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(A Tale of Two Claudes)

Shannon Berrou



‘Three Common Chamnel Models
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Shannon’s Channel Coding Theorem

Theorem: For any (discrete-input memoryless)
channel, there exists a number C, the channel ca-
pacity, such that for any desired data rate R < C
and any desired error probability = > 0, it is possi-
ble to design an encoder-decoder pair that permits
the transmission of data over the channel at rate R
and decoded error probability < .

ENCODER >* CHANNEL I DECODER



How Hard is it to Achieve Channel Capacity?

e Channel capacity = C.

e Desired code rate = C(1 —¢€). For example, e = .01 means
R =.99C.

e Desired decoder error probability = w. For example, m =
1077.

o yYr(e, ) = the encoding complexity, operations per infor-
mation bit. |

¢ xp(€e,m) = the decoding complexity, operations per infor-
mation bit.

We are interested in the behavior of x (€, 7), and especially
xp(e, ), for fixed w, as € — 0.



The Classical Results.

Theorem A. On a discrete memoryless channel of capacity
C, for any fixed m > 0, for the Shannon-Gallager ensemble
of rate R=C(1 —¢), as € — 0,

Xe(e,m) = O0(1/€)
—-XD(Ej 7T) — 20(1/62).



The Classical Results.

Theorem A. On a discrete memoryless channel of capacity
C, for any fixed m > 0, for the Shannon-Gallager ensemble
of rate R=C(1 —¢), as e — 0,

Xg(em) = O(1/€)

Xp(e,m) =200/,
Proof: Use linear codes with (per-bit) encoding complex-

ity O(n), and ML decoding with complexity 20("). To esti-
mate n, use the random coding exponent:

L ER

R

and the fact that
E.(C(1—¢)) ~ K¢ as € — 0. .



An Improvement for the
Binary Erasure Channel.

Theorem B. For the binary erasure channel, X can be
improved to

Xn(e,m) = O0(1/e"),

for fixed ™, as € — 0.

Proof: Decode with (per-bit) complexity O(n?) by solving
linear equations for the erased positions. =



The Central Problem of Channel Coding:

To find near Shannon-limit codes with practical encoding
and decoding algorithms.

Pre-1993 Highlights:

e Algebraic Block Codes: BCH, Reed-Solomon, Algebraic-
geometry: (Deep theory, leading to easy encoding and de-
coding, but suited primarily to storage applications, and do
not approach capacity.)

e Convolutional Codes with Viterbi decoding: (System-
theoretic approach, superior to algebraic codes in most
transmission applications, but still far from Shannon limit.)

e Concatenated Codes (Forney): Hybrid approach, combin-
ing algebraic block codes with convolutional codes.



Pre-1993 State of the Art on the AWGN Channel
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1993: And Then Came...

NEAR SHANNON LIMIT ERROR - CORRECTING
CODING AND DECODING : TURBO-CODES (1)

Claude Berrou, Alain Glavieux and Punya Thitimajshima
Claude Berrou, Integrated Circuits for Telecommunication Laboratory
Alain Glavieux and Punya Thitimajshima, Digital Communication Laboratory

Ecole Nationale Supérieure des Télécommunications de Bretagne, France

(1) Patents N° 9105279 (France), N° 92460011.7 (Europe), N° 07/870,483 (USA)
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Fig. 32 Principle of the decoder according &
& sefial corcatenaton schema.

Fig. 2 Recursive Systematic coces
with parallel concatenation.
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The Turbo-Era State of the
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1997: Another Landmark Paper (For the BEC)

Practical Loss-Resilient Codes

i

Michael G. Luby*

Daniel A. Spielman®

Abstract

We present randomized constructions of linear-time en-
codable and decodable codes that can transmit over lossy
channels at rates extremely close to capacity. The encod-
ing and deceding aigorithms for these codes have fast and
simple software implementations. Partial implementations
of our algorithms are faster by orders of magnitade than the
Dest software implementations of any previous algorithm for
this problem. We expect these codes wili be extremely useful
for applications such as real-time audio and video transmis-
sion over the Internet, where lossy channels are common and
fast decoding is a requirement.

Despite the simplicity of the algorithms, their design and
analysis are mathematically intricate. The design requires the

Michael Mitzenmacher!

