to accommodate the non-default kinds we encountered in Part 1. Thus, the mixed-mode numeric
expression and assignment rules incorporate different kind type parameters in an expected way:

real2 = integer + reall

converts integer to a real value of the same kind as reall; the result is of same kind, and is converted to
the kind of real2 for assignment.

For scalar relational operations, there is a set of new, alternative operators:

< <=

fl
I

/= > >m
sO we can write expressions such as

IF (a < b .AND. i /= j) THEN ! for numeric variables
flag = a == b ! for logical variable flags

In the case of scalar characters, two old restrictions are lifted. Given
CHARACTER(8) result
it is now legal to write

result (3:5)
result(3:3)

result(1:3) I overlap allowed
result(3:2) ! no assignment of null string

|

For an operation between derived-data types, or between a derived type and an intrinsic type, we must
define the meaning of the operator. (Between intrinsic types, there are intrinsic operations only.) Given

TYPE string
INTEGER length
CHARACTER (80) wvalue
END TYPE string
CHARACTER charl, char2, char3
TYPE(string) strl, str2, str3

we can write

str3 = strl//str2 ! must define operation
stx3 = strl.concat.str2 ! must dedine operation
char3 = char2//char3 ! intrinsic operator only
str3 = charl t must define assignment

For the first two cases, assignment applies on a component-by-component basis (but can be
overridden), and they also require us to define the exact meaning of the // symbol. We see here the use
of an intrinsic symbol and of a named operator, .concat. . A difference is that, for an intrinsic
operator token, the usual precedence rules apply, whereas for named operators their precedence is the
highest as a unary operator or the lowest as a binary one. In

vector3d = matrix * vectorl + vector2
vector3d =(matrix .times. vectorl) + vector2

the two expresions are equivalent only if appropriate parentheses are added as shown. In each case, we
have to provide, in a module, procedures defining the operator and assignment, and make the
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making use of the implied-DO loop notation familiar from I/O lists. A derived data type may, of

course, contain array components:

TYPE triplet

REAT,, DIMENSION{(3) :: vertex
END TYPE triplet
TYPE(triplet), DIMENSION(4) :: t

so that

t(2) is a scalar (a structure)
t(2)%vertex is an array component of a scalar

There are some other interesting character extensions. Just as a substring as in

CHARACTER(80), DIMENSION(60) :: page
= page(j) (i:1) ! substring

was already possible, so now are the substrings

10123456789 (1i:1)
you%name (1:2)

Also, zero-length strings are allowed:
page(3) {(1:1-1) ! zero-length string

Finally, there are some new intrinsic character functions:

ACHAR TIACHAR (for ASCII set)
ADJUSTL ADJUSTR

LEN_TRIM INDEX({sl, s2, BACK=.TRUE.)
REPEAT SCAN (for one of a set)
TRIM VERIFY (for all of a set)

M.G. (October 19th 1995)
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and then create structures of that type:
TYPE (person) you, me
To select components of a derived type, we use the % qualifier:
yousage
and the form of a literal constant of a derived type is shown by:
you = person{'Smith', 23.5)
which is known as a structure constructor. Definitions may refer to a previously defined type:

TYPE point
REAL %, Yy
END TYPE point
TYPE triangle
TYPE (point) a, b, ¢
END TYPE triangle

and for a variable of type triangle, as in
TYPE(triangle) t

we have components of type point:
t%a t%b t%¥c

which, in turn, have ultimate components of type real:
r%asx t%asy t3b%x etc.

We note that the % qualifier was chosen rather than . because of ambiguity difficulties.

