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2. Motivation

Equilibrium Polymers:

— The energy cost for scission and fusion
of chains is comparable to

Thus the length distribution P(L) as
sumes an equilibrium form (~ eSr-^/{^))
which depends on the temperature T
and the chemical potential / i .

• Semiflexible Polymers: There is an en-
ergy cost for the bending of polymers.
Polymer chains straighten at low T and
nematic ordering or viscoelastic gels can
form.
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• Experimental Motivation

— Rich Phase diagram of water- surfac-
tant systems; include phases with Song,
wormlike micelles that are equilibrium
polymers.

— Similar in some ways to conventional
polymeric systems.

— Examples of equilibrium or living poly-
mers: liquid sulphur, poly(a methylstyrene),
protein filaments, and systems of long,
worm-like micelles [in, say, ternary mix-
tures of water, cetyltrimethyl ammo-
nium bromide (CTAB), and
3-hydroxy-
naphthalene-2-carboxylate (SHNC)].



Schematic PkiM liiugvum tor an Oil - Water

Surfactant Mixture at Kxi>rt X.

OIL

Schematic Illustration of Threadlike Micelles.
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Fig, 1. Reaction mechanism using an alkali metal naphthalide
initiator to produce living poly(a-methyistyrene) with both
ends active.

(A)

(B)
Fig, 3c Possible modes of Coulombic association for living
polymers in solution: (a) intermolecular association; (b) in-
tramolecular association., T h . r Jid lines represent the poly-
mer chains, the circles with negative charges are the active
anionfc sz"f:c.\ and L ^ circles with positive charges are tl:



• Some Earlier Theoretical Studies

Restrict ourselves to the lattice model of
Menon, Barma, and Pandit which we will
generalise below.

— First-Order transition from a high-T dis-
ordered phase to a low-T ordered phase.
Order parameter jumps.

— Polymer length distribution is exponen-
tial.

— Rapid cooling yields a glass which can
be studied by a Monte Carlo analogue
of scanning caiorimetry.

An Off-Lattice Model is required to re-
move the lattice artifacts above (e.g., ori-
entational ordering and crystallisation are
not easily distinguishable).

Other Off-Lattice Models for equilbrium
polymers (e.g., Milchev, Landau, et al.f

or Kroger) either do not account for semi-
flexibility or have been studied in the di-
lute regime.
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II. Our Model.

• Occupied links are monomers (at most 1 per

link).

• Have polydispersity, vacancies, and closed rings.

• Monomers fuse to form self-avoiding chains.

• Energies of various configurations:



III. Principal Results,

A. IS

• Disordered Phase at high X.

• Ordered Phase {all polymers aligned at lou) T).

• Continuous Ising-type transition.

• At lou) open-end density, equilibration sloto.

• This is because of a "nearby" power-law phase.

• Exact solutions in certain limits.

• Length distributions are exponential, but can

show deceptive power laws again because of a

"nearby" power-law phase*

&• Three I) intension** •

• First-order transition: order parameters, etc*

jump*

• Equilibration can be slotu at lotu T.

• Length distributions are exponential.



The order parameter i>I and the susceptibility

showing the first - order transition in dinieiisfoii

il = 3 (linear size L = 10)»
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The distribution of polymer lengths is exponen-

tial. Data are shown just below anil just above the

first - order transition (L = 1 0 and d = 3).
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15.

1. Glasses in Three Dimensions.

• Quenches to low T yield ilisordered metastable

states or glasses.

• Glasses of ttuo types: completely disordered (for a loio

density of open ends) or "lamellar".

» Relaxation out of these glasses can he logarith-

mically slow.

• The system falls out of equilibrium if cooled at a finite

rate.

• Study via a JMonte Carlo analogue of scanning

calorinietry.

• Behauiour akin to real polymeric glasses.

• Autocorrelation functions are slowly decaying

exponentials for shallow tfuenches. hut for deeper

ones these decays are too slow to obtain reliable

fits.