M. Amin Shokroflahi*

Volker Stemann?

ficients determined by the graph structure. Based on these
polynomials, we design a graph structure that guarantees sue-
cessful decoding with high probability.

1 Introduction

Stadies show that the Internet exhibits packet loss, and
the measurements in [10] show that the situzation has become
worse over the past few years. A standard solution to this
problem is to request retransmission of data that is not re-
eeived. When some of this retransmission is lost, another re-
quest is made, and so on. In some applications, this intro-
duces technical difficulties, For real-time transmission this
solution can lead to unacceptable delays caused by several

~ronds af camminicatinn hetwesn wonder and receiver For
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1963: The Grandaddy of Them All:

LOW-DENSITY
PARITY-CHECK CODES

PUBLISHED 1963 BY THE M.T, PRESS, CAMBRIDGE, MASSACHUSETTS

ROBERT G. GALLAGER

-1 othar
digits in firs 3 2
parity - check sai ™ ]

Figure 4.1. Parity-check aet tree,

Assume now that both digit d and several of the digits in the
first tier are transmission errors, Then on the first decoding at-
tempt, the error-free digits in the second tier and their parity-
check constraints will allow correction of the errors in the first
tier. This in turn will allow correction of digit d on the second
decoding attempt. Thus digits and parity-check equations can aid
in decoding a digit seemingly unconnected with therm. The prob-
abiliatic decoding scheme to be described next utilizes these ex-
tra digits and extra parity-check equations more systematically.

4.2 Probabilistic Decading

Assume that the code words from an (n, j, k} code are used
with equal probability on an arbitrary binary-input channel. For
any digit d, uesing the notation of Figure 4.1, an iteration proc-
ess will be derived that on the mth iteration computes the prob-
ability that the transmitted digit in position d is a 1 conditional
on the received symbols out to and including the mth tier, For
the first iteration, we can consider digit d and the digits in the
first tier to form a subcode in which all sets of these digits that
matisfy the j parity-check equatione in the tree have equal prob-
ability of transmission,*

14



The Secret is Iterative
Message-passing (Turbo) Decoding

A Low-Complexity Approximation
To “Exact” Decoding.

15



- Codes that can be Decoded

in the “Turbo»Style”_

e Classical turbo codes:

Interleaver

I

e “Serial” turbo codes:

encoder 1
(IIR)

encoder 2
(ITIR)

—— 1 encoderl

[l

encoder 2

(IIR)

Interleaver
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“Codes that can be Decoded
in the “Turbo-Style”

e Gallager codes (Low-Density Parity-Check), regular and
irregular:

codeword symbol nodes

A A A A A A

Interleaver

WWW

parity check nodes
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Repeat-Accumulate (RA) Codes

rate 1/g

repetition

(nonsystematic)

1

Interleaver

rate 1
1/ (1+D)
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Repeat-Accumulate (RA) Codes

rate 1/qQ '{1
repetition A%

Interleaver
+ + +

(nonsystematic)
rate 1
1/ (14D) >
¥ ¥

i

Tanner Graph Representation
(k=2,q=3)
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Decoding an RA Code
Using Message Passing

20



Decoding an RA Code
Using Message Passing
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Decoding an RA Code
Using Message Passing
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Decoding an RA Code
Using Message Passing
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Decoding an RA Code
Using Message Passing
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Decoding an RA Code
Using Message Passing
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Decoding an RA Code
Using Message Passing
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Decoding an RA Code
Using Message Passing

NN
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- Decoding an RA Code
Using Message Passing




What are the Messages?

29



How Messages are Updated
At Variable Nodes

iy
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How Messages are Updated
At Check Nodes
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Decoding an RA Code on the BEC
Using Message Passing
o
N L — . {_‘33
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Decoding an RA Code on the BEC
Using Message Passing

el T E sy T {}
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Decoding an RA Code on the BEC
Using Message Passing

?@'@3‘%
T + + + T s
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Decoding an RA Code on the BEC
Using Message Passing
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Decoding an RA Code on the BEC
Using Message Passing
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Decoding an RA Code on the BEC

Using Message Passing
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Decoding an RA Code on the BEC
Using Message Passing
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What is the Complexity of Iterative
Message-Passing Decoding?

e Complexity per iteration:

E

= 92—
XIT ka

where F is the number of edges in the Tanner graph, and
k is the number of information bits (x;r is an ensemble
invariant).

e N(e,m) = Number of iterations needed to achieve error
probability .

xp(€,m) = xrr - N(€, ).

