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Connections between Statistical Physics,
Inference and Error-Correcting Codes

Jonathan Yedidia
Mitsubishi Electric Research Laboratonies

Thanks to Bill Freeman, Yair Weiss, ard
Jean-Phitippe Bouchand

Three Apologies

* Very basic material for an advanced audience

- But, by the end I'#l be discussing “Replicas combined
with GBF to compute thresholds of codes.”

* No citations to the literature
— But I'll ry to fix that in 2 written version

+ Misleading: | emphasize codes with tiny
Blocklengths or infinite blocklengths, but what
about intermediate blocklengths?

— But see my research paper.

Qutline

Basics of Error-Correcting Codes

Decoding codes: Belief Propagation

Free energies: Bethe, Kikuchi, etc.

Analyzing codes: Density Evolution, Replicas

Using Replicas + BP to compute properties of
codes

Errir-Correcting Cofes
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A Parity check
Pasity check bit Code-words
+ 0008
010 1

0011
Information bits 010
0110
1061

Problem: can only defect errors
00

1011 —— 7777

1100

i1l

Parity check code

Combine multipie parity checks to make a code

Information hits

Ist parity check:  bits 1,2: D+l=] —=
2nd parity check:  bits 1,30 040=0) -—
3rd panity check:  bits 2,3 143=1 -+ ]




. Parity Check Malrix Tanner Graph

1101060
1010160
011001

000000

001011
Codewords:  p1a1py

p1Ltlo Bfork!engrh.' M=6

100110 # of codewords: 2 = 8

101101 Rate: R=k/N=3/6=1i72

110011 .
111000 Minimum distance: d4=3

Can now correct single errors

DOR00
Doit 1
Codewords: o101}
OHLIID Q0011 —  0kioll

100110 g4=3, so cach word hus some nearest codeword
10101
110011
1110080

In general, we want a code with the maximal 4, given & and &.

Different Representations of the Same Code

1101060

Fa1010
011001

S

Information bits parity hils

Parity check codes are linear

Codewords. + Add any two codewords--
00000C 001011 get another codeword.
010101 Q11110 + All codewords are typical;

they have the same N{d)

100110 191101

histograin.
110011 111000

« Can always assume ali-
B — zeres codeword s
transmitted.

= Refer to other codewords
in terms of “weight”.

0111190
101010
110011
Three Noise Channels P y
it -
Binary Symmerric Chammel (BSCy  ©
[
810 — 000 i 2!
o _..__._-__1_'3‘_.,___.__...0
Rinary Erasurc Chanmel (BEC) T
010 —, 070 _—_— .
Additive White Gaussian 0 —————— "
Noize Chamnel (AWGNC)
010 -+ (1.1,0.2,8) |

Maximum Likelihood Decoding
Receive D00011 in BSC

Codeword  likelibood
000000 FO- 1Y

Decade ta . -+ 001011 FU-£¥

010101 Fi- Y

likelihood (codeword) = 0Ino fra-gy
0011 £fa- fyY

HP(J‘JMJ 01101 f1a~ 57,

oot Ffu-FY
111000 F4- )

Obviously inqactable when the aumber of
codewords is exponentially large.




Bit-by-bit Bayesian Decoding
Receive 000011 in B5C
ps =)= =7+ £ 13 £ =14 10 1]

codeword  probability
000000 Fa-fz
001011 fa-fyiz
olo10L  fra-friz

Z= Y likelihood(codeword) 51\ 10 il vz

codewurd
Z =Y likelihood(word 00110 otz
Ea thood(word) 011 Fra- iz

110011 -z
tilgop  Sa-ne

Inference notation

Parity check marrix Tanner Graph

o113

Probability function

i
TR A S N A =7 il Wl e P §UPLE Y dplg et Dy

Ingeveral:  px}H{yh=[ v, = bl T pix 13

{Ircoding: compue bekief (morginol probabiliy) ot each nade, o choose it vnlus with hiphost bobel.