Arrays are considered to be variables in their own right. Given

REAL a(10)
INTEGER, DIMENSION(0:100, ~50:50) :: map

(the latter an example of the syntax that allows grouping of attributes to the left of :: and of variables
sharing the attributes to the right), we have two arrays whose elements are in array element order
(column major), but not necessarily in contiguous storage. Elements are, for example,

a(l) a(i*j)

and are scalars. The subscripts may be any scalar integer expression. Sections are

al(i:j) ! rank one

map(i:3j, k:l:m) ! rank two

a{map(i, k:1})) ! vector subscript

a(3:2) ! zero length
Whole arrays and array sections are array-valued objects. Array-valued constants (constructors) are
available:

(/ 1, 2, 3, 4, 5 /)

{(/ (i, i =1, 9, 2) /)

(/ /1, 2,37/, 1=1, 10) /)

{(/ (0, i =1, 100) /)

(/ (0.1*1i, i =1, 10) /)
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CHARACTER

'A string' *Another" 'A "gquote"! v

(the last being a null string). Other kinds are allowed, especially for support of non-European
languages:

2_ ' 1
and again the kind value is given by the KIND function:
KIND('ASCII')

LOGICAL

Here, there may also be different kinds (to allow for packing into bits):
.FALSE. .true._one_bit

and the KIND function operates as expected:
KIND(.TRUE.)

The numeric types are based on model numbers with associated inquiry functions (whose values are
independent of the values of their arguments):

DIGITS (X) Number of significant digits

EPSILON(X) Almost negligible compared to one (real)
HUGE (X) Largest number

MAXEXPONENT (X) Maximum model exponent (real)
MINEXPONENT (X) Minimum model exponent (real)
PRECISION({X) Decimal precision (real, complex)

RADIX (X) Bage of the model

RANGE (X) Decimal exponent range

TINY (X) Smallest postive number (real)

These functions are important for portable numerical software.

We can specify scalar variables corresponding to the five intrinsic types:

INTEGER(KIND=2) i

REAL(KIND=long) a

COMPLEX current

LOGICAL Pravda

CHARACTER (LEN=20) word

CHARACTER (LEN=2, KIND=Kanji) kanji_word

where the optional KIND parameter specifies a non-default kind, and the LEN= specifier replaces the
*len form. The explicit KIND and LEN specifiers are optional:

CHARACTER(2, Kanji) kanji_word
works just as well.
For derived-data types we must first define the form of the type:

TYPE person
CHARACTER (10) name
REAL age
END TYPE person

3of 5 5/8/01 1:43 PM



“ortran YU lutorial http'//wwwinto cern ch/asaoc/ W W W/lYU/language-elements nmi

lof5

INTEGER
1 0 -999 32767  +10

for the default kind; but we may also define, for instance for a desired range of -10%*4 to +10%*4, a
named constant, say two_byles:

INTEGER, PARAMETER :: two_bytes = SELECTED_INT KIND(4)

that allows us to define constants of the form
~1234_two_bytes +1_two_bytes

Here, two_bytes is the kind type parameter; it can also be a default integer literal constant, like
-1234_2

but use of an explicit literal constant would be non-portable.

The KIND function supplies the value of a kind type parameter:
KIND(1) KIND (1_two_bytes)

and the RANGE function supplies the actual decimal range (so the user must make the actual mapping
to bytes):

RANGE (1_two_bytes)
Also, in DATA statements, binary, octal and hexcadecimal constants may be used:

B'01010101" 0'01234567" z'10fa’

REAL

There are at least two real kinds - the default, and one with greater precision (this replaces DOUBLE
PRECISION). We might specify

INTEGER, PARAMETER :: long = SELECTED_REAL_KIND(9, 99)

for at least 9 decimal digits of precision and a range of 10%(-99) to 10**99, allowing
1.7_1long

Also, we have the intrinsic functions
KIND(1.7_long) PRECISION(1.7_long) RANGE(1.7_long)

that give 1n turn the kind type value, the actual precision (here at least 9), and the actual range (here at
least 99).

COMPLEX

This data type 1s built of two integer or real components:
(1, 3.7_1ong)

The forms of literal constants for the two non-numeric data types are:
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Language elements

by Michael Metcalf / CERN CN-ASD
The basic components of the Fortran language are its character set. The members are:

the letters A ... Z and a ... z (which are equivalent outside a character context);
the numerals 0 ... 9;

the underscore _; and

the special characters

e & o @

+ blank - * / { )y ., . $ ' {(old)
Py % & < > 7 {new)

From these components, we build the tokens that have a syntactic meaning to the compiler. There are
six classes of token:

Label: 123 Constant: 123.456789_long
Keyword: ALLOCATABLE Operator: .add.

