united nations educational, scientific and cultural organization ()) ()) International atomic energy agency

the **abdus salam** international centre for theoretical physics

ICTP/UCSB/TWAS MINIWORKSHOP ON "FRONTIERS IN MATERIALS SCIENCE" 15 - 18 May 2001

301/1311-7

"Miscibility & Ordering of Polymer Blends"

K. FREED (J. Dudowicz) University of Chicago USA

Please note: These are preliminary notes intended for internal distribution only.

Miscibility & Ordering of Polymer Blends

Karl Freed & Jacek Dudowicz
 University of Chicago

Pacifichem Dec. 16, 2000

Miscibility of molecules

- Entropy of mixing $\Delta S_{mix} \propto -\Sigma_i n_i ln(n_i)$
- n_i is # of molecules of component i
- ΔS_{mix} often drives miscibility
- Flory-Huggins theory treats mixtures of molecules with disparate sizes ⇒
- $\Delta S_{mix} \propto -\Sigma_i n_i ln(\phi_i)$
- ϕ_i is volume fraction of species i
- \rightarrow much smaller ΔS_{mix} for polymers
- Simplest model for $\Delta E_{mix} \propto \Sigma_{ij} E_{ij} N_i N_j$
- $\mathbf{E}_{ij} = \varepsilon_{ii} + \varepsilon_{jj} 2 \varepsilon_{ij}$

Flory-Huggins Theory

- Used widely to correlate diverse data
- $\Delta \mathbf{f}^{\text{mix}/\mathbf{kT}} = (\varphi_1/\mathbf{M}_1) \ln \varphi_1 + (\varphi_2/\mathbf{M}_2) \ln \varphi_2 + \chi \varphi_1 \varphi_2 = -\Delta \mathbf{s}^{\text{mix}/\mathbf{k}} + \Delta \mathbf{e}^{\text{mix}/\mathbf{kT}}$
- ϕ_i : volume fraction for type i polymers
- M_i: number of sites/chain of type i
 One parameter : χ ∝ energy/kT
- Observations: χ often varies with composition, has T-indep. part, and may depend on M.
- Strong contradiction with theory

Other serious deficiencies of theory

- FH does not distinguish between linear, branch, star, graft chains
- Or copolymers of same composition (e.g., random, block, alternating)
 χ lacks molecular info as design tool
- Need relation between χ and monomer chemical structures
- Deficiency obvious by considering standard lattice model of polymers

Standard lattice model of polymers

- Monomers occupy single lattice sites
- Independent of chemical species
- Ignores monomer structure

6th European Symposium on Polymer Blends: Mainz

6th European Symposium on Polymer Blends: Mainz

Lattice Cluster Theory (LCT)

- Based on 2 fundamental advances:
 - Description of monomer structure
 - Vastly superior solution for lattice model with structured monomers
- Long list of results & predictions:
 - Explains T-indep. part of χ , along with composition, M_i, P dependence
 - Block copolymers ordering on heating
 - Monomer structure strongly affects blend miscibility:
 - Verified by many polyolefin examples

Applications of LCT: Polyolefins

- Explain behavior with full LCT
- Explanation obvious using "pedestrian" LCT for M_i , $P \rightarrow \infty$
- $\chi = [(r_1 r_2)/z]^2 + (\epsilon/2kT)\{z 2 + (2/z)[p_1(1 3\phi_2) + p_2(1 3\phi_1)]\} = \chi^{entropic} + \chi^{enthalpic}$
- $r_i = 1 + f_i^{\text{tri}} + 3f_i^{\text{tetra}}$

17, May, 1999

6th European Symposium on Polymer Blends: Mainz

Physical interpretation of LCT limit

- p_i depends on # of 3 bond runs
- Generalizes vague "surface fraction" concept to structured chains
- Also include chain semiflexibility
- Affects r_i and p_i
- Random copolymers: Very difficult!

17, May, 1999

6th European Symposium on Polymer Blends: Mainz

Applications of pedestrian LCT

- Description of phase diagrams
- $kT_s(0.5)/\epsilon = [z-2-(1/z)(p_1+p_2)]/{(1/M_1)}$ + $(1/M_2) - [(r_1-r_2)/z]^2$ }
- Predicts LCST phase diagram: $P \rightarrow \infty$
- Explains anomalous PIB phases
- Using only a single ϵ !
- Explains vastly different miscibilities of PP vs. hhPP with other polyolefins
- ⇒ can engineer blend properties by choice of monomer structures

6th European Symposium on Polymer Blends: Mainz

RROR: ioerror JFFENDING COMMAND: image

STACK

17, May, 1999

- Only fit ϵ to data; A & B from theory
- \rightarrow LCST for incompressible blend
- $\chi^{entropic}$ comes from LCT theory
- Now use same ϵ for other PIB blends

6th European Symposium on Polymer Blends Mainz

- LCT phases for incompressible blend
- Use same ϵ for two other blends
- Gives T_c to within 20-30K