Physics notation S, =(-D" “spim” =1

1100
(LI TS T p(S,,S,,.Sa,S,i):lTif‘}e'”

1 1
1 H:“?S!SE "Fslsssa_h'.sl"h'zsz'_hzsz'_hasa

p(SH =lme™"
H=—2 3]s, -Ths,
T W T T

“local magnetic flelds”

In General:

Parity check codes as magnetic spin systems

« Parity checks are “hard” multi-spin interactions,
«  Tererrrivted block gives random, bissed magnetic fields:
'a:!\‘l,d
For BSC: P(h;):(l_f)‘s(h.l_hn)"'fa(hrfho)
he = {J0T- 17 F)

+ Different quenched magnetic field for each block (sample).
+ Femomagnetic state for strong bias in field (low noise).
* Paramagoetic state for weak bias in field thigh noise}.
+ Decoding: compute local magnetizations, and threshold,

“Hidden” nodes

* Many vesy good codes (Kanter-Saad codes,

 turbocodes, Mackay-Neal codes, Repeat-
Accumulate codes) have some nodes that
are nof transmitted across the channel, bt
help define the codewords.

s These nodes can be considered to have “ne

local evidence”™ or “zero local magnetic
field.”

Gallager 1962

« Callager Codes

= Decoding algorithms, including
“probabilistic” decoding algorithm
equivalent to belief propagation

= Analysis methods, inclading the density
evolution approach




Gallager codes
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‘Belief Propagation Decoding in BEC

If amy incoming qiessage w
variable node fisa 0 or 17,
send “Tomad”or “Tomal”
otherwize send “F dow 't now. "

Fip . It allincoming tiessages ©
M check node @ are *0F or *17, send
“¥You are (sem modulo 2"
otherwise send “Don 't krow, ™

BP decoding for BSC or AWGNC

« Unlike BEC, never certain about x;

» Therefore, messages age probabilities:
“Iam a ‘0 with 72% probability.” or
“You are a ‘(" with 58% probability.”

+ Use log-likelthood ratios:

g ITamea 0" —u youareg ‘0

[ o2 ]-—Lm:mm [ g ]‘w Likelihood
L, o B =

BP decoding equations

tanhi ) =[] weh(v,)

I

e
V,=uTt YU,
-Er)

7 =0 for hidden nodes

Pairwise Markov Random Fields

p({x})%l_[wg(x,-,xj)l—[w,-(&)

U] !

H==F J,(5,%)~ Y hlx)

Trick: Parity check codes cun be writien as a pairwise MRF:
Introduce nodes x, that have ¢.2. B stnes fke

600, 001, 010, 011, 100, 101, 110, 111

amd “hard” local evidence terms v, that pick out even parity states,

BP for Markov Random Fields

All messages are like: “You should be in your siates with the

Joltowing probabifities: (7%, 20%, 3%, 3% )"

my(x)y= 3, G w00 T
& ta

This “sum-produet” rle is
mathemnatically equivalent to the

1, and v, rules.




Belief equations

Tterate message equations
10 convergence, and then: i l
;7
N J

! LERBLTTEATIERAERA) || L REN] J LYED
Lo 1z
b=y Jrmits) .
v Mote that message equations come from

blx)= ¥, bix.x;)

But how do we justify the belief equations?

Belief equations exact on a tree
3
1 2 ‘\

Bx oL e ()
By = Y0 ) Y G W 2 g, (0, Y ()

4

DAL LA YA AP R RO D) YIAPY IR IR ) R ALK R EN]
EA L &

Bx)= 3 pla.5. 5 5)

BaTyta

“Dhynamic progremmming”

“Trarsfer motric”

Gibbs Free energy

* The Gibbs free energy
Glpt{xh] = UTp({x1)]- S[p({x))]  is a function
which has its minimuom at the equilibrium
probability distribution: p(lx})=e ™12

+ The value of the Gibbs free energy at its
minimum is equal to the Helmholz free
energy F=-inZ

Gibbs free energy for 2 nodes
H(x, 5} =111 (x 5) = hxn)—Iyix) *—=
Introdure ! 2
GEP(IPIE)]EU[P(xpxz)]_S[p(xpxg)]
WRTE Gl ptx xte Y, PO E)H (3, 5,)

oy

S{pta. )= = Y, play, 100 plx.5,)

ES

Minimize [ p(x,,x,)] with respectto p(x, x,}
subject to the constraint Z plx,x,)=1 torecover
e—an:} .w-here Z= Ee_m_.w:_s

L)

1
Py, %)= E

Approximations
» Instead of using the “full” G{p{x}], we only
constrain part of pfx}:
~ Gfb{x)] : Mean field, TAP, ...
— GIb{x),byfx.x%)] - Bethe
= Gibfx).byfx 3, byl xx, x|+ Kikochi
* Various justifications possible for different
approximations:
— Variational arguments
— Taylor expansions

— Exact limity

Constraining One-site Beliefs

Hea-3FS5S -whs, 8=t  m=b(S =D-5bS =-1
Gl i

Expand in powers of J:

6lim)] = 2[_%“2'"- pltm  lom m_‘“;’-]
T

2 2 Mean Field
~X iy,
—-%gi',f(l—m,’}[l—m:} w——  TAP correction
%?;Jin (- m) i 1= m) }

iyl corrections. .

