=/

| the
ctucniona scnihe abdus salam
rizadn international centre for theoretical physics
ICTP/UCSB/TWAS
MINIWORKSHOP ON "FRONTIERS IN MATERIALS SCIENCE"
15 - 18 May 2001

- 301/1311-9

"Semiflexible Equilibrium Polymers:
A Self-Assembling Molecular Model”

R. PANDIT
(Apratim Chatterji)
Department of Physics
IISc
Bangalore, India

Please note: These are preliminary notes intended for internal distribution only.

strada costiera, | | - 34014 trieste italy - tel. +39 04022401 | | fax +39 040224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it






TISc

Semiflexible Equilibrium Polymers:
A Self-Assembling Molecular Model

Apratim Chatterjil and Rahul Pandit1:2

1 Centre for Condensed Matter Theory
Department of Physics
Indian Institute of Science
Bangalore, India

and

2 Jawaharlal Nehru Centre for Advanced
Scientific Research, Bangalore

Computational Facilities:

SERC, IISc, Bangalore



References

. Melts of Semiflexible, Living Polymers: A Lat-
tice Model - G.I. Menon, R. Pandit, and M. Barma,
Furophys. Lett., 24, 253 (1993).

. Glass formation in a Lattice Model for Living
Polymers - G.I. Menon and R. Pandit, Phys. Rev.
Lett., 75, 4638 (1995).

. Sponge Phase Transitions from a Lattice Model
- G.I. Menon, R. Pandit, and S. Ramaswamy, Mol. Cryst.
Lig. Cryst., 288, 93 (1996).

. The Crystallization and Vitrification of Living
Polymers - G.I. Menon and R. Pandit, Phys. Rev. E,
59, 787 (1999).

. Semiflexible Equilibrium Polymers: A Self-Assembling

Molecular Model, A. Chatterji and R. Pandit, Furo-
physics Letters, 54, 213 (2001).



1. Outline

N

e Notivation:
— Experiments
e Our Model
e Results
e Monte Carlo Simulations

e Conclusions




2. Motivation |

e Equilibrium Polymers:

— The energy cost for scission and fusion
of chains is comparable to kgT.

— Thus the length distribution FP{L) as-
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o Semiflexible Polymers: There is an en-
ergy cost for the bending of polymers.
Polymer chains straighten at low T and
nematic ordering or viscoelastic gels can
form.



e Experimental Motivation

— Rich Phase diagram of water- surfac-
tant systems; inciude phases with iong,
wormlike micelles that are equilibrium
polymers.

— Similar in some ways to conventional
polymeric systems.

— Examples of equilibrium or living poly-
mers: liquid sulphur, poly(a methylstyrene),
protein filaments, and systems of long,
worm-like micelles [in, say, ternary mix-
tures of water, cetyltrimethyl ammo-
nium bromide (CTAB), and
3-hydroxy-
naphthalene-2-carboxylate (SHNC)].



Schematie Phase Biagram for an Gil - Watey

Surfactant Mixture at fixed T.

Schematie 1Hlustration of Threadlike Micelles.
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e Some Earlier Theoretical Studies

Restrict ourselves to the lattice model of
Menon, Barma, and Pandit which we will
generalise below.

— First-Order transition from a high-T dis-
ordered phase to a low-1 ordered phase.
Order parameter jumps.

— Polymer length distribution is exponen-
tial.

— Rapid cooling yields a glass which can
be studied by a Monte Carlo analogue
of scanning calorimetry.

An Off-Lattice Model is required to re-
move the lattice artifacts above (e.qg., ori-
entational ordering and crystallisation are

not easily distinguishable). |

Other Off-Lattice Models for equilbrium
polymers (e.g., Milchev, Landau, et al.,
or Kroger) either do not account for semi-
flexibility or have been studied in the di-
lute regime.



II. Our Model.

« Oceupied links are monomers (at most 1 per
Iink).
« Have polydispersity, vacancies, and closed rings.

« Monomers fuse to form self-aveoiding chains.

o Energies of various configurations:

.............................................




ITl. Principal Results.

A. Equilibrium

e Disordered Phase at high I.

. 6fdered Phase (all polymers‘ aligned at low T).

1. Two Pisiensions.

o Continunous Ising-type transition.

