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* Spin polarized electros

* exploits the fact that electrons have spin as
well as charge

 tunable/controllable by magnetic fields
* extra degree of freedom




°Requires stable, long-lived, coherent quantum states

°Good for cryptography, searchih'g, factorization



* imbalance of spin
populations at Fermi level

* e.g. ferromagnetic metals

, Non-magnetic Ferromagnetic
» Half-metallic ferromagnets!



Spin valves

used 1n:



Need:
*Room temperature ferromagnet

*Compatible with existing processing techniques
*Compatible interfaces with semiconductors




1) they can be grown on commonly used GaAs,
2) the interfaces with GaAs are thermodynamically stable,

3) the growth process 1s compatible with existing III-V
MBE technology.

4) They can be ferromagnetic BUT Tc is only around 100K!



ow can we make a room temperature
semiconductor ferromagnet?




EPI-620 Analysis Chamber Gen-Ii
Ferromagnetic Metals | Ferromagnetic
on Semiconductors Semiconductors




I interacting many-electron system

Kohn-Sham Equations

|system of non-interacting electrons

Hohenberg and Kohn (1964)
Kohn and Sham (1963)
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{THV GO VIV (0 04(r) = £:dy(r)

where both the Hartree potential,V;, and the exchange

correlation, V,, depend on the density

p(r) =X ¢;"(r) ¢y(r)
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assumes that the exchange-correlation energy per
electron at a point r in the electron gas is equal to
the exchange-correlation energy per electron in a
homogeneous electron gas that has the same density
as the electron gas at point r.

E..(r)”
(LDA)

Eyor)
(True)
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Ab initio Spinor Method

e Replacement:

Vnuc — Vion

e Treat only valence electrons

e Nodeless wave functions

e Plane waves are o.k.

Corning Conference, May 2001
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G. Theurich and N. A. Hill
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Ab initio Spinor Method G. Theurich and N. A. Hill

The ab initio pseudopotential method has been successfully
employed in the prediction of structural and electronic properties
for a wide range of materials, including:

e Silica Frameworks o Metals

e Semiconductors e [ransition metals

‘ ) 1 ! .

Corning Conference, May 2001
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Ab initio Spinor Method

Atom:

1 gnl
\ —(1+1) le

Corning Conference, May 2001

G. Theurich and N. A. Hill

Semiconductor:

conduction band

N N
/7’\\/;\\

valence band

without spin—orbit with spin—orbit
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Ab initio Spinor Method

Corning Conference, May 2001

5 |
TS50 ¢
T (K) '

H. Ohno and F. Matsukura, Solid State Commun. 117, 179 (2001)

G. Theurich and N. A. Hill
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Ab initio Spinor Method

Corning Conference, May 2001

G. Theurich and N. A. Hill
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Ab initio Spinor Method

o Wave functions become general spinors

= ¢r(r)| 1)+ ou(r)] 1) -

e Local density approximation needs to be generalized

e Pseudopotential needs to include spin—orbit coupling.

Corning Conference, May 2001

G. Theurich and N. A. Hill
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Ab initio Spinor Method G. Theurich and N. A. Hill

Pseudopotentials

VA B V + Z Iéw,j¢l,j,77'bj><¢l,j,’mj5‘/l,j’
Py loc L9, my <¢l,j,mj|‘5Vl}j{¢l,j,mj>

Pseudo wave function: |¢/*'® } = tRZLff“H@l’”

Lg,m;
for j =1+ 3: fébm) = (lgﬁ_"f) Y™ T) + ( ) YN )
forj =1—1: L) = (%) Y - ( )% YL

errp; [/ www. mel. ucsh. edy /N'H’léufid’\ \/‘v‘5piﬂor

Corning Conference, May 2001 19



Ab initio Spinor Method G. Theurich and N. A. Hill

Wi

Band Energy (eV)
Band Energy (eV)
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Corning Conference, May 2001



Ab initio Spinor Method G. Theurich and N. A. Hill

70
60 - - o Zincblende inversion asymmetry
- - allows spin splitting
% 50 | = | V
E o Spin splitting is & dependent
%Q 40 —
E I Spin splitting causes spin
o, 30— .
n relaxation
g
20
10 —
0
r K

k| [110]

Corning Conference, May 2001 21



Ab initio Spinor Method G. Theurich and N. A. Hill

Scalar—Relativistic Fully Relativistic
Minority Bands Majority Bands Minorsty Bands Majority Bands
T T 4 4 T ™7 ] [
2 3 Y SO DN sl - 3
M(nB) | NaleV) NpB(eV)
theory Fully Relativistic 4.41 0.28 -1.86
theory Scalar—Relativistic 4.42 0.28 -1.85
experiment | Zni__.Mn_Se (Twardowski et al., 1984) - 0.26 -1.31

Corning Conference, May 2001
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Density functional theory within the LSDA. Details:

http:/fwww.mrl.ucsb.edu/~theurich/Spinor D. Sanchez-Portal et al., Int. J.

