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Connections between Statistical Physics,
Inference and Error-Correcting Codes

Jonathan Yedidia

Mitsubishi Electric Research Laboratories

Thanks lo Bill Freeman, Yair Weiss, and
Jetin-Ptiitippe Bouchaud

Three Apologies

Very basic material for an advanced audience
- But, by the end I'll be discussing "Replicas combined

with GBP to compute thresholds of codes."

No citations to the literature
- But I'll try to fix that in a written version

Misleading: I emphasize codes with tiny
blocklengths or infinite blocklengths, but what
about intermediate blocklengths?
- But see my research paper.

Outline

Basics of Error-Correcting Codes
Decoding codes: Belief Propagation
Free energies: Bethe, Kikuchi, etc.
Analyzing codes: Density Evolution, Replicas
Using Replicas + BP to compute properties of
codes
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Combine multiple parity checks to make a code
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Parity Check Matrix
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Tanner Graph

I
BlocJdength: N-6
# yf codewords: 2^8

Rate: R=k/N = 3/6 = 1/2

Minimum distance; d=3

Can now correct single errors

Codewords:

000000
001011

011110 000011 001011

100110 d=3, so each word has some nearest codeword
101101
noon
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In general, we want a code with the maximal d. given N and k.
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Different Representations of the Same Code
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Parity check codes are linear
Codewords.
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010101 011110

100110 101102

110011 111000

Add any two codewords-

get another codeword.

AH codewords are typical;

they have the same N(d)

histogram.

Can always assume all-

zeros codeword is

transmitted..

Refer to other codewords
in terms of "weight".

Three Noise Channels

Binary Symmetric Channel (BSC)

010 000

Binary Erasure Channel (BEC)

010 — 0?0

Additive White Gaussian
Noise Channel (AWGNC)

010 ~ - (1.1,0.2,-8)

Maximum Likelihood Decoding
Receive 000011 inBSC

Decode to

likelihood (codeword) =

Codeword likelihood

000000 / ! (1- / ) '
~»001011 /(>-/) '

010101 /'(I-/)3

01 i no fa-ff

10011O /'(!-/)•'

noon / ti-/r
111000 / ' ( I - / )

Obviously intractable when the number of
codewords is exponentially large.



Bit-by-bit Bayesian Decoding
Receive 000011 inBSC

codeword

000000
001011
010101
011110
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probability
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Inference

Parity check matrix
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Probability function
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Tanner Graph
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Physics
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notation

p

sf=(-ir "spins"

I i

T
''local magnetic fields"

±1
Parity check codes as magnetic spin systems

• Parity checks are "hard" multi-spin interactions.

i block gives random, biased magnetic fields:

FcrBSC: M > = « f
K = 1" {-JO - / > / / )

Different quenched magnetic field for each block (sample).

Ferromagnetic state for strong bias in field (low noise).

Paramagnetic state for weak bias in field (high noise).

Decoding: compute local magnetizations, and threshold.

"Hidden" nodes

Many -ra-y good codes (Kanter-Saad codes,
turbocodes, Mackay-Neal codes, Repeat-
Accumulate codes) have some nodes that
are not transmitted across the channel, but
help define the codewords.
These nodes can be considered to have "no
local evidence" or "zero local magnetic
field."

Gallager 1962

Gallager Codes
Decoding algorithms, including
"probabilistic" decoding algorithm
equivalent to belief propagation

Analysis methods, including the density
evolution approach



Gallager codes
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Belief Propagation Decoding in BEC

f7l- If any inconuog message to
variable node M* 3 0" or T,
send 7</mit0.'*ur "lamal,"
otherwise send "Idon'thwiv."