Name: solve_equation {(up to 31 characters, including _)
Separator: / ( ) (/ /) , = => : s ; %

From the tokens, we can build statements. These can be coded using the new free source form which
does not require positioning 1n a rigid column structure:

FUNCTION string_concat(sl, s2) ! This is a comment
TYPE (string), INTENT(IN) :: sl, s2
TYPE (string) string_concat
string concat%$string_data = sl%string_data(l:sl%length) // &
s2%string data(l:s2%length) ! This is a continuation
string concat%length = si%length + s2%length
END FUNCTION string concat

Note the trailing comments and the trailing continuation mark. There may be 39 continuation lines, and
132 characters per line. Blanks are significant. Where a token or character constant is split across two
lines:

start_of&
&_name
. ta very long &
&string'’

a leading & on the continued line is also required.

Automatic conversion of source form for existing programs can be carried out by convert.f90. Its
options are:

significant blank handling;

indentation;

CONTINUE replaced by END DO;

name added to subprogram END statement; and
INTEGER¥*2 etc. syntax converted.

Fortran has five intrinsic data types. For each there 1s a corresponding form of literal constant. For the
three numeric intrinsic types they are:
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FUNCTION IRAND()

INTEGER

MSEED, KOMST, RND MAX

COMMOMN/MYRAND/RND_MAX, MSEED, KONST

MSEED =
MSEED =
IRAND =
RETURN

MSEED * KONST
MSEED — RND_MAX * { MSEED / RND_MAX )}
MSEED

END FUNCTION

SUBROUTINE INITRAND (M)

INTEGER

M, MSEED, KONST, RND_MAX

COMMON/MYRAND/RND_MAX, MSEED, KONST

KONST
RND_MAX
MSEED
RETURN

= 125
= 2796203
=M

END SUBROUTINE INITRAND

FUNCTION RRAND({}
REAL*8 RRAND
INTEGER MSEED, KONST, RND_MAX, IRAND
COMMON/MYRAND/ RND_MAX, MSEED, KONST

RRAND .=

RETURN

DBLE (IRAND(}} / DBLE(RND MAX)

END FUNCTION

FUNCTION RANDEXP(A)
REAL*8 RANDEXP
REAL*8 A, X
INTEGER MSEED, KONST, RND MAX
COMMON/MYRAND/RND_MAX, MSEED, KONST
INTEGER IRAND
X = DBLE(RND MAX - IRAND(}} / DBLE{RND MAX)
RANDEXP = -~ LOG( X )} / A : -

RETURN

END FUNCTION

PROGRAM MYRAKD MAIN
REAL*8 RANDEXP, A, X
INTEGER I

. CALL INITRAND (100001}
A = 2.0D0
Do I=1,100

¥ = RANDEXP{A)
PRINT *,X

END DO

END PROGRAM

MODULE MYRAND

IMPLICIT NONE

PRIVATE

SAVE

PUBLIC :: INITRAND, RANDEXP, IRAND, RRAMD
INTEGER :: MSEED

INTEGER, PARAMETER :: KONST = 125

INTEGER, PARAMETER :: RND_ MAX = 2796203

CONTAINS

FUNCTION IRAND()

INTEGER
MSEED
MSEED
TRAND

RETURN

.
:

s IRAND

MSEED * KONST

MSEED ~ RND_MAX * ( MSEED / RND_MAX )
MSEED

END FUNCTION

SUBROUTINE INITRAND {M)

INTEGER, INTENT(IN) :1: M
MBEED = M
RETURN

END SUBROUTINE INITRAND

FUNCTION RRAND()

REAL*8

RRAND

RRAND = DBLE(IRAND{)) / DBLE(RND_MAX)

RETURN

END FUNCTION

FUNCTION RANDEXP(A)
INTENT (IN} :: A

REAL*8,

REAL*8 ::
X = DBLE(RND_MAX - IRAND()} / DBLE{RND_MAX)
RANDEXP = - LOG{ X ) / A

RETURN

X, RANDEXP

END FUNCTION

END MODULE MYRAND

PROGRAM MYRAND MAIN
USE MYRAND, ONLY: INITRAND, RANDEXP
X

REAL*8 A,
INTEGER I

CALL INITRAND{100001)