39



'BER

10°

One Interesting Point

hembol3il

Galilieo (15, 1/4) + (255,223)RS
x = 50,000 messages per
decoded bit

Rate 1/4 RA code (k = 4036)
¥ = 500 messages per decoded
bit
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Theory is Available!

The Capacity of Low-Density Parity Check Codes
under Message-Passing Decoding

Tom Richardson, Riidiger Urbanke
Bell Labs, Lucent Technologies
Murray Hill, NJ 07974

November 7, 1998

Design of Provably Good Low-Density Parity Check Codes

Tom Richardson, Amin Shokrollahi and Ridiger Urbanke
Bell Labs, Lucent Technologies
Murray Hill, NJ 07974

April 5, 1999
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Analysis and Design of RA Codes
(The Fine Print)

e The ensemble of RA codes satisfies the RU condition:
For any fixed L, the probability that the depth-L neighbor-
hood of a randomly selected edge contains a cycle goes to
zero as k — oo,

e Therefore L-fold density evolution gives the limiting value
(k — o0) of the ensemble bit error probability after L it-
erations. This limiting value will depend on the “noise pa-
rameter” of the channel. The largest noise parameter for
which the limiting bit error probability is zero is called the
ensemble noise threshold.
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The Computation Tree for a ¢ = 3 RA Code.

X(Q X0 X X0 %0

I S O B

Message Direction
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Density volution for a ¢ = 3 RA Code.

Message Direction
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Density Evolution for a ¢ = 3 RA Code.
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Density Evolution for a ¢ = 3 RA Code.

XO XO X0 XO XO

Message Direction
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Density Evolution for a ¢ = 3 RA Code.

Message Direction
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Summary:

If LEEL) denotes the value of z;t on the Lth iteration, then

(L1) (D))
L = f g( )

folo) =p(1 = (1 —a)(1—(1—(1—=x))"").
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f4 (x)

The Erasure threshold for R = 1/4
RA codes is p = 0.703

1}
0.85—
0.4}
0.2
0.2 0.4 0.6 0.8 1
X
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“Irregular” Repeat-Accumulate Codes

(systematic)

Information Check Nodes
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Fraction of Nodes

R =2/3 IRA Codes
for the Binary Erasure Channel
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=2/3 IRA Codes
for the Binary Erasure Channel
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R = 2/3 IRA Codes
for the Binary Erasure Channel
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R =2/3 IRA Codes
for the Binary Erasure Channel
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A New Result

Theorem C. For the binary erasure channel, for IRA
codes, |

. 1
XE(ea ﬂ-) — O(E
1

)
1

Xple,m) = O(; log -)

Conjecture D. For the binary erasure channel, for IRA

codes,
1

Xr(€,m) = O(log E)
X (e,m) = O(~ log -)

Note: We can prove that Yp(e, ) = O(% log %) for irregu-
lar LDPC codes.

58



R =1/3 IRA Codes for the AWGN Channel
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R = 1/3 TRA Codes for the AWGN Channel
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R = 1/3 IRA Codes for the AWGN Channel
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Conjecture E. For any discrete memoryless channel, there
exists a sequence of ensembles plus matched iterative decod-
ing algorithms, such that for any fixed w, as ¢ — 0,

1
Yp(e,m) = O(log =)
_ 1 1
Xple,m) = O(= log )
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Variations on the Theme

o Irreqular Turbo Codes (Frey and MacKay)

o Asymmetric Turbo codes (Costello and Massey)

o Mixture Inner and/or outer codes (Divsalar and Dolinar)
e Doped Turbo codes (ten Brink)

o Irreqular LDPC codes (Richardson, Shokrollahi and Ur-
banke)

o Finite Geometry LDPC codes (Fossorier and Lin)
o Concatenated Tree codes (Ping and Wu)
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How We May Appear to Future Generations

"

Claude Shannon (19182001 A.D.). Generally regarded
as the father of the Information Age, he formulated the
notion of channel capacity in 1948 A.D. Within several
decades, mathematicians, engineers, and physicists had de-
wmsed practical ways to communicate reliably at data rates

within 1% of the Shannon limil . ..
Encyclopedia Galactica, 166th ed.

65