It'a5l incoming Mte
a ' check node (j are'0T or l^se

LTOB (irf f'jHm modulo 2)"
otherwise send LLOon hf it/rott1, 'h

BP decoding for BSC or AWGNC

Unlike BEC, never certain about xf

Therefore, messages are probabilities:
"lama '0' with 72%probability." or
"You are a '0' with 58%probability."
Use log-likelihood ratios:

-Likelihood
lama'O'

•••—• Likelihood

you are a V

BP decoding equations

2
t -

0 for hidden nodes

Pairwise Markov Random Fields

Friri: Parity check codes can bt written as a pairwise MRF:

lotroduce nodes xH that havec.^. £ stales iikc

oooruoi,oio,on, loo, loi, no, in
and llliard" local evidence [erms ̂ M that pick out even parity slates.

BP for Markov Random Fields
All messages are like: "You should be in your states with the

following probabilities: (70%, 20% 5%, 5%y>

Tliis '*sum-product" rule is
mathematically equivalent to the

Ĥ J and vlfl rales.



Belief equations

Iterate message equations
to convergence, and then:

Note that message equations tome from

But how do we justify the belief equations?

Belief equations exact on a tree

>= £^.^.*4> ..Dynamic programm ing"

"Transfer matrix"

Gibbs Free energy

• The Gibbs free energy

G[p(M)] = yrp({Jt))]-S[p({j:))] is a function
which has its minimum at the equilibrium
probability distribution: p(U)) = e"""" l) 'z

• The value of the Gibbs free energy at its
minimum is equal to the Helmholz free
energy f = -inz

Gibbs free energy for 2 nodes

Imrodure

• •
/ 2

Minimize G I p C ^ . ^ j ) ] with respect to p(jt,,jr2)

subject to the constraint ^p( j t t , j t 1 ) = l to recover

p(ji1,j:,) = - e - ' " where

Approximations
Instead of using the "full" G[p{x}}, we only
constrain part of pfxj:

: Mean field, TAP, ...

: Bethe

xj,xl),.-.) : Kikuchi

Various justifications possible for different

approximations:

- Variational arguments

- Taylor expansions

- Exact limits

Constraining One-site

iJrl i

Expand in powers ufj:

Beliefs

1
j } Mean Field

1
> More

corrections...

- 0



Constraining one and two-site
beliefs; the Bethe approximation

r paimise

Derived from exact

(•}•> '

Minimizing Bethe Free Energy
Gives Belief Propagation

Lagrange multipliers Aji^j)

enforce the conEtraints bj{xJ) = YJb1J{x),xJ)

Betke stationary conditions = message update rules

with A,j(xJ) =

New directions for decoding

* Minimize Bethe free energy directly to
arrive at BP results with guaranteed
convergence. (Possible problem: could still
end up in local minima which aren't
codewords).

• Use better (Kikuchi) free energies and
corresponding (generalized) belief
propagation algorithms.

Kikuchi Approximations
Break lattice up into overlapping dusters

• h
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Bethe is special caae where dusters are linked pairs of nodes.

Kikuchi Free Energy
Over-counting number

Average energy Entropy

Approximation improves as basic dusters get bigger

Intuition: the. approximation is improved because we account for

troublesome tight loops ejactly.

Generalized Belief Propagation
Provably equivalent to Kikuchi
approximation (messages are complicated
combinations of Lagrange multipliers)
Empirically, more likely to converge than
ordinary BP, but not guaranteed.

• Can be nearly as fast as ordinary BP, but
much more accurate. Complexity is
exponential in cluster size.
Works with arbitrary network topology and
arbitrary cluster approximations.



Example: Square Lattice
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Clusters of four nodes around a square
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Generalized Belief Prop
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GBP message-update rules

Use raarginatization condition &,(*,) = 5 ) &,(•*,.)

Groups of nodes send messages to olher groups of nodes.

LTpdjfe few

-bU
Update Im

GBP Decoding of Parity Check Codes

Clusters: all the nodes in a parity check;

New messages

m U3-?45 (^4 >

•fl"
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BP vs. GBP decoding
BP decoding works well when the graph for
the code has no tight loops.
GBP is a big improvement over BP when
there are tight loops.
Many of the best codes have been designed
for the BP decoder; hence no tight loops.
Do best codes for long blockiengths have
tight loops?

Analysis of Codes

"Averaging over the disorder" of the different
blocks ("random magnetic fields") to
compute average performance of code.