A = 2.0D0
DO I = 1,

END DO
END PROGRAM

100
X = RANDEXP (A}
PRINT *,X



program main module constants

real pi, one, two, half, sqrt2, sqrt3 implicit none

common /constants/ pi, one, two, half, sqrt2, asgrtl save

call setconst{) real, parameter :: pi = 3.1415

call shwconst{} ) real, parametexr :: one = 1.0
end . real, parameter :: two = 2.0

real, parameter :: half = 0.5

subroutine setconst real i osgrt2

real pi, one, two, half, sqgrt2, sgrt3 real t: sqgre3

common fconstants/ pi, one, two, half, sqgrt2, sqrt3 contains

pi = 3.1415 subroutine set_constants

one = 1.0 sqrt2 = sqrt( 2.0 )

two = 2.0 sqrt3d = sqrt{ 3.0 )

half = 0.5 end subroutine set_constants

sqrt2 = sqgrt{ 2.0 ) subroutine show_constants

agrt3 = sqrt{ 3.0 ) write(6,*) '* defined constants *'
end write(6,*) ' pi = ', pi

write(6,*} ' one = ', one

subroutine shwconst write(6,*}) ' two = ', ftwo

real pi, one, two, half, sqrt2, sqrtl write{6,*) ' half = *, half

common /constants/ pi, one, two, half, sqrt2, sqrt3 write({6,*) ' sqrt2 = ', sqrt

write(6,*) '* defined constants *! write(6,%*) ' sqrt3 = ', sqrt3

write(6,*) ' pi ="', pi end subroutine

write{6,*} ' one = ', one end module constants

write(6,*}) ' two ="', two

write{6,¥) ' half = ', half program main .

write{6,*) ' sqrt2 = ', sgrt2 use constants, only: set_constants, show_constants

write{6,*} ' sqrt3 = ', sgrtl call set_constants()
end call show_constants()

end program main



MODULE VECTOR_SPACE
INTERFACE NORMAZ

MODULE BLACK_BODY : MODULE PROCEDURE NORMAZ_I, NORMAZ_R
REAL*8, PRIVATE :: INTERMAL TEMPERATURE = 0.0D0 END INTERFACE
CONTAINS CONTAINS
SUBROUTINE HEATUP (D) INTEGER FUNCTION NORMAZ I {V}
REAL*8 D INTEGER, INTENT{IN} :: V{:}
INTERNAL_TEMPERATURE = INTERNAL_TEMPERATURE + D INTEGER I
END SUBROUTINE HEATUP : NORMAZ I = O
SUBROUTINE COOLDOWN(D) DO I=1,8IZE(V}
REAL*8 D NORMAZ I = NORMAZ_I + V(I)**2
INTERNAL TEMPERATURE = INTERNAL TEMPERATURE - D END DO
END SUBROUTINE COOLDOWN END FUNCTION NORMAZ_ T
REAL*8 FUNCTION TEMPERATURE () REAL (KIND=4} FUNCTION NORMA2_ R (V)
TEMPERATURE = INTERNAL_TEMPERATURE REAL (KIND=4), INTENT(IN)} :: V{(:)
END FUNCTION TEMPERATURE INTEGER I
END MODULE BLACK_BODY NCRMAZ R = 0.0DOD
DO I=1,SIZE(V)
PROGRAM EXEMPLE1 NORMAZ_R = NORMAZ R + V{I)¥*2
USE BLACK_BODY END DO
REAL*8 DEGREE END PUNCTION MORMAZ R
DEGREE = 100.0D0 END MODULE VECTOR_SPACE
CALL HEATUP (DEGREE)
WRITE (6, FMT=" (* BLACK BODY TEMPERATURE = ',F8.3)}”) TEMPERATURE(} PROGRAM EXEMPLEZ2
DEGREE = 50.0D0 USE VECTOR_SPACE
CALL COCLDOWN (DEGREE) ’ INTEGER :: IV(3) = (/ 1, 2, 3 /}
WRITE (6,10} TEMPERATURE{} REAL{KIND=4) :: RV{3} = (/ 1.0DO, 2.0DO, 3.0D0 /)
END PROGRAM EXEMPLE1 INTEGER IN