* Plane-wave basis  (cutoff Quant. Chem. 65, 453 (1997).

energy 70 Ryd) [2
ey yd) [2] ® Localized multiple- Pseudo-

® Optimized Pseudopotentials  atomic orbital basis

* Small unit cells ® Troullier-Martin Pseudopotentials

® non-collinear magnetism and  © Super-cells with up to 100 atoms
spin-orbit coupling
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NiAs-type 'blende (G

1) Bulk MnAs has NiAs-type structure

2) ZB MnAs can be MBE-grown up to 1 monolayer
3) ZB MnAs important to understand the Mn-Mn
exchange coupling in (Ga,Mn)As

4) Experimentally (Ga,Mn)As Mn < 7%
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® In the minority band of ZB MnAs the Fermi Energy cuts
through a dispersmmess d-band. For large lattice spacing it is
Half M

27



‘A S“typ@ 1S m()l'@ Stabl@
smaller unit cell

GE /B [ N
HIro© Hexagonal gon @00 o
o ».\\ f}" e

274050 G =
2 Ci ) =
- A o~

| J ] ® Crossover volume for
B Y N . large stress

i

8310

; s ]‘gﬁﬁe 1 z 1 . 4 732 A0 B SR T T
20 ' R 4 30 Ol) €3¢ Magnetization |
3 B
@8 Energy /

°* NiAs-type ~ MnAs  can =%

e

. . £ A o
accommodate large distortions & -\ \ P

== \ ‘\ / -{ 280
~732.50 |- \

SEX

28



Miilliken Population analysis confirms the antiferrom

coupling between Mn-d and As-p states in MnAs:

ag]
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digital arrangement of Mn i

@ Study effect of As antisites on magnetic properties.
Each As antisite is a double donor, so for a Mn density
twice as large as the As antisite density compensation is
expected

ﬁ
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1) Effects of As antisites

on the ferromagnetism

EXp: [Mn? >pP

2) Effects of the M
distribution on the
ferromagnetism
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32 atom unit cell with 1 Mn
impurity

_the |
I majority spin band

 Large spin-splitting of Mn-d

1orbitals

» The Fermi energy cuts through
Mn-d impurity band in the

» Almost no-occupation of the
Mn-d orbitals in the minority

1 band

Vin 1mpurity band strongly
hybridized with the As-p orbitals
of the nearest neighbors
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Do As antisites weaken the ferromagnetism in (Ga,Mn)As?
We consider the energy split A between the ferromagnetic

and antiferromagnetic alignment of Mn ions in a large GaAs
cell

& No As antisites = strong FM
A, =Lk, —F, order

T T @ Presence of As antisites

B ()25

eox0s | 1 weakens FM alignment

=062

A < =0.0025]

A0 B

@ Picture of Zener exchange
| model not strictly valid since
- ferromagnetic order at

1 compensation

T e w Wz n @ Also short range AF
| contribution to ferromagnetism

As Antisite concentration (%)
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® No suppression of the FM
coupling [A ;. =120meV |

® Polarization similar to the
defect-free case [PMH =(0.7 23}

® No extra-carrier

® Metastable-state from As
antisite

[ The formation of this complex fro
As antisite strongly enhances the
ferromagnetic order of (Ga,Vn)A
This metastable configuration
be induced optically
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interstitial -

cy pa iurs will stros géy

enhance the ferromagne

ferromagnetic
39 ﬁ} / g

increase the
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The DOS is similar to
the random alloy but
small at the Fermi
energy

Large dispersion
parallel to MnAs plane

Small dispersion
perpendicular to MnAs
plane
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Isosurface Contour plot

MnAs monolayers embedded into GaAs behave like
two-dimensional half-metals
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> The atomic configuration of Mn in GaA
with both d° and d®electron densities

Mn-d band is .
coupled with the As-p band

Mn)As is found to

@ In the absence of As antisites (Ga
be ferromagnetic

@The arrangement of the Mn ions influences the strength
of the ferromagnetic ordering

@As antisites weaken the ferromagnetism and a
transition to an antiferromagnetic alignment is possible

\ @ The positions of the antisites also affect the strength of
\the exchange interactions.
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niezoelectric!?
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