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Outline of lesson 1:

e extended periodic systems (crystals): direct and reciprocal lattice, unit cell, Brillouin Zone
e the plane waves basis set

e localized basis sets versus plane waves

e the concept of pseudopotential

e empirical pseudopotentials (Cohen-Bergstresser)

e less-empirical pseudopotentials (Appelbaum-Hamann)



We are going to deal with infinite perfect crystals, having translation symmetry. A perfect crystal is
described in terms of

e 2 unit cell that is periodically repeated
e a basis of atomic positions d; in the unit cell
e a lattice of translational vectors R = n1R; + noRs + n3Rs

e a reciprocal lattice of vectors G such that G - R = 2=, with [ an integer. Such conditions hold
f G = miGi + maGs + m3Gs with G; - Rj = 27‘(’57;]'.



The one-electron states 1 (r) of a perfect crystal Hamiltonian H = T" + V are described by a band
index ¢ and a wave vector k.

It is convenient to consider the thermodynamic limit: a slab of crystal composed of N = NjN2Nj3
unit cells, N — oo, obeying Periodic Boundary Conditions:

Y(r + N1R1) = ¥ (r + NaRp) = o(r + N3Rs) = ¢ (r).

There are N wave vectors k in the unit cell for the reciprocal lattice, called the Brillouin Zone (BZ).
The one-electron states (energy bands) can be written as

Yi(r) = " Tu(r)
where uy(r) is translationally invariant:

uk(r + R) = uk(r)



How to solve Hy = €y 7

Expand % in some suitable basis set {¢;} as

P(r) = cigi(r).
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For an orthonormal basis set, solve

D (Hij — €dij)e; =0
J
where the matrix elements H;; = (¢;|H|¢;). For a non-orthonormal basis set, solve:

> (Hij — eSij)ey

J

where Si; = (¢i|¢p;) (overlap matrix).



Most popular basis sets:

e Localized basis sets: Bloch sums of atomic-like wavefunctions centered on atoms

— Linear Combinations of Atomic Orbitals (LCAO)
— Gaussian-type Orbitals (GTO)
— Linearized Muffin-Tin Orbitals (LMTO)

e Delocalized basis sets:
— Plane Waves (PW)

e Mixed basis sets:

— Linearized Augmented Plane Waves (LAPW)
— Projector Augmented Plane Waves (PAW)

Bloch sum:

b= e “Fp(r—R)

R



PW basis set

A PW basis set for states of vector k is defined as

1. %
k+ G) = —— 9T |k + G < Ee,
(el + G) = e K+ G < P

Q2 is the unit cell volume, N2 the crystal volume, E.,; is a cutoff on the kinetic energy of PW.
The PW basis set is orthonormal.

(k + Glk + G = g
and complete for E..,; — 00.

The components on a PW basis set are the Fourier transform:

) = Z ck+alk + G)

G

cira = (k+ Gly) = ﬁ / b(r)e DT gr = J(k + G).



Advantages and disadvantages of various basis sets

e Localized basis sets:

+ fast convergence with respect to basis set size (just a few functions per atom needed)
— difficult to evaluate convergence quality (no systematic way to improve convergence)
— difficult to use (two- and three-center integrals)

— difficult to calculate forces (Pulay forces)

e Plane Waves:

slow convergence with respect to basis set size (many more PW than localized functions needed)
easy to evaluate convergence quality (just increase cutoff)

easy to use (Fourier transform)

easy to calculate forces (no Pulay forces)

+ + +



Are PW a practical basis set for electronic structure calculations? Not really!

From elementary Fourier analysis: length scale 6 — Fourier components up to ¢ ~ 27w /4. In a
solid, this means ~ 47 (27/6)* /3057 PW (Qpz = volume of the BZ).

Estimate for diamond: 1s wavefunction has § ~ 0.1 a.u., Q = (27)°/(a3/4) with lattice parameter
ap = 6.74 a.u. — 250,000 PW!

Need to:

e get rid of core states

e get rid of orthogonality wiggles close to the nucleus

Solution: Pseudopotentials



C 1s2 2s2 2p2




Pseudopotential (PP): a smooth effective potential that reproduces the effect of the nucleus plus core
states on valence states.

Early empirical PPs: fitted to some known experimental data (band gaps, ionization potentials, etc.).
A classical example: Cohen-Bergstresser PPs for diamond and zincblende semiconductors.

Cohen-Bergstresser PPs are given as a few Fourier components V' ((G) of the crystal potential for the
fcc lattice. The band structure is obtained by diagonalizing H = T 4+ V on a small PW basis set:

12 :
(k+GIT + V[k + G) = ——(k+ G)"0ger + D _ Su(G — G)Vu(G — G)

I

Simple and useful but little more than a parameterization of the band structure.
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Kinetic energy in PW:

2
(k+ G| -

Potential energy in PW:

(k + G|V]k + G

2

Vv /
k+G)
m

V(r) =

1
NQ

_ jéjfa

ZS#(G_G M(G_G)

R 1 . .
= o [y,
2m NS
2

h
- %(k + G) e

Z ZVH(r_dM_R)

pccell R

/ —i(k+G)r Z Z Vi(r — _ R)ez’(k+G’).rdr

1(G— G)du /V(I‘—R)e i(G— G)rd
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where S, (G) is the structure factor.

type p

S,.(G) = Z oG

d,L'Ecell

containing structural information; V,(G) is the Fourier transform of the atomic potential for atom of
type p

1 .
VuU(G) = ﬁfvu(r)e"zc"rdr.
If the potential has spherical symmetry, V (r) = V (r), then:

V(G) = V(G) = %/7‘2V(r)——sm(GGr)dr.
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Early atomic , transferrable PPs for self-consistent calculations: Silicon by Appelbaum and Hamann
(1973)

! 2
Vir) = —62/ mo(r) dr’ + (vy 4 ver’)e "

v — 1’|

3
2 2
’)’Lo(r) — Zv (%) e—on’

is assumed to be the ionic electron (pseudo) charge-density distribution (Z, = number of valence
electrons). May also be written as

where:

—OCT’2

V(r)= -2, + (v1 + var’)e

eQerf(\/Er)

Able to reproduce the band structure of crystalline Si, but also useful in other calculations. Still lacking
a first-principle derivation.
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Fourier transform for Appelbaum-Hamann PP:
V(&) 1/ Gy gy AT Ze” G (wf L (3 ] ¢
= — r = — o 4 — [ — — = - — e 4o,
al © " QG2 * al\a) |["Ta\2 1a

The G = 0 term is divergent, but its divergence is compensated by the divergence in the Hartree term:

2n(G)
G2

1 .
(k + G|Vulk + G) = ~NO / e—z(G_G,)'rVH(r)dr — 4re

where n(r) is the self-consistent charge,

n(r) .
v — 1’|

VH(I‘) =

Note that n(G = 0) = (> Z,) /2. Consider the case of one atom per unit cell for simplicity:

3
A 7, e? re’Z, 1 /m\2 3 vy
li V(G = — | — - — ).
Gor0 ( QG2 + VI >> Qa + Q <a> <v1 + 2 a>
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