• Lowering h facilitates local rearrangements, thus easing

the frustration in the disordered network obtaine



Evolution of the energy E with time t after the

quench for disorderetl (large h) and lamellar (low

h) glasses in our model (d = 3 and L = 10).
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The system falls out of equilibrium when cooled

at a finite rate to yield a disordered glass at large li«

The Monte Carlo analogue* of scanning calorimetrv

is also shown for tho disordered glass; note glass -

crystal and crystal - liquid transitions (d = 3 and L

= 10).
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Instantaneous snapshots of disordered (large h)

and lamellar (low li) glasses obtained on quenching

from high- to Iow-T phases in our model (d = 3 and

JL = 16).

is
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1* Tiro Dimeii5tiou5t«

• Scjuarc Lattices of side L with L from 4 - 80: for

long runs use L = 2<h

• Periodic Boundary Conditions.

• Upto 1 million >IC S per link. Discard first 0.1

million MCS.

• Average euery 50 MCS.

2* Three Dimension***

• As in il = 2 for efjuilihration hut with a simple -

cubic lattice with L = 1G«,

• Similar updates Jor glasses (no conservation).

• For ffiicnchcs we start with short chains (length

roughly 4), obtained by equilibration at T = 10

and h=1.29 and reduce T in one step*

• We compute E, etc., at a time t (in MCS) by aueraging

ouer 20 measurements, centered at t; each measure-

ment is made ei)ery 10 MCS.

• We follow the time evolution for roughly 0.5

million M€S.

• Different initial conditions yield qualitatiuely similar re-

sults.



Use

3. Our Model

Interacting spherical monomers.

Aggregate, at low enough T, to form equi-
librium polymers.

Interactions such that polymers, once formed,
are semiflexible.

Interaction potential: sum of a two-body
part V^(r) and a three-body part

Two-body potential:

r: separation between two monomers

We use:

e i / e = 1.34, a = 1, a = 1.72;
yo/e = 0.0142



We choose VQ such that our potential is
continuous at r = rmax beyond which we
set V^ir) = 0. We set rmax = 5cr

Three-body potential:

IF r{i <a3 A N D rik < cr3

^ . - I ) t a n 2 0 ; ( 2 )

r̂ j = |rjj| and rifc = |f^|: separations of
particles j and k from particle i;
0: angle between fv7- and

We set a3/a = 3 and e/e3 = 4.66.

The tan2 0 part of V^ leads to semiflexible
polymer chains.

¥3 suppresses branches with 0 ~ 7r/2 and
the hard-sphere part of ¥2 suppresses small-
angle branches-



Convention: Two monomers are part of
the same chain if the distance between
them is < 1.5a.

Our qualitative results do not depend upon
this convention nor on the details of the
parametrization of V2 and

Hn: field conjugate to the order parame-
ter s = (P2(cos0))',
energy = —Hjp-cos2^
for a segment of polymer chain connect-
ing nearest neighbours with </> the angle
between the vector connecting two monomers
and the z axis.



Representative plot of the potential
[V2(r) + V3(r12,r13ie)]/e for 6 = 0 (full

line), and 9 = 45°(line with *) v\2 = 2.5a
and ri3 = r. ^s(ri2?r5^) = 0 for r > 3a;

and V2(r) = 0 for r > 5a (we use units with
( 7 = 1 ) .



4. Results

Instantaneous snapshots:
for /i = 0.020 and Hn/^/e = -.0293.

- HIGH T : Disordered phase at
T/e = 0.00757 .

20 20
0 0

LOW T : Nematicailv ordered phase at
T/e 0.0070'

20 20
0 0
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Hysteresis plots of (i) the internal energy
U/e, (ii) the nematic order parameter
s = (P2(cos0)), (Hi) the mean polymer
length (L) and number of particles N

versus T/e for the nematic ordering field
Hn/Ve = -0.0293 and for /x/e = 0.02.