« At low open-end density, equilibration slow.

o This is because of a "nearby" power-law phase.
o Exact solutions in certain limits.

« Length distributions are exponential, but can
show deceptive power laws again because of a

"nearhy" power-law phase.
2. Three Dimensions.

First-ordeyr transition: order parameters, etc.

*

jump.
e Equilibration can be slow at low T.

o Length distributions are exponential.



The orvder parameter M and the susceptibility
showing the first - order transition in dimension

d = 3 (linear size L = 16).
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The distribution of polymer lengths is exponen-
tial. Pata are shown just below and just above the

first - order transition (L = 16 and d = 3).
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B. Nonequilibrium

1. Glasses in Three Dimensions.
e Quenches to Iow T yield disordered metastable
states or glasses.

+ Glasses of two types: completely disordered (for a low

density of open ends) or "lamellar".

« Relaxation out of these glasses ean he logarith-

mieally slow.

e The system falls out of equilibrium if cooled at a finite

rate.

o Study via a Monte Carlo analogue of scanning

calorimeitry.

o Behaviour akin to real polymeric glasses.

2.

o Autocorrelation functions are slowly decayin
exponentials for shallow quenches, but for deeper
ones these decays are too slow to obiain reiiabie

fits.

e Lowering h facilitates local rearrangements, thus easing

the frustration in the disordered network obtaine

[l



Eveolution of the energy E with time t after the
quench for disordered (large h) and lamellar (low

h) glasses in our model (d = 3 and L = 16).
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The system falls out of equilibrium when cooled
at a finite rate to yield a disordered glass at Iarge h.
The Monte Carlo analogue of secanning calorimetry
is also shown for the disordered glass; note glass -

crystal and erystal - liguid transitions (d = 3 and L

= 16).
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3 and

Instantaneous snapshots of disordered (large h)
and Iamellar (low h) glasses obtained on quenching

from high- to low-T phases in our meodel (d

L = 16).
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L=20,h=35J=03 o 200 + 200 MCS
T, = 0.63

= 400 + 200 MCS




1. Two PRimcensions.

o Square Lattices of side L with L from 4 - 80: for

long runs use L = 20,
o Periodic Boundary Conditions.

. Upto 1 million MCS per link. Discard first 0.1
million MCS.

o Average every 50 MCS.
2. Three Dimensions.

e As in d = 2 for equilibration but with a simple -

cubic lattiee with L = 16.
o Similar updates for glasses (no conservation).

+ For quenches we start with short chains (length
roughly 4), obtained by equilibration at T = 10

and h=1.2, and reduce T in one step.

« We compute E, etc., at a time t (in MCS) by averaging
over 20 measurements, centered at t; each measure-
ment is made every 10 MCS.

e We follow the time evolution for roughly 0.5

- AL

million MTS.

e Different initial conditions yield qualitatively similar re-

sults ]
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3. Our Model
e Interacting spherical monomers.

1 S [ - 4 %,"\1‘ PR £ Foo
o Aggregate, at low enough

Hbrium polymer

fi’i

e Interactions such that polymers, once formed,
are semiflexible.

e Interaction potential: sum of a two-body
part Vo(r) and a three-body part V3(r;j, rif, 0).

e [ woO-body potential:

Va(r) = el(a/r)*? — (o/m)°]
+616—a(r/a) . VO! (1) _

r: separation between two monomers.

o \We use:
€1/e=1.34, 0 =1, a = 1.72;
Vo/e = 0.0142

%



e We choose Vp such that our potential is
continuous at r = rmax beyond which we

e T hree-body potential:
IF r;; <o3 AND r;;, < o3
a3 o3 :
Va(rij, Tig, 0) = €3(—= — 1)(== — 1)tan?4;(2)
Tij Tik
rij = |Ti;] and ry, = |7kl separations of
particles 5 and k£ from particle ¢;
6: angle between 7;; and 7.

e We set 03/0 = 3 and ¢/e3 = 4.66.

e The tan?6 part of V3 leads to semiflexible
polymer chains.

/9



e Convention: Two monomers are part of

the same chain if the distance between
them is < 1.50.

Our qualitative results do not depend upon
this convention nor on the details of the
parametrization of V5, and V3.

