lucational, scientific and cultural organization

international atomic

energy agancy

abdus salam

the

international centre for theoretical physics

SMR.1347 - 3

WORKSHOP ON STATISTICAL PHYSICS AND CAPACITY-APPROACHING CODES

CONNECTIONS BETWEEN STATISTICAL PHYSICS, INFERENCE AND ERROR-CORRECTING CODES

J. YEDIDIA Mitsubishi Electric Research Laboratories 201 Broadway Cambridge, MA 02139, U.S.A.

Please note: These are preliminary notes intended for internal distribution only.

TUtorial

Connections between Statistical Physics, Inference and Error-Correcting Codes

Jonathan Yedidia

Mitsubishi Electric Research Laboratories

Thanks to Bill Freeman, Yair Weiss, and Jean-Philippe Bouchaud

Three Apologies

- Very basic material for an advanced audience
 But, by the end I'll be discussing "Replicas combined with GBP to compute thresholds of codes."
- No citations to the literature
 But I'll try to fix that in a written version
- Misleading: I emphasize codes with tiny blocklengths or infinite blocklengths, but what about intermediate blocklengths?
 - But see my research paper.

Outline

- Basics of Error-Correcting Codes
- Decoding codes: Belief Propagation
- Free energies: Bethe, Kikuchi, etc.
- Analyzing codes: Density Evolution, Replicas
- Using Replicas + BP to compute properties of codes

Parity check bit Code-words 010 1 0000 Information bits 0101	Parity check bit Code-words 010 1 0011 Information bits 0101 Problem: can only detect errors 1010	A Parity cl	heck
Information bits 0101	Information bits 0011 Information bits 0101 0110 0110 Problem: can only detect errors 1001	Parity check bit	Code-words 0000
	0110 Problem: can only detect errors 1010	Information bits	0011 0101

1

Bit-by-bit Bayesian Decoding			
Receive 000011 in BSC			
$p(x_1 = \mathfrak{V}) = \frac{1}{Z} \left[f(1-f)^3 + f^2(1-f)^4 + f^3(1-f)^3 + f^4(1-f)^2 \right]$			
	codeword 000000 001011 010101	$probability$ $f^{3}(1-f)^{3}/Z$ $f(1-f)^{5}/Z$ $f^{3}(1-f)^{2}/Z$	
$Z = \sum_{codeword} likelihood(codeword)$	011110	$f^4(\mathbf{I}-f)^2/\mathbf{Z}$	
$Z = \sum_{word} likelihood(word)$	100110 101101	$\frac{f^{4}(1 \sim f)^{4} / Z}{f^{4}(1 - f)^{2} / Z}$	
	110011 111000	$f^{2}(1-f)^{4}/Z$ $f^{4}(1-f)^{-}/Z$	

- Many vesy good codes (Kanter-Saad codes, turbocodes, Mackay-Neal codes, Repeat-Accumulate codes) have some nodes that are not transmitted across the channel, but help define the codewords.
- These nodes can be considered to have "no local evidence" or "zero local magnetic field."

- Decoding algorithms, including "probabilistic" decoding algorithm equivalent to belief propagation
- Analysis methods, including the density evolution approach

Gibbs Free energy

- The Gibbs free energy $G[p({x})] = U[p({x})] - S[p({x})]$ is a function which has its minimum at the equilibrium probability distribution: $p({x}) = e^{-M(x)}/Z$
- The value of the Gibbs free energy at its minimum is equal to the Helmholz free energy $F = -\ln Z$

Approximations Instead of using the "full" G[p{x}], we only constrain part of p{x}: - G[b_i(x_i)]: Mean field, TAP, ... - G[b_i(x_i),b_{ij}(x_i,x_j)]: Bethe - G[b_i(x_i),b_{ij}(x_i,x_j),b_{ijk}(x_i,x_j,x_k),...]: Kikuchi Various justifications possible for different approximations: - Variational arguments - Taylor expansions

- Exact limits

5

Constraining one and two-site
beliefs: the Bethe approximation
For pairwise MRF:
$$p(\{x\}) = \frac{1}{Z} \prod_{(ij)} \psi_{ij}(x_i, x_j) \prod_{i} \psi_{i}(x_i)$$

 $G_{nobi}\{\{b_i(x_i), b_{ij}(x_i, x_j)\}\} = \sum_{ij} \sum_{x_i \in V_i} b_{ij}(x_i, x_j) \ln \frac{b_{ij}(x_i, x_j)}{\psi_{ij}(x_i, x_j)\psi_{i}(x_j)\psi_{j}(x_j)} = \sum_{i} \sum_{j} b_{ij}(x_i) \ln \frac{b_{ij}(x_i, x_j)}{\psi_{ij}(x_i)}$
Derived from exact
result on a tree: $p(x_1, x_2, ..., x_N) = \prod_{(ij)} b_{ij}(x_i, x_j) \prod_{i} [b_{i}(x_i)]^{1-q_i}$

New directions for decoding

- Minimize Bethe free energy directly to arrive at BP results with guaranteed convergence. (Possible problem: could still end up in local minima which aren't codewords).
- Use better (Kikuchi) free energies and corresponding (generalized) belief propagation algorithms.