Cooling runs are shown by dots (•) and
heating runs by open circles (o).
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Hysteresis plots of (i) the internal energy
U/e, (ii) the nernatic order parameter
s = (.J^(co5^)}? (m) the mean poiyrner
length (L) and number of particles N

versus T/e for the nematic ordering field

yfe. = -0,0293 and for fi/e = 0.0171,
Cooling runs are shown by dots (•) and

heating runs by open circles (V
I = 60a; AT/e = 0.0000714
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Hysteresis plots of (i) the internal energy
U/e, (ii) the nematic order parameter
s = (P2(cos6))1 (Hi) the mean polymer
length (L) and number of particles N

versus T/e for the nematic ordering field
Hn/y/e = -0.0293 and for /x/e = 0.0229,
Cooling runs are shown by dots (•) and

heating runs by open circles (o).
£ = 78(j; AT/e = 0.0000714
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Hysteresis plots of (i) the internal energy
U/e, (ii) the nematic order parameter
5 = (P2(cos9)), {Hi) the mean polymer
length (L) and number of particles N

versus T/e for the nematic ordering field
Hn/y/e = -0.0293 and for /x/c = 0.0229.
Cooling runs are shown by dots (•) and

heating runs by open circles (o).
£ = 60(j; AT/e = 0.0000357



• Scanning Calorimetry

— Glass formation on cooling followed by
the reappearance of a nematic in a scan-
ning calorimetry heating run.

0.4

-.036

x10

8
x10

-3

(a)U/e versus T/e for /x/e = -0.0214 and
Hn/y/e = 0.0293 in our MC analogue of

scanning calorimetry. The rapid-cooling run
is denoted by *'s and the slow-heating run

by s's.
(6) s versus T/e for the heating run showing
increase in nematic ordering on heating; at
sufficiently high T/e this nematic order is

lost and the isotropic phase obtains.
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(c) The configuration at T = 0.00686 for the
heating run for /j,/e = —0.0214 and Hn/y/e =
0.0293.



• Shear of Equilibrium Polymers

— Shear promotes ordering by aligning poly-
mers; but it also tears these polymers
apart and so, eventually, suppresses ne-
matic ordering.
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The variation of s with T/e for
= -0.0214, and Hn/y/e = 0.0 in the

presence of shear {a)B = 0.00007 and
(b)B = 0.00018. Cooling runs are indicated

by (•) and heating runs by (o).



10 _311
x 1 0

The variation of the mean length of
polymers (L) with T/e for /x/e = -0.0214,

Hn/yfe = 0.0 and with shear; for
B = 0.00018, cooling runs are indicated by

( + ) and heating runs by ©; and for
B = 0.00007, cooling runs are indicated by

• and heating runs by open circles (o).

High shear produces shorter chains.



5. Monte Carlo Simuations

• Cubical box, side L — 60a- (or 78a).

• Periodic boundary conditions and the nearest-
image convention for calculating energies.

• Metropolis algorithm.

• value Of AT/e = 0.0000714 (or AT/e =
0.0000357)

• Grand-canonical ensemble for equilibrium
studies and the canonical ensemble while
shearing the system.

• At each temperature data is averaged over
60000 MCS being collected every 15 MCS
after thowing away 3000MCS at each tern™
perature ( 90000 for large system after
throwing away 45000 iterations).

• We attempt to introduce 500 particles
every 15 MCS



Calculation of (P2(cos0)} for a chain.

— Calculate centre of gravity for a chain

— Calculate moment of Inertia Tensor for
a chain

— Diagonalise moment of Inertia Tensor

— The angle of the major axis with the z
direction is the angle 0

— Ratio of major axis and minor axis gives
the aspect ratio of the chain.

Shear is applied by the Dynamic Monte
Carlo technique in a canonical ensemble
of 2700 particles.

To study the effect of shear, we impose
rigid walls perpendicular to the x direction
and PBC in the y and z directions.



We introduce the shear via an external
field F whose only non-vanishing com-
ponent is directed along the z axis and
changes linearly along the x direction, i.e.,

Fz(x) = B (x/i-1/2), (3)

The energy change and the work done by
the shear in an MC move is

SE = Sz B (Xl +X2 - ±) + SEl, (4)



6. Conclusions

We propose a molecular model for eq
rium polymers which has the following prop-
erties,

• Monomers self assemble into equilibrium
polymers as T is lowered.

• At even lower temperatures they straighten
out to form a nematically ordered state.

• Rapid cooling leads to glassy, entangled
states which, when heated steadily, de-
velop nematic ordering that is eventually
lost at sufficiently high T.

• Shear initially promotes nematic ordering
but, if large, tears apart our equilibrium
polymers and thus decreases the nematic
ordering.
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