H,,: field conjugate to the order parame-

ter s = (Py(cos8));

energy — —-—Hn20032¢

for a segment of polymer chain connect-

ing nearest neighbours with ¢ the angle
between the vector connecting two monomers
and the z axis.
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Representative plot of the potential
{VQ(T’) + ‘/73(7‘12,’}"13,9)]/6 for 8 =0 (fUH
line), and 8 = 45°(line with %) r{o» = 2.5¢0
and ri3 =r. V3(rio,r,0) = 0 for r > 30;
and Vo(r) = 0 for r > 50 (we use units with
oc=1).
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4. Results

e Instantaneous snapshots:
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The length distribution P(L) of polymers
of length L above and below the Z-N
transition (semilog plot) can be fit to an
exponential form for 2Lo < £, where £ is the
length of the box, for u/e = —0.020 and
nematic-ordering field Hyp/\/e = 0.0293 for
T = 0.00757(5) and T = 0.00707.
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e Scanning Calorimetry

- Glass formation on cooling followed by
the reappearance of a nematic in a scan-
ning calorimetry heating run.
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(a)U/e versus T'/e for u/e = —0.0214 and
Hy/+/e = 0.0293 in our MC analogue of
scanning calorimetry. The rapid-cooling run
is denoted by x's and the slow-heating run

by e’'s. |
(b) s versus T'/e for the heating run showing
increase in nematic ordering on heating; at
sufficiently high T'/e this nematic order is
lost and the isotropic phase obtains.
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(c) The configuration at T' = 0.00686 for the

heating run for /e

0.0293.

~0.0214 and Hy/+/e
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e Shear of Equilibrium Polymers

— Shear promotes ordering by aligning poly-
mers; but it also tears these polymers
apart and so, eventually, suppresses ne-
matic ordering.
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The variation of s with T'/e for
p/e = —0.0214, and Hy/+/e = 0.0 in the
presence of shear (a)B = 0.00007 and
(b)B = 0.00018. Cooling runs are indicated
by (-) and heating runs by (o).
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The variation of the mean length of
polymers (L) with T'/e for u/e = —0.0214,
Hy/+/e = 0.0 and with shear; for
B = 0.00018, cooling runs are indicated by -
(+) and heating runs by &¢; and for
B = 0.00007, cooling runs are indicated by
- and heating runs by open circles (o).

High shear produces shorter chains.
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5. Monte Carlo Simuations
e Cubical box, side L = 600 (or 780).

e Periodic boundary conditions and the nearest-
image convention for calculating energies.

e Metropolis algorithm.

e value of AT/e = 0.0000714 (or AT/e =
0.0000357)

e Grand-canonical ensemble for equilibrium
studies and the canonical ensemble while
shearing the system.

e At each temperature data is averaged over
60000 MCS being collected every 15 MCS
after thowing away 3000MCS at each tem-.
perature ( 90000 for large system after
throwing away 45000 iterations).

e We attempt to introduce 500 particles
every 15 MCS

3



e Calculation of (Py(cosf)) for a chain.

— Calculate centre of gravity for a chain

— Calculate moment of Inertia Tensor for
a chain

— Diagonalise moment of Inertia Tensor

— The angle of the major axis with the z
direction is the angle 6

— Ratio of major axis and minor axis gives
the aspect ratio of the chain.

e Shear is applied by the Dynamic Monte
Carlo technique in a canonical ensemble
of 2700 particles.

e To study the effect of shear, we impose
rigid walls perpendicular to the x direction
and PBC in the y and z directions.



e We introduce the shear via an external
field F whose only non-vanishing com-
ponent is directed along the z axis and
changes linearly along the z direction, i.e.,

Fo(z) =B (z/¢—-1/2), (3)

e The energy change and the work done by
the shear in an MC move is

z1+zo 1

SE =104z B (

3¢



6. Conclusions

We propose a molecular model for equilib-
rium polymers which has the following prop-
erties.

e Monomers self assemble into equilibrium
polymers as T is lowered.

e At even lower temperatures they straighten
out to form a nematically ordered state.

e Rapid cooling leads to glassy, entangled
states which, when heated steadily, de-
velop nematic ordering that is eventually
lost at sufficiently high T.

e Shear initially promotes nematic ordering
but, if large, tears apart our equilibrium
polymers and thus decreases the nematic
ordering.

3S