REAL(KIND=4} RN
IN = NORMAZ{IV)
RN = NORMAZ {RV}
WRITE(6,10) IN
WRITE(6,11) RN
10 PORMAT ('NORM of the INTEGER vector = ',I8)
11 FORMAT { 'NORM of the REAL vector = ',F8.3)
BND PROGRAM EXEMPLEZ2
module data_types
type vect
real %,v,2
end type vect
end module data_types

module data_functions

interface operator({ + )
module procedurs my_sum

end interface

contains

function my_sum {(vectl,vect2) result ( new )
use data_types
type {vect}, intent{IN} :: vectl
type (vect}, intent (IN} :: vect2
type {vect}, new
new%$x = vectl$x + vectlix



newky = vectl®y + vectl%y
new$z = vectl%z + vect2%z
end function my_ sum
end module data_functions
module algebra

In F80 there are different kind of intrinsic data types
{integer, real, logical, complex}. These are useful

to control the representation of data on differet
architecturs.

use data_types ! The value of kind specifier itself is default integer
use data_functions
end module algebra program kinds
. implicit none
program exemple3 real rroa
use algebra integer :: i
implicit NONE write{6,¥) 'the default kind of real is: ', kind(a)
type {(vect} vectl,vect?,vect3 write{6,*) 'the default kind of integer is: ',kind({i)
vectl = vect (1.0d0,2.0d0,3.0d0} write(6,%}) *the kind of long integer is: ', &
vect2 = vect (3.0d0,2.0d0,1.,0d0)} selected_int_kind(9)
vact3d = vectl + vectZ ! integer number in the range ~1079 and 1079
print *,‘main :',vect3%x, vect3%y, vect3%z write(6,*) 'the kind of double precision real is: ', &
end program selected _real_ kind{14,300)

{ at leas 14 digids and exponent ranyge -300 300

write{6,%) ‘'the kind of double precision real is: ', &
kind(1.0d0)

write{6,*) *'the smallest doubkle precision number is : '
tiny (1.0d0)

.write({6,%*) ’'the largest double precision number is : '
huge {1.,0d0)

write{6,%} ‘the number of significant digit is 1 !
digits{1.0d0)

write{6,*) 'the maximum exponent is ¢ ¢
maxexponent {1,040}

write{6,*} 'the minimum exponent is ;'

minexponent {1.0d0)

end program



! DEFINE YOUR OWN KIND { F90 allows user defined data types

! The programmer is allowed to define its own standard
{ kind for the intrinpsic type program types

implicit none

program kinds integer, parameter :: dp = selected_real kind{14, 300}
impliecit none type atom
integer, parameter :: dp = selected_;ealnkind(14,300) real (dp) :: tau(3)
integer, parameter :: i4b = selected_int_kind(9) integer 1 z
real (dp) 1t a end type
integer{idb} 1 1
write (6, *) 'programmer defined kind for real is: ',dp type {atom} :: litium(3)
write(6,*) 'programmer defined kind for integer is: ',idb type {atom} :: nitrogen
write(6,*) 'a real constant of programmer defined kind :', &
1.0 dp real {dp) ry £{3),9(3}
end program’ integer fr i
r ={/ 1.0 _dp, 0.0_dp, 0.0 _dp /)
g = 1{/ 0.0_dp, 0.0 dp, 0.0 dp /)
litium{1l} = atom { x, 3)

litium{2)%tau = {/ 0.0_dp, 1.0 dp, 0.0 _dp /)

litium{2)%2z = 3
litium{3)%tau = q
litium(3)%tau(3) = 1.0 dp
litium{3)%z = 3

nitrogen = atom (g, 5)

write(6,*} ' Atomic positions !
write{6, fmt="('litium ',I2,' =',3F8.3)") &
{{i, litium(i)%tau),i=1,3)
write (6, fmt="('nitrogen',12,* =',3FB.3}") i, nitrogen$tau
write (6, fat="{'distance between litium and nitrogeng
& = ',3F8.3)") distance(litium{l),nitrogen)
contains

function distance( a, b.j result ( d )
type {atom), intent(in) :: a
type (atom), intent{in} :: b
real (dp) tood .
d = sgrt( {a%tau{lY-b%tau{l)}**2 + &
{a%tau{2)~-b%tau{2)}**2 + &
{attau ({3} -b%tau(3) )**2 )
return
end function

end program



in P90 a new program unit (MODULE) has been introduced.
the modules substitutes the common block to share data
between program units.