Methods:
— Density Evolution

— Replicas

— Renormalization Group

Density Evolution in BEC

plrl is the probability that i
sends a a '?* message.

q,ti is the probability that a
sends i a '?' message

Density Evolution
Neglecting correlations is reasonable when loops are large-
Predictions normally become correct in infinite blocklength limit.
Possible to handle other channels—e.g. for AWGN channel, one
solves equations for probability distributions of messages, which
can be approximated asGaussians.

One finds threshold behavior: e.g. for (3,5) Regular Gallager code
in BEC: ,

/> = P,<7

q = \~(l-p)4

Below pr = .51757 p=q=0 (noerrois)

Optimuitig the threshold predicted by density evolution for the
infinite blocklength limit is a popular way of designing codes.

Replica method
The replica method is an approach 10 dealing with an average over
disorder, e.g. the average over possible received blocks.
Basic idEti:
™ Stage |: convert dw prob3«n with Jn nveraje over disorder Lnlo ah

equivalent problem with no disorder, tut with n r^icus.
- 5tn=e2: Solve repditmtJ pcoUccn for jny i\ foen tqte]jjnit ?r-^Q

TTu? replica method itaelf is exact, but it is often combined with
approximations needed to solve the resulting ^piicatHT problem,
I will first demonstrate the replica method for a riny trivial problem,
hut replicas can also be used forlaraer probknis when c^act merhods
are not available. (Aiso. 1 will use the BSCb m& other channel!; can also
be handled),

I will derive ar£plicaiuj H ami Etonian ~m excruciating detail, bulonce
you've done ihjititice (LL£ur£[i your1 spinach"), you can cistialty jump to
the implicated Hbiiiniiuuian very quickly

A really trivial "code"
* In 6SC

Codewords: 0 1

Assume that the "all-zeros codeword" is always transmitted.

Two possible received worth: 0 with probability I-f

1 with probability /

When we receive aOT we assign a belief I-f inO, / in I

When we receive a 1, we assign a belief / - / in 1, / inO

Average belief in 0: i>(.r = 0) = ( l - / ) ! -t-/5

Average belief in 1: b(x-l) = 2f(\- / )

8



The point of replicas

For this example it was easy to average over
disorder, but when V̂ is large, it's not so
simple.
We want to avoid having to do Monte Carlo
averaging over noise.

Replica approach: step-by-step

±1 Spins; S = (-1)'

Ham i I Ionian: H ~-hS

Probability distribution for p<.h)^(\-f)S(h-ha) + fS(h
magnetic field: j ) _ < •

Partition function for a z = e
l l + ( . *

given received block:

AverageHelmholz free energy; F --jdh p(h)kiZh

Goal: F = -jdhpik)\i)Zh —*• F = --ln

Ij) using J = !|ID—in(] + ™i

= - l i r n - l n fd!ftp(ft)(l + nlnZ,r) ««"£ j^o

n-ttt ft J

" l im-
"-x>rt

l {Mil = 1

j ^ ^^ n i
f = ~lira— to \dh p(h)Z!! using InZ=lun———

.,-MH J ° ,.-.8 „

We've gotten closer to the form

we wunt, bul still need some more

tricks to deal with the p(h).

"Replica Identity"

Now the critical (hard to justify) step: instead of treating n as a
small teal number, Sreat it as a positive integer (but then solve
the resulting problem for any n, and take n=0 at the end):

using f
(true for positive integers)

Stage 1 Goal Achieved



Stage 2: Solve Replicated Model
We will use belief propagation, and assume

Replica, symmetry

Solving, we finally jlnd

* = !) = 2/(1-/)

Replicated (3,4) Regular Gallager code

Effective model:

Notice that we now have loops, so BP will not be exact

Use simple "GBP" clusters

Solving the equations, we
flnda threshold, with f, s.lSO

compared to exact result
from density evolution; /_ = .167

Better GBP clusters

• - — _ _ „ - - - ^ —

Gives a slightly better
prediction: fr=177

JO


