T
_—

the

educatg::le.dscr::::gz abdus salam
arguizadon international centre for theoretical physics

international atomic
energy agency

SMR/1310 - 8

SPRING COLLEGE ON
NUMERICAL METHODS IN ELECTRONIC STRUCTURE THEORY

(7 - 25 May 2001)

"Numerical Linear Algebra - II"
(NLA - II)

presented by:

D. ALFE

University College London
Department of Geological Sciences
and
Department of Physics and Astronomy
London
United Kingdom

These are preliminary lecture notes, intended only for distribution to participants.

Numerical Linear Algebra II

Dario Alfe
May 15, 2001

1 Linear systems, iterative methods

Consider the N x N linear system
A-x=b (1)

And assume for simplicity that the matrix A is symmetric and positive definite, i.e. A = AT
andv-A-v>0Vv.
Consider now the function

f(x):%x-A~x—b-x (2)

This function is minimised when its gradient is equal to zero
Vix)=A-x—-b=0 (3)

which is equivalent to (1). Notice that we don’t need to know the matrix A, but only its
product by the vector x. This is to an important advantage of this method over factorization
methods in the case of large sparse matrices. To find the minimum of the function f we can
use the method of the conjugate gradient, which is very efficient and allows one to find the
minimum of f in at most N steps, where N is the dimensionality of the system (the size of
the vector x). Before we discuss the conjugate gradient algorithm it is instructive to consider
first a different minimisation method, the steepest descent.

1.1 Steepest descent

The idea of the steepest descent (SD) method is to look for the minimum of the function starting
from an arbitrary point and performing a series of minimisation steps along the directions of
the SD of the function from that point. Suppose that we start at xg. The SD direction at x¢
is given by the negative of the gradient of the function,

g =—V/f(xo) 4)

and one can find the minimum of f along the direction g. This can be found with a line
minimisation, i.e. sampling the function f(x¢ + ag) and looking for the minimum. One can
also use a different approach: since at the minimum the gradient of the function is orthogonal
to the searching direction one can look for the point where

g Vf(xo+og) =0, (5)

or
g (A-(xo+ag)—-b)=0 (6)

Notice that this minimisation is not a global minimisation of f, since it only minimises f
along the direction g. Although you go downwards every step, there is no guarantee that this

procedure will bring you to the absolute minimum in a finite number of steps. Moreover, in
some cases it can be very inefficient. Suppose you have a very narrow valley, if your starting
search direction is neither parallel nor orthogonal to the main axis of the valley you end up
doing a very large number of small steps before you can minimise the function. The reason is
that any new searching direction is orthogonal to the previous one, so you will end up doing a
large number of small steps across the valley. An other way of looking at this is that every new
steps spoils the minimisation of the previous one, because the gradient of the function does
not stay orthogonal to the gradient in the previous step, which means that the new minimum
is no longer a minimum for the previous searching direction. This prompts the idea of the
conjugate method that we discuss in the next section.

1.2 Conjugate gradient

In the conjugate gradient (CG) method the searching directions are arranged so as to avoid
the problem of the SD method. As in the SD method one proceeds in a sequence of steps along
straight lines, but the difference now is that the new searching direction is constructed so that
the minimisations in the previous steps are not spoiled. Let’s see how.

The first CG step is an SD step, there are no previous directions. The next searching direc-
tion is chosen so as to keep the gradient of the function orthogonal to the previous direction. So
at the new minimum the gradient of the function is orthogonal not only to the actual searching
direction but also to the previous searching direction, which means that the function now is
minimised with respect to both the previous and the actual direction. If the dimensionality
of the space is IV one has to minimise the function with respect to N independent directions.
Since every CG step minimises the function with respect to one dimension without spoiling
the minimisation with respect to all the other dimensions, the maximum number of steps in
the CG method is N. How do we construct the searching directions? The first one is minus
the gradient of the function at the starting point: hg = go = —V f(x¢). We then look for the
minimum of f along this direction, which can be found with a line minimisation. If this is
the global minimum of the function then we have V f(xo + Aohg) = 0 and we stop the search,
otherwise we continue with the next step. Consider the gradient of f at x3 = xo + Aoho

Vi(x1)=A-x3—-b (7)
We are looking for a direction h; such that
0=Vf(x1+Ah;)-hg=(A-(x3+Ah1)—Db) hg (8)
and since the previous step implies (A - x3 — b) - hg = 0 we have
h;-A-hp=0 9)

and this is the condition that the searching directions have to satisfy, in which case hg and hy
are called conjugate directions. The next steps have to be performed using conjugate directions,

so that we must have
hi-A-h; =0, P #] (10)

The following is a procedure to generate these conjugate directions, for more details see E.
Polak, Computational methods in Optimization, Academic press, New York and London, 1971.