They could contain procedure and functions together with
the data.

module my kinds
implicit none !
save ! all defined variables are now global
integer, parameter :: dp = selected_real_ kind(14,300)
end module my kinds

module my_types
use my_kinds, only: dp
implicit none

save
type atom
real (dp) :: tau{3)
integer :: z
end type

end module my_types

program types
use my_kinds, only: dp
use my_types, only: atom
implicit none

type f{atom) :: litium(3)
type f(atom) :: nitrogen
real (dp} 12 ri3),q(3)
integer FE

interface
function distance({ a, b } result ( d )
use my_kinds, only: dp
use my types, only: atom
implicit none

type {atom), intent{in) a
type {(atom), intent{in} :: b
real {dp)} 4

end function
end interface

= {/ 1.0 _dp, 0.0_dp, 0.0 _dp /)

g = {/ 0.0_dp, 0.0 dp, 0.0 _dp /)

litium{l) = atom { r, 3}

litium(2)%tau = (/ 0.0_dp, 1.0_dp, 0.0_dp /)
litium{2)%z = 3

litium(3)%tau = {/ 0.0_dp, 0.0 _dp, 1.0_dp /)
litium(3) %z = 3

nitrogen = atom {gq, 7}

write(6,*) ' Atomic positions ‘!

write (6, fmb="{'1litium ', I2,' =' 3FB.3}") &
{{i, litium{i)%tau),i=1,3)

write (6, fmt="({'nitrogen',I2,' =',3F8,3}") &
i, nitrogen%tau

write (6, fmt="{'distance between litium and &
& nitrogen = ',3F8.3)"} &
distance (1itium{1l),nitrogen)

end program

function distance{ a, b )} result {( d )
use my_kinds, only: dp
use my_types, only: atom
implicit none
type {atom}), intent{in} :: a
type {atom}, intent{in} :: b
real {(dp) 1 d
d = sqrt{ {(a%tau{l)~-b%tau{l})**2 + &
{a%tau(2)~b%tau{2)}**2 + &
{a%tau {3} ~b%tau{3)}*¥2 )
return
end function



! F90 INTERFACE allows to implement subprogram prototiping
! and subprogram and operator overloading

subroutine swap real{a, b}
use my_ kinds, only: dp
real {dp), intent{inout) :: a, b
real {(dp} ::
t = a
a=b
b=t
return
end subroutine

subroutine swap_integer{i, i}
use my_kinds, only: dp
integer, intent{inout}) :: i, j
integer :: t
t =i
=3
1=t
return

end subroutine

suproutine swap_atom{a, b)
use my kinds, only: dp
use my_types, only: atom

type {atom}, intent{inout) :: a, b
real{dp) :: pos(3)
pos = a%tau

a%tau = bitau
b%tau = pos
return

end subroutine

program interfaces

use my_kinds, only: dp
use my_types, only: atom
1

real{dp) :: s = 1.0_dp
real{dp) :: r = 2.0 _dp
real{dp}) :: p(3) = {/ 0.0_dp, 0.0_dp, 0.0 _dp /)
real{dp) :: q{3) = {/ 1.0_dp, 1.0 dp, 1.0 dp /)
integer :: k = 10, 1 = 20

)

type (atom) :: nitrogen, litium
!

