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FUNDAMENTAL PUZZLES IN FRACTURE DYNAMICS

How can we understand brittle and ductile behaviors,
especially in noncrystalline solids?

What is the origin of dynamic instabilities in brittle fracture?

If there is always a plastic yield stress, how can a (higher)?
breaking stress be transmitted to a crack tip?
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Closeup of Crack Tip
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CONVENTIONAL DESCRIPTIONS OF PLASTICITY

Time - Independent

stress

Rate - Dependent
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2-D 2-Component LJ Solid
Under Applied Simple Shear
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Periodic Cell Under Applied
Pure Shear Stress
red regions denote areas of

local deviation from affine deformation
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STZ SUMMARY
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Memory effects come from a nonlinear rate factor that

governs switching from one state to another in "two-state"

systems.
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RESULTS

• Two-state systems imply "jamming" at low, fixed stress.

Annihilation and creation terms imply that there is a yield

stress above which the plastic strain rate is nonzero for

fixed stress.

Strong state dependence of the transition rates R(±)

produces memory effects.
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THE TIP-STRESS PUZZLE

(NEW CONJECTURES)

Crack advance may be governed primarily by (something

like?) plastic deformation of the material near the crack tip.

A nonzero radius of curvature of the crack tip is an essential

dynamical variable. It regularizes stress singularities. It

controls the plastic deformation rate, and therefore controls

the crack speed.
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