<u> IIII</u>

cational, scientific and cultural organization

international atomic energy agency

the abdus salam

international centre for theoretical physics

ICTP/UCSB/TWAS MINIWORKSHOP ON "FRONTIERS IN MATERIALS SCIENCE" 15 - 18 May 2001

301/1311-2

"Colloidal Routes to Super-Hydrophobic Surfaces"

F. LANGE Materials Department UCSB USA

Please note: These are preliminary notes intended for internal distribution only.

Colloidal Routes to Super-Hydrophobic Surfaces

Fred F. Lange

Materials Department University of California at Santa Barbara

Classical Wetting and Capillarity

• Young Equation

• Laplace Equation

$$\Delta P = P_2 - P_1 = \gamma \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$

1

Outline

- the purity of the Lotus Leaf
- Properties of Super-Hydrophobic Surfaces
- Colloidal Texturing and Properties
- Predictions for Nano-Textured Surfaces

The Lotus Effect

W. Barthlott und C. Neinhuis "Purity of the sacred lotus or escape from contamination in biological surfaces", PLANTA 202: 1-8.(1997) (University of Bonn, Department of Botany and Botanic Garden)

Model to Explain Super-Hydrophobic Effect

K. Tadanaga, N. Katata, and T. Minami, Super-Water-Repellent Al₂O₃ Coating Films with High Transparency, J. Am. Ceram. Soc. 80 1040-1042 (1997).

Textured, thin film produced by spin coating Al₂O₃ precursor treated with monolayer of fluoroalkyltrichlorosilane molecules

$$\cos\theta^* = -1 + \phi(1 + \cos\theta)$$

 ϕ = area fraction of wetted 'hills'

Relation between Wetting Angle and Wetted Area Fraction

J. Bico, C. Marzolin and D. Quéré, "Pearl Drops", Europhys. Lett., 47 (2), pp. 220 (1999)

Silica Patterned Surfaces, treated with monolayer of fluoroalkyltrichlorosilane molecules

Pattern ϕ_s	Øa	θ_r	0*
Plane 1	118	100	
Holes 0.64	138	75	131
Stripes 0.25	165 (上)	132	151
0.25	143 (//)	125	151
Spikes 0.05	170	155	167

5

Bouncing Water Drops

D. Richard and D. Quéré, Europhys.Lett.50 (6) 769 -775 (2000)

Normal Surfaces

falling drop

impact

recovery

• Super-Hydrophobic Surfaces (some cases)

Water drop falling on a super-hydrophobic surface ($\theta = 170^{\circ}$) of very small contact angle hysteresis ($\theta_a - \theta_r < 5^{\circ}$).

Rolling Drops

D. Richard and D. Quéré, Europhys. Lett., 48 (3), pp. 286-291 (1999)

Normal Surfaces

• Super-Hydrophobic Surfaces (some cases)

Super-Hydrophobic Surfaces via Texturing with Silica Particles

- Colloidal Chemistry for Texturing
- Wetting Angle vs Wetted Surface Area
- Conditions for Spontaneous Wetting
- Conditions for Adherence

Colloidal Chemistry for Texturing

M.L. Fisher, M. Colic, M.P. Rao, and F.F. Lange "Effect of Silica Nanoparticle Size on the Stability of Alumina/Silica Suspensions," J. Am. Ceram. Soc. 84 (4): 713-718 APR 2001

Textured Surface via Colloidal Interaction

Rob J. Klein*, P. Maarten Biesheuvel, Ben C. Yu, Carl D. Meinhart, and Fred F. Lange, "Producing Super-Hydrophobic Surfaces with Nano-Silica Spheres" to be published

Silica particles (≈ 45 nm in diameter) adsorbed onto the surface of polycrystalline alumina substrates.

Conditions for Spontaneous Wetting

$$P_c = \frac{2\phi\gamma\cos\theta}{r(1-\phi)} \approx \frac{2\phi\gamma\cos\theta}{r}$$
, when $\phi < 0.1$

Conditions for Adherence

FF Lange and Ben Yu, unpublished

$$P_d = \frac{2(\phi)^{1/2}}{\pi} \frac{\gamma \cos\theta}{r}$$

Rheology of Ceramic powders with Chemically Modified Surfaces

F. F. Lange

Materials Department University of California at Santa Barbara

Coworkers-Colloidal Processing

Former Students

Jeanne Chang, PhD Erik Luther, PhD Joe Yanez, PhD George Franks, PhD Marion Volpert Begona Ferrari, PhD Anja Haug Rhone-Poulenc, Princeton, NJ TPL, Inc., Albuquerque, Sanwik, Stockholm University of Melbourne Mechanical Eng., UCSB

Instituto de Ceramica y vidrio, Spain Universität Karlsruhe, Germany

Current Students

Matt Fisher Ben Yu Sascha Klien Kais Hbaieb Ryan Bock Reto Joray Slurry Proc., Interpenetrating Networks Colloidal Iso-Pressing & Body Mechanics Processing of Photoionic Band-Gap Materials Plastic Forming via Experiments and FEM Die Cavities for Colloidal Iso-Pressing Colloial Iso-Pressing