BP vs. GBP decoding

- BP decoding works well when the graph for the code has no tight loops.
- GBP is a big improvement over BP when there *are* tight loops.
- Many of the best codes have been designed for the BP decoder; hence no tight loops.
- Do best codes for long blocklengths have tight loops?

Analysis of Codes

"Averaging over the disorder" of the different blocks ("random magnetic fields") to compute average performance of code.

Methods:

- Density Evolution
- Replicas
- Renormalization Group (J.S. Yedidis and J.-P. Bouchoud)
- typical set method

Goal:
$$\overline{F} = -\int_{n \to 0}^{\infty} dh \ p(h) \ln Z_h \longrightarrow \overline{F} = -\ln \sum \exp(-\overline{H})$$

 $\overline{F} = -\lim_{n \to 0}^{\infty} \frac{1}{n} \ln(1 + n \int_{-\infty}^{\infty} dh \ p(h) \ln Z_h)$ using $x = \lim_{n \to 0}^{\infty} \frac{1}{n} \ln(1 + nx)$
 $\overline{F} = -\lim_{n \to 0}^{\infty} \frac{1}{n} \ln \int_{-\infty}^{\infty} dh \ p(h)(1 + n \ln Z_h)$ using $\int_{-\infty}^{\infty} dh \ p(h) = 1$
 $\overline{F} = -\lim_{n \to 0}^{\infty} \frac{1}{n} \ln \int_{-\infty}^{\infty} dh \ p(h) Z_h^n$ using $\ln Z = \lim_{n \to 0}^{\infty} \frac{Z^n - 1}{n}$
We've gotten closer to the form
we want, but still need some more
tricks to deal with the $p(h)$.

So fur:

$$\frac{F}{F} = -\lim_{n \to 0} \frac{1}{n} \ln \int_{\tau-s}^{\infty} \frac{dh}{p(h)} Z_{h}^{n} \qquad h_{0} = \frac{1}{2} \ln \frac{1-f}{f} \qquad Z_{h} = \sum_{s=s1} \exp(-hS)$$

$$\frac{F}{F} = -\lim_{n \to 0} \frac{1}{n} \ln \sum_{\tau-s} \left[\frac{1}{2} + \left(\frac{1}{2} - f\right) \tau \right] \sum_{s=s1} \exp(h_{0}\tau S) \int_{\pi}^{\pi} using \qquad p(h) = \sum_{s=s1} \left[\frac{1}{2} + \left(\frac{1}{2} - f\right) \tau \right] \delta(h-\tau h_{0})$$

$$\frac{F}{F} = -\lim_{n \to 0} \frac{1}{n} \ln \sum_{\tau=st} \exp(h_{0}\tau + \ln \sqrt{f(1-f)}) \left(\sum_{s=s1} \exp(h_{0}\tau S) \right)^{n}$$

$$using \qquad \sum_{r=s1} \left[\frac{1}{2} + \left(\frac{1}{2} - f\right) \tau \right] = \sum_{\tau=s1} \exp(h_{0}\tau + \ln \sqrt{f(1-f)})$$

$$\overline{F} = -\lim_{n \to 0} \frac{1}{n} \ln \sum_{\tau \to 1} \exp(h_0 \tau + \ln \sqrt{f(1-f)}) \left(\sum_{S=\pm 1} \exp(h_0 \tau S) \right)^n$$
Now the critical (hard to justify) step: instead of treating *n* as a small real number, treat it as a positive integer (but then solve the resulting problem for any *n*, and take $n=0$ at the end):

$$\overline{F} = -\lim_{n \to 0} \frac{1}{n} \ln \sum_{\tau=\pm 1} \sum_{S_1=\pm 1} \cdots \sum_{S_n=\pm 1} \exp(h_0 \tau + h_0 \tau \sum_{n=1}^n S_n + \ln \sqrt{f(1-f)})$$
using $\left(\sum_{S_n=\pm 1} \exp(h_0 \tau S) \right)^n = \sum_{S_n=\pm 1} \cdots \sum_{S_n=\pm 1} \exp(h_n \tau \sum_{\omega=1}^n S_n)$
(true for positive integers)

Ī