interface swap
subroutine swap real{a, b)
use my kinds, only: dp
real {dp), intent({inout) :: a, b
real {dp} :: t
end subroutine
subroutine swap_integer({i, j)
use my kinds, only: dp
integer, intent{inout} :: i, j
integer :: t
end subroutine
subroutine swap atom{a, b)
use my_ kinds, only: dp
use my types, only: atom
type {atom), intent{inout) :: &, b
real {dp) :: pos(3)
end subroutine
end interface
i
nitrogen = atom {p, 7)

|

litium = atom {g, 3}

write (6, fmt="{' litium atom position: ',3F8.3)"} litium%tau
write (6, fmt="(' nitrogen atom position: *,3F8.3)") nitrogen%tau
write (6, fmt="("' swapping ... '}"}

call swap(litium, nitrogen)

write (6, fmt="(' litium atom position: Y,3F8.3)") litium%tau
write {6, fmt="(' nitrogen atom position: ',3F8.3)") nitrogenitau

¥

end program



! P90 extend the contreol constructs of P77 program loops

{ find the abscissa xw whose sine is yw integer % ic =1, control = 1, i =1, j = 1
program loops character (ien=80}) :: str
integer :: iter character {len=40) :: first_name, family_ name
integer, parameter :: itermax = 200 write (6, frmt="{"insert your first name and family name')}”)
integer :: control = 1 read (5, fmt="(A80}") str
real :: xu, xd, xw first _name (1:40) = ' !
real :: vy, yh, xh, yw = 0.5 family name(1:40) = * '
real, parameter :: tol = 1.0e-6 stxr = adjustl(str});
xd = 0.0; xu = 1.0 parse: do while ( control /= 4 )
iterative lcop: do iter = 1, itermax select case (control)
yd = sin(xd} case (1}
yu = sin{xu} 1f{ str{ic:ic) /= ' '} then
1f { .not. { yd <= yw .and. yw <= yu } } then if{ i > 40} then
control =1 write {6, fmt="(' first name too long '}™)
exit iterative loop exit parse
end if end if
if { yd == yw } then first_name(i:i} = str(ic:ic); 1 =1 + 1
xw = xd; control = 2 else
exit iterative_loop ' control = 2
else if { yu == yw } then cycle parse
xw = xu; control = 3 end i£f
exit iterative_loop case(2)
else if ( abs{yw-yd) < tol )} then 1f({ str{iciic) == * ' ) then
xw = xd; control = 4 if{ ic >= 80 } then
exit iterative_ loop write {6, fmt="(' family name not found "}")
else if { abs(yu-yw) < tol )} then exit parse :
AW = xu; ceontrol = 5 end if
exit iterative_loop else
end 1if control = 3
xh = {xu+xnd}/2.0; vh = sin{xh) cycle parse
if({yh >= yw )} then - end if
xu = xh case default
alse if{ str{ic:ic) /= ' '} then
xd = xh L1E{ 3 > 40 )} then
end if write {6, fmt=" (' family name too long '} ")
control = control + 1 exit parse
end do iterative_loop end if
select case ( control ) family neme{j:3j) = str{ictic); j =3 + 1
case (1) else :
write(*, fmt="{'desired value not in the interval *,F9.8,' :',I9.6)") & control = 4
yd, yu cycle parse
case (2:3) and if
write(*, fmt="('wanted ® (within machine accurancy) ' F9.6)}"} xw end select
case (4:5) ic = dc + 1
write{*, fmt="('wanted ® (within tolerance) *',F9.6)") xXw end do parse .
case default 1£{ control == 4 } then
write {*, fmt="('mazimum number of iteration exceeded')”} write (6, fmt="(' first name : ',Ad0}"} first_name
end select write(6, fmt="("' family name : ',A40)") family name

end program end if
end program



! optional argument allow the implementation of
{ more flexible and safer codes

module my tools
use my_kinds
implicit none
save

contains

subroutine copy(x, y, nel, incx, incy)

real (dp), intent(in) troy{s)

real (dp), intent(out}) :2: x{:)

integer, optional, intent (in) t: nel ! number of
elements

integer, optional, intent{in) :: incx, incy ! increments

integer :: i, ix =1, iy =1, inx = 1, iny =1
integer :: nm
if{ .not. present{incx) .and. .not. present{incy} )} then
nm = min{ size(x), size{y) )
if{ present{nel) )} then
check_size 1: if(nel > nm ) then
write (6, fmt=" (" *** copy: nel is too large')")
stop
end if check_size 1
x{ltnel} = v{l:nel)
else
x{1l:pm } = y{l:nm }
end if
else
if(present{incx}) inx = incx
if{present{incy}) iny = incy
check _size 2: if{present{nel )} then
if{ ¢ 1 + (nel-1)*inx } > size{x) ) then

