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Outline of lesson 1:

• extended periodic systems (crystals): direct and reciprocal lattice, unit cell, Brillouin Zone

• the plane waves basis set

• localized basis sets versus plane waves

• the concept of pseudopotential

• empirical pseudopotentials (Cohen-Bergstresser)

• less-empirical pseudopotentials (Appelbaum-Hamann)



We are going to deal with infinite perfect crystals, having translation symmetry. A perfect crystal is
described in terms of

• a unit cell that is periodically repeated

• a basis of atomic positions d^ in the unit cell

• a lattice of translational vectors R = n i R i + n2R2 + ^ R s

• a reciprocal lattice of vectors G such that G • R = 2TTI, with I an integer. Such conditions hold
if G = raiGi + 7712G2 + ra3G3 with G; • R^ =



The one-electron states tp(r) of a perfect crystal Hamiltonian H = T + V are described by a band
index i and a wave vector k.

It is convenient to consider the thermodynamic limit a slab of crystal composed of N = N1N2N3
unit cells, N —> 00, obeying Periodic Boundary Conditions:

V>(r + iViRi) = VO + N2K2) = i/>(r + 7V3R3) = V>M-

There are AT wave vectors k in the unit cell for the reciprocal lattice, called the Brillouin Zone (BZ).
The one-electron states (energy bands) can be written as

where Uk(r) is translationally invariant:

nk(r + R) =



How to solve Hip = eip ?

Expand ip in some suitable basis set {4>i} as

For an orthonormal basis set, solve

3

where the matrix elements Hij = ( ^ l i / l ^ - ) . For a non-orthonormal basis set, solve:

3

where Sij = (4>i\(j)j) {overlap matrix).



Most popular basis sets:

• Localized basis sets: Bloch sums of atomic-like wavefunctions centered on atoms

- Linear Combinations of Atomic Orbitals (LCAO)
- Gaussian-type Orbitals (GTO)
- Linearized Muffin-Tin Orbitals (LMTO)

• Delocalized basis sets:

- Plane Waves (PW)

• Mixed basis sets:

- Linearized Augmented Plane Waves (LAPW)
- Projector Augmented Plane Waves (PAW)

Bloch sum:

R



PW basis set

A PW basis set for states of vector k is defined as

(r|k + G) = 1 e'C+G)-', i k + G|2 < Ecut
Nil 2m

il is the unit cell volume, NO, the crystal volume, Ecut is a cutoff on the kinetic energy of PW.

The PW basis set is orthonormal:

and complete for Ecut —>• oo.

The components on a PW basis set are the Fourier transform:

G

ck+G = (k + G|V) = -^= f V(r)e^i(k+G)rdr = ^(k + G).
v Nil J



Advantages and disadvantages of various basis sets

• Localized basis sets:

+ fast convergence with respect to basis set size (just a few functions per atom needed)
- difficult to evaluate convergence quality (no systematic way to improve convergence)
- difficult to use (two- and three-center integrals)
- difficult to calculate forces (Pulay forces)

• Plane Waves:

- slow convergence with respect to basis set size (many more PW than localized functions needed)
+ easy to evaluate convergence quality (just increase cutoff)
+ easy to use (Fourier transform)
+ easy to calculate forces (no Pulay forces)



Are PW a practical basis set for electronic structure calculations? Not really!

From elementary Fourier analysis: length scale S —> Fourier components up to q ~ 2TT/5. In a

solid, this means ~ 47r(27r/S)3/3ftBz PW (flBz = volume of the BZ).

Estimate for diamond: I s wavefunction has 5 ~ 0.1 a.u., Q = (2TT)3 /(<2Q/'4) with lattice parameter
a0 = 6.74 a.u. —y 250, 000 PW!

Need to:

• get rid of core states

• get rid of orthogonality wiggles close to the nucleus

Solution: Pseudopotentials
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Pseudopotential (PP): a smooth effective potential that reproduces the effect of the nucleus plus core
states on valence states.

Early empirical PPs: fitted to some known experimental data (band gaps, ionization potentials, etc.).
A classical example: Cohen-Bergstresser PPs for diamond and zincblende semiconductors.

Cohen-Bergstresser PPs are given as a few Fourier components V(G) of the crystal potential for the
fee lattice. The band structure is obtained by diagonalizing H = T + V on a small PW basis set:

2

2
h

(k + G |T + V|k + G;> = - —(k + G)25GG, + Y^ MG - G')^(G - C)

Simple and useful but little more than a parameterization of the band structure.
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Kinetic energy in PW:

(k + G
2m 2m NQ

2m

Potential energy in PW:

E E ^(r - dM - R)
fj,(Ecell R.

G|V|k
R

- R ) e -i(G-Gf)-r

R
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where S^G) is the structure factor.

type

e %

d^Gce/Z

containing structural information; V^(G) is the Fourier transform of the atomic potential for atom of
type fi

If the potential has spherical symmetry, V( r ) = V{r), then:
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Early atomic , transferrable PPs for self-consistent calculations: Silicon by Appelbaum and Hamann
(1973)

\r< \ 2 f n ° ( r ' ) J > • ( _i_ 2\ 2
V(r) = —e / -dv + (vi + v^v )e

J r — r'|
where:

r — r'

no(r) = Zv [— j e

is assumed to be the ionic electron (pseudo) charge-density distribution (Zv — number of valence
electrons). May also be written as

erf(y /ar) 2 _ 2
)e

r

Able to reproduce the band structure of crystalline Si, but also useful in other calculations. Still lacking
a first-principle derivation.
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Fourier transform for Appelbaum-Hamann PP:

= X / e-iG-rV(r)dv = -
47rZve

2 _G1 1
+ -

3
TV \ 2 + 3 G'

a. 2 4a

G
e 4«

The £? = 0 term is divergent, but its divergence is compensated by the divergence in the Hartree term:

(k
G2

where n ( r ) is the self-consistent charge,

VH(r) =

Note that n (G = 0) = (J^ Zv)/fl. Consider the case of one atom per unit cell for simplicity:

lira + V(G) =
2 ry

v
3

1 + 2
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