Conjugate Gradient Algorithm
0 Choose a starting vector xg. Set go = —V f(x0). If go = 0 stop, else goto Step 1.

1 Set 2 = 0 and set the starting searching direction hg = gp.

2 Compute A; such that
f(xi + Aihi) = min{f (x; + Ah;)|A > 0} (11)
and set xj;1 = X; + Ajh;.
3 Compute Vf(xjt+1)
4 If Vf(xi+1) = 0 stop; else set

gi+1 = -V f(xit1)

hit1 = gig1 + by, with y; = S 811 (12)
8i 8i
set ¢ =1+ 1 and go to Step 2.
Notice that
gi+1=—-Vf(xit1) = -A-(xi+Ahj)+b=gi - NA b (13)
and since (11) implies g; 1 - hj = 0 we obtain
gi-h
- 14
AZ hi . A . hi ()
and step 4 can be restated as
8i+1 = 8i — AiA - hy; hit1 = gi+1 + vl (15)

We need to prove now that the searching directions constructed in (12) are indeed conjugate,
i.e. they satisfy the relation (10). In order to do that let’s define the following sequence of
vectors:

gi+1 = 8i — MiA - hy; hit1 = giy1 + vihy; with go = ho (16)
and A;,; are chosen so that gj,;-gi =0 and hj;;- A-h; =0, i.e.
8 8i gi+1-A-hy
— o il 1
)"t gi'A'hi7 7’& hiAhl (7)

This sequence is exactly the same as the one we want to use in the CG algorithm, but A;,y; are
in a different form. By construction, gi;+1 - g = hj+1 - A -h; = 0. We shall prove that A;,;
are the same as those defined in the CG algorithm, and that there exist an integer m < N
such that for 4,7 <m

gi - gj = di;llgill; h; - A-hj =4;;h;- A-h; (18)

and g; = hy = 0 V¢ > m. This also ensures that the CG algorithm stops after at most N steps
(gi = 0 -V f(x;) =0 — the function is at a minimum).

Proof. Suppose that we have generated a sequence go,81,...,8m and hg,h;,...,hy, non
zero vectors using the procedure defined in (16) and (17) and that gm41 =0, then hyy 41 =0
(see (16) and (17)). Now we prove that hy, 11 = 0 also implies gy+1 = 0.

Form the scalar product 0 = gm+1 - Bm+1 = 8m+1 - €&m+1 + Ym8m+1 - hm; We must prove
that gm+1 - hm = 0. We do this by induction. We have gy - hg = 0 (go = hg). Now suppose
that we have g; - h;_; = 0 for all j = 1,...k for some integer k£ < m, we must prove that this
implies gx4+1 - hx = 0.

gk+1 - hx = gi -hy — Achi - A-hy =
gk - (8k + Yk—1hk—1) — Akhx - A - hy =
=gk 8k — Axhk-A-hy=0 (19)

because gy - A - hy = (hk — ’Ykhk—~1) -A -hy =hg- A hy, and then

gk * 8k
M= ———— 2
F= oA b (20)
So we have a sequence of nonzero vectors go, g1, - - ;&m, ho,h1,...,hm and g =h; =0 Vi >

m. Now we prove that g;-g; = hj-A-h; = 0 if i # j, again using induction. This is
trivially true for 4,5 > m, so we only need to prove it for 7,5 < m. By construction g; - go =
h; - A - hg = 0, now suppose that there exist an integer £ < m such that

gi-gi=hi-A-h;=0, i # 7, 0<4,j <k (21)
consider i =1,...,k — 1,
8k+1 " 8 = (8k — AkA - hi) - gi = —Ak(A - hy) - g8 = —Ak(A - hy) - (hy — yi-1hj1) =0 (22)
gk+1 ' 8k = 0 by construction and
8k+1 80 = (8k — MiA -hi) -go = —Aigo- A-h; =0 (g0 = ho) (23)

Similarly, hx43 - A - hx = 0 by construction, and for i =0,...,k —1

hit1 - A-hy = (8k+1 +nchk) - (A -hy) = giy1- A -hi = giya - gl——Xgl—H =0 (24)
1
because A; # 0. We have a sequence of mutually orthogonal vectors g; which can contain at
most N elements, the dimensionality of the space, which means that m < N.
Now the last part of the proof: g; - g = g;i - (hj — vi—1hj_1) = g; - hj, so that

gi - hy
PR) s S 2
n= B (25)
and
= B AR g (B B/ _ Biv1 Biv1 _ Bi1 it (26)
’ hi-A -k hi - (gi — gi+1)/Mi h; - g 8i " 8i
which are exactly the same forms as in the CG algorithm in (14) and (12).
We can also prove that

h;-gx=0 VO<i<k<m (27)

as we expect, i.e. the gradient of the function at xx is orthogonal to all the previous searching
directions. This can be seen with the following

hi g =h; (gk-1 — Ak—1A -hy_1)=hj-gr1=...=h; - giy1 =0 (28)