write {6, fmt="(' *** copy: nel is too large'}i")
stop

end if

if{ { 1 + {nel-1l)}*iny } > sizely} ) then
write {6, fmt="{' *** copy: nel is too large'}")
stop

end if

end if check size 2
do i = 1, nel
x( ix ) = y{ iy ) ix = ix + inx; iy = iy + iny
end do
end if
end subroutine
end module my_tools

program tools

use my kinds
use my_tools, only: copy

integer, parameter :: nmax = 1000

integer :: i
real{dp) :: s
real{dp} :: a{nmax}) = 0.0_dp
real(dp) :: b{nmax}) = 0.0 _dp

a = {/ { real{i,dp), i=1, nmax } /)
call copyi{b, a, nel = 10, incx = 2, incy = 3 )
write (6, fmt="{10F7.3)%} b(1:50)

end program



{ F9O0 INTERFACE allows to implement subprogram prototiping
{ and subprogram and operator overloading

t the MODULE program unit help in managing interfaces

{ In this exaple see also the use of PRIVATE and PUBLIC specifier
'

module my utilities
implicit none
save
interface swap
module procedure swap real, swap_integer, swap_atom
end interface
private :: swap_real, swap integer, swap_atom
public :: swap, distance
contains
‘subroutine swap_real(a, b)
use my_kinds, only: dp
real{dp), intent(inout) :: a, b

real{dp) :: t
t =a; a=>b; b=t
return

end subroutine
subroutine swap_integer({i, i)
use my_kinds, only: dp

integer, intent{inout} :: i, j
integer :: t

t=d;i=13; 3=t

return

end subroutine

subroutine swap atom{a, b)
use my kinds, only: dp
use my_types, only: atom

type (atom), intent{incut) :: a, b

real(dp} :: pos{(3)

pos = a%tau; a%tau = b%tau; b%tau = posg
return

end subroutine
function distance{ a, b } result {( d )
use my_kinds, only: dp
use my_types, only: atom
implicit nene
type {(atom}, intent{in) :: a
type (atom}, intent(in) :: b
real {dp} s d
d = sgrt{ (a%tau(l)-b¥%tau{l})**2 + &
{attau(2)~bstau{2})}**2 + &
{a%tau(3)-bitau(3))**2 )
return
end function
end module my_utilities

program interfaces
use my kinds, only: dp
use my_types, only: atom
use my utilities
1

real {dp} ::

s = 1.0 _dp
real{dp} :: r = 2.0_dp
real{dp} :: p(3) = {/ 0.0_dp, 0.0 dp, 0.0 dp /)
real{dp) :: g{3) = {/ 1.0_dp, 1.0 _dp, 1.0 dp /)
integer :: k = 10, 1 = 20

type {atom} :: nitrogen, litium
H

nitrogen = atom {p, 7}

litium = atom {g, 3)

write (6, finb="(' litium atom position: ',3F8.3)"} litium%tau
write (6, fmt="(' nitrogen atom position: *,3F8.3)"} nitrogen%tau
write (6, fmb="(' swapping ... )"}

call swap{litium, nitrogen)

write {6, fmt="(* litium atom position: ’,3r8.3)"} litiumdtau
write {6, fmt="(' nitrogen atom position: ’,3§8.3)"} nitrogen%$tau
1

write (6, fmt="{*¢ distance between nitrogen and litimum: ',F8.3)") &

distance{nitrogen, litium)
t
write (6, fmt="(' value of s: " ,F8.3)"} s
write (6, fmbk="{' value of r: *,F8.3)"} ¢
write (6, fmt="(' swapping ... ')}")
call swap(s, r)
1
write (6, fmt="(' value of s: ',FB.3)"} s
write (6, fmbt="{' value of r: ',F8.3}") «

end program