¥ LA~ - ) j More




Constraining one and two-site
beliefs: the Bethe approximation

l
For pairwise MRF: plix)) WEHWE (x.x, )HW" ()

0} '

(R LCTEAR N AR C

b x;) i)
Bix.x0 LA - ENPITEN) Tanid
L i w2 DT

Derived from exact -
result om a tree: PlRs e Xy ) = nbfj (5%, )H[bf (x e

{ii} !

Minimizing Bethe Free Energy
Gives Belief Propagation

Lagrange mulipliers /T,j{x_r-)

enforce the constraints bix)= 2 B(x, i)

Bethe stationary conditions = message update rules

with A (x)= lnHm,U {(x))

ki

New directions for decoding

* Minimize Bethe fice energy directly to
arrive at BP results with guaranteed
convergence. {Possible problem: could still
end up in Jocal minima which aren’t
codewords).

* Use better (Kikuchs) free energies and
corresponding (generalized) belief
propagation algorithms.

Kikuchi Approximations

Break lattice up into averlapping clusters

Bethe is special case where clusters are linked pairs of nodes.

Kikuchi Free Energy
Over-counting number

= ;é{— gbr(xr?lnw,(x,HXZb,(x,T) Inbr(x,)]

AVETage encrey Entropy

Approximation improves as basic clusters get bipger

Intuition: the upproximation is improved berause we acoount for

roublesome right loops exacly.

Generalized Belief Propagation

» Provably equivalent to Kikuchi
approximation (messages are complicated
combinations of Lagrange multipliers)

= Empirically, more likely to converge than
ordinary BP, but not guaranteed.

» Can be nearly as fast as ordinary BP, but
much more accurate. Complexity is
exponential in cluster size.

* Works with arbitrary network topology and
arbitrary cluster approximations.




Example: Square Lattice

Clusiers of four nodes around a syuure

Region beliefs under
Generalized Belief Propagation

b(x Yoy, (x,) []m(x)

m, eM(r)

GBP message-update rules

Use marginalization condition  b,(x,)= ¥,b,(x,}

Groups of nodes send messages to other groups of nodes.

GBP Decoding of Parity Check Codes

Clusters: all the nodes in a parity check;

~— i-—_}——jL— i = i !
- _LT T_T_T I—:i&[__l.l ‘—I
tyt
g 2
New messages
Mgy a5 (Xy, X5)




BP vs. GBP decoding

BP decoding works well when the graph for
the code has no right loops.

* GBP is a big improvement over BP when
there are tight loops.

» Many of the best codes have been designed
for the BP decoder; hence no tight loops.

* Do best codes for long blocklengths have
tight loops?

Analysis of Codes

“Averaging over the disorder” of the different
blocks (“random magnetic fields”} to
compute average performance of code.

Methods:
- Density Evolution
—~ Replicas

— Renormalization Group u$. Yedidia and ).-. Bouchoud)

- bypical gl wmebind

Density Evolution in BEC

Density Evolution

Neglecting correlations is reasonable when loops are large.
Predictions normally become correct in infinite blocklength limit.
Possible to handle other channels--e.g. for AWGHN channel, one
salves equations for probability distributions of messages, which
can be approximsated as Gaussians.

Ope finds threshold behavion: .2, for (3,3) Regular Gallager code
in BEC: 3
F=rq

g=1-01-p)'

Py, is the probuability that i 4,15 the probabilily that « Below p.=.51757 p=g=0 (noemnom)
sends @ a 7" message. sends i a 7 message.
= ) 1-gq,=||1-p, Optimizing the threshold predicted by density evolution for the
i Pf!;[ o & g Pu) infinite blocklength litit is 2 popular way of designing codes.
Replica method A really trivial “code”