To summarise we have constructed two sequences of vectors h;, g; in such a way that the
former are conjugate directions and the latter are the gradients of the quadratical form at the
line minima along the directions h;. These gradients are orthogonal to all previous searching
directions, ensuring that the previous minimisation steps are not spoiled. In this way the
maximum number of minimisation steps is equal to the dimensionality of the space.

2 Eigensystems, iterative methods
Now we discuss the second topic of these notes, i.e the eigenvalue problem
A-x=Xx (29)

We want to see how we can find only a few of the eigenvectors without diagonalising the whole
matrix.
This problem arises in the solution of the one particle Schroedinger equations

Hp; = e (30)

We have seen that the wave-functions v; can be expressed as linear combinations of basis
functions,

N
P = Z cij(,‘bj (31)
=1
so that the Schroedinger equation 30 can be rewritten in the form
H:c; =¢c; (32)

with Hy; = ¢ - Hey and ¢; = (¢i1,¢2,---,¢in). The eigenvectors and the eigenvalues of H
provide the solution of (32). Of course these are only an approximation to the true solutions
of (30), since the expansion (31) corresponds to a projection of the Hilbert space of the eigen-
function of H onto a 'working space’ spanned by the basis wave-functions {#;}. The accuracy
of the solution of Eq. (32) depends on how close the *working space’ is to the Hilbert space
(or rather to the portion of Hilbert space where the 4 live). If one uses a plane wave basis set
this is completely determined by the number of plane waves included in the basis. In a typical
solid state problem the number of plane waves needed to have results within sufficient accuracy
is of the order of a few hundreds per atom, depending on the atom type. However, one only
needs a few wave-functions per atom to solve the problem (30), roughly half the number of
electrons. Take silicon for example, and suppose you want to do a calculation with a cell con-
taining 100 atoms. Each silicon atom has 4 valence electrons (if one uses the pseudo-potential
approximation, where the core electrons are frozen and are not included in th calculations),
so we need two wave-functions per atom, i.e. a total of 200 wave-functions to accommodate
all the electrons. We may want to include a few more to have informations on the excited
states as well. In any case, the total number of wave-functions needed is 200 or a few more.
The total number of plane waves, however, is about 10000, i.e. 50 times more. To solve the
problem exactly we need to diagonalise the matrix H. The diagonalisation of a matrix is a N3
process, and since we only need a number of eigenvectors n << N, it is not wise to diagonalise
the whole matrix and retain only the lowest n eigenvectors and eigenvalues. It is advisable to
look for an algorithm capable of finding only the lowest eigenvalues and eigenvectors without
diagonalising the whole matrix. We discuss an algorithm to do so in what follows.

One important method for the approximate solution of the Schroedinger equation is the
variational method. Define the functional

Y- Hy
Bl =5 (33)

it is easy to show that E[¢] is at its minimum when and only when 1 is the ground state wave-
function. Moreover, the functional E[t)] is stationary for each eigenstate of the Hamiltonian.
This is a very powerful method, because it allows to put upper bounds to the ground state
energy.

g?
2 3 €s
€3
e €
1
€ , 2
0 €, 8?
_EO €
€l :
0 8(2, E3
0
€

Figure 1: Approximate eigenvalues of the Hamiltonian H, each €7 is an upper bound on the corresponding
exact eigenvalue ¢;

To solve Equation (30) we need not just the ground state, i.e. the lowest eigenvalue
and the lowest eigenstate, but a number of eigenstates, in the example of 100 silicon atoms
the number of states needed were about 200. There is a remarkable result, known and the
Hylleraas-Undheim theorem, which is a generalisation of the variational principle to excited
states. Suppose that you construct a number of linearly independent trial wave-functions
X1,---3Xn- For simplicity, let us also assume that these are orthonormal (if they are not
orthonormal they can be always orthonormalised). With these functions construct the n x n
matrix H” such that

Hij=xi- Hy; (34)
Now diagonalise the matrix and call ¢3,...c_1,€3,...€r_; the eigenvectors and the eigenval-
ues respectively, where ¢ = (cf;,c5;, ..., c;), and form the linear combinations
n
P = chxss i=0,...,n—1 (35)
j=1