Former Postdocs

Tom Kramer Bhashar Velamakanni Microslav Colic 3M 3M Santa Barbara

Current Postdocs

Lisa Palmquist

Di-block Co-polymers

Colleagues

Wolfgang Sigmund David Pine Univ. Flordia Chemical Eng./Materials

Outline

- Interparticle Potentials in Ceramic Processing
- Interparticle Pair Potentials and Rheology
- Specifically Adsorbing Species, Small → Large
 - Counterions
 - Charged Clusters and Marcomolecules
 - Particles
- Growth of Particles and Coating via Adsorption

Three General Particle Networks

($0.01 < \phi < \phi_{\rm m}$)

Two Ways of Producing Short-Range Repulsive Potentials

(Different Types of Barrier Layers)

• Chem-Adsorb Molecules

• Electrostatic Double Layer

Colloidal Processing of Powder for Reliable Ceramics

Current Opinion in Solid State & Material Science, 3 [5] 496-500, 1998

Repulsion via Counterion Clouds (Diffusion Double Layer, DLVO)

19

Modified DLVO

Adding Salt (Counterions) decreases cloud thickness to a finite value

(Modified DLVO)

Network Strength

Measuring Particle Network Properties

- Slurry
 - Viscosity vs Shear Rate
 - Elastic Modulus
 - Yield Stress

- Consolidated Body
 - Plastic or Brittle Nature
 - Flow Stress

Viscosity vs Shear Rate

Al₂O₃ (AKP 50), 20 v/o

Specifically Adsorbing Species, Small → Large

Adsorption ordered or random ???

Ions

- Ba+² Cations on (100) SrTiO₃ L. Zhao, A.T. Chien, F.F. Lange, and J.S. Speck, J. Mat. Res., 111 325-28, 1996
- Citrate Anions on Al₂O₃ Particles
 Erik P. Luther, George V. Franks, Joseph A. Yanez, F. F. Lange and D. S. Pearson, J. Am. Ceram. Soc. 78 [6] 1495-1500 (1995).

Clusters/Macromolecules

- Adsorbtion of SiW₁₂O₄₀⁻⁴ Anions on Ag(111) Zhong, Klemperer and Gewirth, J.Am. Chem Soc. 118, 5812 (1998)
- Adsorbtion of Di-Block Copolymers on Al₂O₃ Particles Lisa Palmquist, Fred Lange, W. Sigmund and J. Sindel

Particles

- Adsorbtion of Silica Spheres on Alumina Particle M. L. Fisher, M. Colic, M. Rau, and F. F. Lange (to be published)
- Coating Silicon Nitride Particles with 'Alumina' E. P. Luther, F. F. Lange and Dale S. Pearson, J. Am. Cer. Soc. 78 2009-14 (1995).

Ba⁺² can be a Specifically Adsorbing Counterion

Electrophoretic Mobility vs. pH for SrTiO3 powder

Ba+2 can be a Specifically Adsorbing Counterion

L. Zhao, A.T. Chien, F.F. Lange, and J.S. Speck, J. Mat. Research, 111 325-28, 1996.

• With Ba+2 Additions

(Ba⁺² is a potential determining Counterion)

Specifically Adsorbing Citrate Ion

• Viscosity vs Shear rate

Adsorbtion of SiW₁₂O₄₀⁻⁴ Anions on Ag(111)

Zhong, Klemperer and Gewirth, J.Am. Chem Soc. 118, 5812 (1998)

• The Anion (10.2 Å diameter)

• AFM of Ordered Arrangment

Di-Block Copolymer/ Al₂O₃ poly(methacrylic acid)-b-(ethylene oxide)

• Zeta Potential of Coated and Uncoated Powders

Viscosity vs Shear Rate at pH 5

Adsorbtion of Silica Spheres on Alumina Particle

• 25 nm Silica Particles on 250 nm Al₂O₃ particle

Adsorbtion of Silica Spheres on Alumina Particle

• 25 nm Silica Particles on 250 nm Al₂O₃ particle

Adsorbtion of Silica Spheres on Alumina Fiber

• 300 nm Silica Spheres on Al₂O₃ Fiber

• 85 nm Silica Spheres on Al₂O₃ Fiber

Small Particles Attracted to Large Particles DLVO derivation

Edelson and Glaeser, J. Am. Ceram. Soc. 71 (1988)

 TiO_2 particles formed in Solution

Coating Si₃N₄ Particles with Al₂O₃ Al(NO₃)₃ + (H₂N)₂CO (urea) + Water

 $(H_2N)_2CO + H_2O + 2H_3O^+ \xrightarrow{\Delta} CO_2 \uparrow + 2H_2O + 2NH_4^+$

Coating Si₃N₄ **Particles with Al**₂O₃ 20 vol/o Si3N4 Coated Powder