17, May, 1999

6th European Symposium on Polymer Blends: Mainz

LCT for PP/PEP vs. hhPP/PEP

- Compare using $M_{PP} = M_{hhPP}$
- Different surface fractions & stiffness
- Stiffness affects $\chi^{entropic}$

6th European Symposium on Polymer Blends Mainz

Unusual PP/hhPP blend

- $\chi^{\text{enthalpic}} \rightarrow \text{large } \epsilon$
- χ (PP/hhPP) \rightarrow large negative $\chi^{entropic}$

6th European Symposium on Polymer Blends Mainz

"Random" Copolymers

- Theories of random copolymers
 - \rightarrow Important insights into how copolymers promote miscibility
 - Based on FH counting for an assumed purely enthalpic $\chi = z(\epsilon_{11} + \epsilon_{22} - 2\epsilon_{12})/2kT$
 - $-e.g., A_x-co-B_{(1-x)}/A_y-co-B_{(1-y)}$ blend:
 - $\chi = \chi_{AB}(x y)^2$, (χ_{AB} for A/B blend)
 - Incorrect when χ contains a significant entropic portion χ_s
- Previous theories suffer from same deficiencies as FH theory

Simplified model for copolymers

- Treat as incompressible systems
- United atom models for monomers
- Include full (high M_i) LCT $\chi_{\rm s}$
 - No adjustable parameters in $\chi_s!$
- Ignore surface fraction corrections in calculating χ_h
- → Apply FH counting for energy to united atom monomer structures
- (Surface fraction corrections more complicated to evaluate
 - \rightarrow Sequence dependent contributions)

Norbornene/Ethylene Copolymers

- Norbornene: cyclic olefin
- Binary N_x -co- $E_{(1-x)}/N_y$ -co- $E_{(1-y)}$ blends
- Random copolymer FH theory:
- \Rightarrow Blends miscible for $|x-y| < |x-y|_c$
- Observation (MacKnight): blends are more miscible for x & y > 1/2
- Use simplified LCT copolymer theory
- Only adjustable parameter is $\boldsymbol{\epsilon}$
- Test various structural models:
 - Including corrections for stiffness

Norbornene/Ethylene Copolymers

- Models of binary E-co-N blends:
- a) Completely flexible chains
- b) Rigidity in norbornene side group
- c) Stiffness in N-N backbone bond
- Models b) & c) \rightarrow best fits to expt.
- Entropic χ is dominant (no T dependence observed)
- Experiments: MacKnight (U Mass)

Saturated Butadiene Blends (sPB)

- Random copolymers due to random
 1,2 & 1,4 insertions
- Binary sPB_x/sPB_y blends \rightarrow simplest examples of copolymer blends
- Also most widely studied systems by SANS (Graessley-Lhose +) & nuclear reaction analysis (Klein +)
- Expt. χ vs. ϕ data agree to \pm 20%
- But large difference in χ_s and χ_h ($\chi = \chi_s + \chi_h/T$)

Analysis of sPB Binary Blends

- Use same simple, easily applied theory of random copolymers
- For 23 (GL+) & 8 (K+) systems:
- Entropic χ + united atom basis FH counting for interactions
 - 2 parameters $\epsilon_{12;12}$ & $\epsilon_{14;14}$ for SANS
 - 3 for Klein data: also $\epsilon_{12;14}$
 - Better fit for Klein than for SANS data
- Theory \rightarrow rather small entropic χ
 - Correct deuterium swap effect
- United atom energies more realistic

$\textbf{UCST} \leftrightarrow \textbf{LCST: PB isotopic blends}$

- Hashimoto (Han): isotopic PB blends shift from UCST to LCST behavior as change microstructure!
- i.e, increase difference between x(1,2) of PBH & y(1,2) of PBD
- Random copolymer FH theory only \rightarrow UCST or complete miscibility
- Use same simplified LCT as for sPB isotopic blends:
 - Explicit χ_s no new parameters
 - $-\chi_h$ from united atom model

Explanation of PS-b-PnAMA ordering

- Again: simple, easily used theory
 - Incompressible system
 - $-\chi$ same for blend & diblocks
 - Entropic χ from LCT (monomers)
 - FH-type counting of interactions between united atom groups
- Assume different ε for oxygen and for alkyl & aryl united atom groups
- \rightarrow 3 independent combinations of ϵ 's
- Competition between χ_s & χ_h < 0 \rightarrow mechanism for lower ODT

Results of Theory

- Main goal: Explains sign changes in enthalpic χ with variation of n
- Agree with expt.: $\chi_s > |\chi_h/T|$
- Some samples T_{ODT} sensitive to χ_s
- Predict N ranges for less sensitivity
- Predict LODT vs. UODT: n, n'∈ (1,12),
 & x of PS-b-P(nAMA_x-co-n'AMA_(1-x))
- Monomer volume ratios are okay for low n, but not for n ≥ 6