+ The mplica method is an approsch o dealing with an average over
disorder, & the average over possible received blocks,
+  Basic ided:
- $tage |- convent the problem with un overage over disorder Into an
equi vakent probilemn with no disorder, but with w repdices.
- Stuge 2: Sulve replicwte] probleo for any #, then take Jimit #— 0
v The replica method itzelf is exact, but it is often combined with
appmmimations heeded o solve the iting “replicated™ probi
»  Twill first demonstrate the replica method for a tiny wivial problem,
but replicas can alse be used for larger problems when exact methods
are not available. (Aiso, 1 will use the BEC, bus other channels can glso
be handled).
1 wiil derive o reph | Hamiltonian in excriciating derail, bol ence
you ve done this apes (“esten your spinach™), you can osually jump w
the replicated Hamiionian very quickly.

® inBSC
Codewords: 0 1
Assurne that the “all-zeros codeword™ is always transmitted.
Two possible received words: 0 with probability !-f
1 with probability f

When we receive a 0, we assign a belief {-f in0, finl
When we receive a |, weassigna belief I-f in 1, f inD

Average beliefin0:  blx=0y=¢0- ) + f*

Average beliefin 1:  B{x=D=2f(1-f)




The point of replicas

= For this example it was easy to average over
disorder, but when & is large, it’s not so
simple.

« We want to avoid having to do Monte Carlo
averaging over noise.

Replica approach: step-by-step

+1 Sping: S ={~I}"
Hamiitonian: H =-hS
Probability distribution for — p(AY= {1 - F18(h— )+ f(R + 1}

magnetic field:
& iy =;l1r1I g
27

Partition funetionfora > _ u o+
: . W=
ziven received Mock:

Average Helmholz free energy: F =— I dh plhyinZ,

Goal: F==[dhp()nZ, —mp F=-iny expi-i)
= 1 r , _ L
F='}}_‘-}.};1n(l+nj‘dhp(k)inzh) using  £=Hm—tnl1 + 1)

— 1 i . -
F=- h_rg; In Idh plifl+nlnZy  using _[d!: pii=1

- - L Z' -1

F=~lim—n Jan pyz; using  InZ = lim

We've gotten closer to the form i .
“Replica ldentiry™

we want, bul st need some mors

tricks to deal with the p(k).

Se far:
plhy=(1— [ISCh—ho)+ fO(R+ i)

= YT . .
F= -—!‘1_]:%1; in jdh p(h)Zk Ay E%lﬂ 1 ff Z, = zexp(_hs)

=l

F——lﬂl_rg;in %13 [ f]i’j[s;exp(hqr.?))
using  plhy= 23_1»[-—;]1}5(& th,)

r=tl

F= —hm—ln S expliyr +1n J FA— ) ){ Zexp(hurS)]"
wing S[3{3-7F | Eosturnf7a=p)

F——hm—ln Ecxp(hurﬂn,jf(l i3] )[Zexp(hUrS)]

-+ F=11

MNow the critical (hard to justify) step: instead of reating n ag a
small real number, treat it a5 a positive integer (but then solve
the resulting probiem for any n, and take r=0 at the ead):

F=—lig— m)_': >y exp[&n‘r+hufzs +InJFi= ]
r=t] §;=£] s =11 1

neglectivsde constom

using { Zexp(h“r!s‘)] Z -3 explh, TZS )

ikl S,k 5 =11

{trie for positive integers)

Stage 1 Goal Achieved
F_.—Iunwlnz Y - Sexpl-#)

rogl =gt 5 =xl

H=-hr —hDrZ S, +const.

vl




Stage 2: Solve Replicated Model

We will use belief propagation, and assume

Mo (S} =me (5) == m, (5,)

My (6=, (2)= o= mg (1)

mg(8)= X ir. 5w (edm. (21f
=zl

“Replica symmetry”

BFP

Mg ry= T (7S} )
ol B arIong

Bl 36,050 malS)
-l

Solving, we finally find

Ba=0)=(—fY+§’ Blx=D=2f(01-F)

Replicated (3,4) Regular Gallager code

Effective model:

Newice that we now have loops, so BP will not be exact.

Use simple “GBP” clusters

Solving the equations, we
find a threshold, with  f, =188

compared to exgc? resuft
from density evolution: f_=.167

my_ ()= FwtS, oime (OF

m_o(8y= " weS o), ()"
=t

My (Sh= Yl oI5 LS I (5,005, m (S, o5}
1,00

v

Better GBP clusters

Gives a stightly better
predicrion: f,=177

10



