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FUNDAMENTAL PUZZLES IN FRACTURE DYNAMICS

How can we understand brittle and ductile behaviors,
especially in noncrystalline solids?

If there is always a plastic yield stress, how can a (higher)?
- breaking stress be transmitted to a crack tip?
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Closeup of Crack Tip  Mfalk
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_CONVENTIONAL DESCRIPTIONS OF PLASTICITY

Time - Independent

> Strain e™

Rate - Dependent
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A Stress
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What would be o suitable form
for o theory ot blastieity ?

Eo‘uac\’ions ot motion
ae™

;i’ = F (6’,5’...)

%—i = G(U’,A;m)

€= stress . €= plastic strain
A,.

_ = nternal state wariaples
(not including ¢ )



2-D 2-Component LJ Solid
Under Applied Simple Shear

Molecular Dynamics
with modified equations of motion to include:

e Thermostat
e Pressure-Stress Barostat

Potential
Energy

s

Quasicrystalline
Ground State




Periodic Cell Under Applied
Pure Shear Stress

from affine deformation
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Shear Stress

STRESS - STRAIN  CURVES FOR TWO
DIFFERENT STRAIN RATES
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%Strain vs Time

for various applied stresses
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Shear Stress

Shear Stress
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Cl

Non—-Affine Strain

Before Shear
Transformation

After Shear
Transformation




8TZ SUMMARY

Strain

Ry (5) = Ry oy [ DV o)

M, < density of STzs , S =deviaforic stress

My = R-_; Mo - Rymy + (€ S)Mc{'p‘wm\;‘)
T +
creation a annshdation vates ~ rate of plastic work

-m m_
Mo 2 B gz T a2 T
Adm My mw

. {\Ani{—orm System
Quasilinear abpreximation * | No hysteresis

b = = S
" A gN-b :—_%(s,A,I\) ¢z 3,

= ¢ (1-s8) A ~ drieatation of STZs

A
[\ = 64 (H\) A ~ density of STZs
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SPATIALLY UNIFoRW ST12 MmetEL

Congrant stress  (creep Hests )
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- Memory effects come from a nonlinear rate factor that
governs switching from one state to another in “two-state”

systems.
A
S
(Y
e-6 0.. e STz Model
o < &
Dislocatong
near {efects
_ﬁ\r(‘.'.ﬁ\/ N'_‘,

 hctivation mechanisen R, ~ e
($ree volume version)
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Shear Stress

Shear Stress
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RESULTS

@ Two-state systems imply “jamming” at low, fixed stress.

@® Annihilation and creation terms imply that there is a yield
stress above which the plastic strain rate is nonzero for

fixed stress.

@ Strong state dependence of the transition rates R()

produces memory effects.
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THE TIP-STRESS PUZZLE
(NEW CONJECTURES)

Crack advance may be governed primarily by (something

like?) plastic deformation of the material near the crack tip.

s\)ie\d

A nonzero radius of curvature of the crack tip is an essential
dynamical variable. It regularizes stress singularities. It
controls the plastic deformation rate, and therefore controls

the crack speed.
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Viscoplasticity and the Dynamics of Brittle Fracture

J.S.L.
Leng thin elliptia| hale -
{
«®
o < )"’«r
&“o 7, (6) ~ 9 [ Sppl0)- 5'3'}

Stable tired point ot firvte ¢
for sy% 0 .

20