The variational principle ensures that e is an upper bound for the true ground state energy
€o. It may be shown that each of the eigenvalues € is an upper bound of the corresponding
exact eigenvalue ¢;. The functions ¢} are the best approximation for the exact eigenstates
g, . .. Pn—1. Moreover, if we now add one trial wave-function to the original set, so that we
have x1,...,Xn;,Xn+1 and they are all linearly independent, the Hylleraas-Undheim theorem

states that the new eigenvalues eﬁ“,...,eﬁ"‘l are separated from the ’old’ eigenvalues i.e.
Tl < el ..., el <€ ;. The new eigenstates
n+1
Yt = Z c%“xj; i=0,...,n (36)
j=1

are now better approximations for the true eigenstates of the Hamiltonian H. A schematic
picture of this scheme is given in Fig. (1) A proof of this theorem can be found in J.K.
MacDonald Phys. Rev. 43, 830 (1933).

This is a robust algorithm, since by increasing the size of the basis set {x} one can find
the lowest n eigenvalues of (32) with arbitrary precision. The following is a scheme of the
algorithm.

Davidson Algorithm

1 Set a convergence threshold ¢ for the eigenvalues. Choose n trial orthonormal wave-
functions xi,..- Xn, S€t Ny = N, Npotconv = N, construct the matrix Hfj” = x; - Hx; and
set k = 0.

2 Set ef = H;*, and set cf; = §;.

3 Set k =k + 1. Construct xn,+1 = G(e§)(H — €)Y, ..., Xnytnnoteons = G(E ... VH —

& Wk, where G(e) = Hdiig"f is a preconditioning (see below) with Hgqg
the.diagonal part of the Hamiltonian, and @bf = E?il cfjxj. Orthonormalise the new
basis set {X1,- -, Xny> Xnng+1+ s Xnn, +nnotconv}. Set np = np + Npotcony and construct

H} = xi- Hx;.

4 Diagonalise H™, let cf,. ..cﬁb_l and e’g,...eﬁb_l the eigenvectors and eigenvalues re-
spectively.

5 Check the convergence of the eigenvalues:

— set Nyotcony = 0
—forl=0,...,.n—1do

: k—1
- if lef - € I > ¢ then nyotcony = Nnotconv + 1

6 If nyotcony = 0 construct the linear combinations
np
Y= "chx;; i=0,...,n—1 (37)
Jj=1

end exit, else goto step 3.

The extra trial wave-functions in step 3 could in principle be chosen at random, but it
is better to construct them so that they are as close as possible to 'what is missing’ to the
exact wave-functions. The wave-function %F can be written as a linear combination of the
exact wave-function 1; and a part orthogonal to it 1;5; x; = atl; + By;-, with o and B two
appropriate complex numbers, and 4); - 9;- = 0. Since this wave-function is hopefully close to
the exact wave-function the coefficient 8 will be a small number. The difference between the
approximate eigenvalue ef and the exact eigenvalue ¢; is quadratic in £

¥ — i = deb = ¢F - HyF — ;- Hopy = [(anhi + Buoi) - H(cwi + Bpit)] — s - Hep; =
= (o® ~ i - Hypi + af(yy" - Hipi + c.c.) + B2 - Hyy =
= B2 + aB(ei - i + c.c) + A - Hy = o(8%), (38)

and we have:

(H — ¥yl = (H - ¢ — d¢F) (s + B91) = (H — &) By — o(d€F). (39)

If we knew the exact inverse Hamiltonian we could find the correcting vector ,31/114- at once,

neglecting term or order de¥ which are quadratic in 3. We don’t know the inverse Hamiltonian

so the best we can do is to use an approximate one which in our case is chosen to be the inverse
1

. . . 1 ~
of its diagonal part: 7= &~ Hang—db

This algorithm is not used in practice as it stands, since in principle there is no limit to
the growing of the basis set of trial wave-functions, and one would like to avoid that. The

algorithm is modified slightly as follows. One decides a maximum size of the matrix, usually

this is taken to be 4 times the number of eigenstates needed, npnqer = d X n,d = 4. Once the
number of trial wave-functions becomes bigger than that the first n trial wave-functions are
substituted with the actual lower n eigenstates, x1 = ¥§,...,xn = Yk _., ny is set equal to n
and the iterative process is restarted. In practice the 6th step of the algorithm is substituted
with the following:

6 If npotcony = 0 O 1y > Npaee construct the linear combinations

np
i=1
If Npoteony = 0 exit, else set np =n, x; = ¥, i=0,...,n— 1, and goto step 3.

Typically one only needs a few iterations to get the eigenvalues converged within the re-
quired accuracy.

