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(A Tale of Two Claudes)

Shannon Berrou



Three Common Channel Models
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Shannon's Channel Coding Theorem

Theorem: For any (discrete-input memoryless)
channel, there exists a number C, the channel ca-
pacity, such that for any desired data rate R < C
and any desired error probability TT > 0, it is possi-
ble to design an encoder-decoder pair that permits
the transmission of data over the channel at rate R
and decoded error probability < TT.



How Hard is it to Achieve Channel Capacity?

• Channel capacity = C.

• Desired code rate = C(l — e). For example, e = .01 means
R = .99(7,
• Desired decoder error probability = TT. For example, n =
10-7.

• XE(^ TT) = the encoding complexity, operations per infor-
mation bit

• XD(C,K) = the decoding complexity, operations per infor-
mation bit

We are interested in the behavior O£XE(^^ TT), and especially
, TT), for fixed TT7 as e —> 0.



The Classical Results*

Theorem A. On a discrete memoryless channel of capacity
C7 for any fixed TT > 0? for the Shannon-Gallager ensemble
of rate R — C ( l — e)? as e —> 07



The Classical Results.

Theorem A. On a discrete memoryless channel of capacity
C, for any fixed TT > 0; for the Shannon-Gallager ensemble
of rate R = C(l — e), as e —> 0,

Proof: Use linear codes with (per-bit) encoding complex
ity O(ra), and ML decoding with complexity 2°(n\ To esti
mate n, use the random coding exponent:

7T _

and the fact that

£? r(C(l-e)) ^ K e 2 a s e ^ O .



Ao Improvement for the
Binary Erasure Channel.

o

1

Theorem B. For the binary erasure channel, XD can

improved to

for fixed ir7 as e —> 0.

Proof: Decode with (per-bit) complexity O(n2) by solving
linear equations for the erased positions. •



The Central Problem of Channel Coding:to1

To find near Shannon-limit codes with practical encoding
and decoding algorithms.

Pre-1993 Highlights:

• Algebraic Block Codes: BCH, Reed-Solomon, Algebraic-
geometry: (Deep theory, leading to easy encoding and de-
coding, but suited primarily to storage applications, and do
not approach capacity.)

• Convolutional Codes with Viterbi decoding: (System-
theoretic approach, superior to algebraic codes in most
transmission applications, but still far from Shannon limit.)

• Concatenated Codes (Forney): Hybrid approach, combin-
ing algebraic block codes with convolutional codes.



Pre-1993 State of the Art on the AWGN Channel
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1993: And Then Came...

NEAR SHANNON LIMIT ERROR - CORRECTING
CODING AND DECODING : TURBO-CODES (1)

Claude Berrou, Alain Glavieux and Punya Thitimajshima

Claude Berrou, Integrated Circuits for Telecommunication Laboratory

Alain Glavieux and Punya Thitimajshima, Digital Communication Laboratory

Ecole Nationale Superieure des Telecommunications de Bretagne, France

(1) Patents N9 9105279 (France), N* 92460011.7 (Europe). N° 07/870,483 (USA)
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The Turbo-Era State of the Art on the AWGN Channel
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1997: Another Landmark Paper (For the BEC)

Practical Loss-Resilient Codes

Michael G. Luby* Michael Mitzenmacher* M. Amin Shokrollahr

Daniel A. Spielman5
Volker Stemann^

Abstract

We present randomized constructions of linear-time en-
codable and decodable codes that can transmit over lossy
channels at rates extremely close to capacity. The encod-
ing and decoding algorithms for these codes have fast and
simple software implementations. Partial implementations
of our algorithms are faster by orders of magnitude than the
best software implementations of any previous algorithm for
this problem. We expect these codes will be extremely useful
for applications such as real-time audio and video transmis-
sion over the Internet, where lossy channels are common and
fast decoding is a requirement.

Despite the simplicity of the algorithms, their design and
analysis are mathematically intricate. The design requires Che

ficienis determined by the graph structure. Based on these
polynomials, we design a graph structure that guarantees suc-
cessful decoding with high probability.

1 Introduction

Studies show that the Internet exhibits packet loss, and
the measurements in [10] show that the situation has become
worse over the past few years. A standard solution to this
problem is to request retransmission of data that is not re-
ceived, When some of this retransmission is lost, another re-
quest is made, and so on. In some applications, this intro-
duces technical difficulties. For real-time transmission this
solution can lead to unacceptable delays caused by several

^runmnntratinn rt vnrfpr smH
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1963: The Grandaddy of Them All:

LOW-DENSITY
PARITY-CHECK CODES
PUBLISHED 1963 BY THE M.l.T, PRESS, CAMBRIDGE, MASSACHUSETTS

ROBERT G. GALLAGER

(S,3)

4jt\ Polity checks on <t

Figure 4.1. Parity-check set tree.

Assume now that both digit d and several of the digits in the
first tier are transmlision errors. Then on the first decoding at-
tempt, the error-free digits in the second tier and their parity-
check constraints will allow correction of the errors in the first
tier. This in turn will allow correction of digit d on the second
decoding attempt. Thus digits and parity-check equations can aid
in decoding a digit seemingly unconnected with them. The prob-
abilistic decoding scheme to be described next utilizes these ex-
tra digits and extra parity-check equations more systematically.

4.2 Probabilistic Decoding
Assume that the code words from an (n, j , k) code are used

with equal probability on an arbitrary binary-input channel. For
any digit d, using the notation of Figure 4.1, an iteration proc-
ess will be derived that on the mtn iteration computes the prob-
ability that the transmitted digit in position d is a 1 conditional
on the received symbols out to and including the mtn tier, For
the first iteration, we can consider digit d and the digits in the
first tier to form a subcode in which all sets of these digits that
satisfy the j parity-check equations in the tree have equal prob-
ability of transmission.*
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The Secret is Iterative
Message-passing (Turbo) Decodirij

OSIUM
ON

A Low-Complexity Approximation
To "Exact" Decoding.
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Codes that can be Decoded
in the "Turbo-Style"

Classical turbo codes:

Interleaver n
encoder 1

(IIR)

i encoder 2
(IIR)

^

"Serial" turbo codes:

encoder 1 encoder 2
(IIR)

Interleaver
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Codes that can be Decoded
in the "Turbo-Style"

• Gallager codes (Low-Density Parity-Check), regular and
irregular:

codeword symbol nodes

Interleaver

parity check nodes
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Repeat-Accumulate (RA) Codes

(nonsystematic)

rate 1/q
repetition II

Interleaver
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Repeat-Accumulate (RA) Codes
(nonsystematic)

rate 1/q
repetition ri rate 1

1/CL+D)

Interleaver

Tanner Graph Representation
(k = 2, q = 3)
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Decoding an RA Code
Using Message Passing

20



Decoding an RA Code
Using Message Passing

t
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Decoding an RA Code
Using Message Passing
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Decoding an RA Code
Using Message Passing
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Decoding an RA Code
Using Message Passing
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Decoding an RA Code
Using Message Passing

t t
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Decoding an RA Code
Using Message Passin
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Decoding an RA Code
Using Message Passing

1 I
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Decoding an RA Code
Using Message Passing
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What are the Messages?

rn

m — log
p(x = 0)
p(x = 1)"
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How Messages are Updated
At Variable Nodes

m =
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How Messages are Updated
At Check Nodes

m

m = m\ ffl rri2 E mk

tann( —J = tann(-— j tanh( tanh(



Decoding an RA Code on the BEC
Using Message Passing

•= 1. 0

t t t
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Decoding an RA Code on the BEC
Using Message Passing

t t t
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Decoding an RA Code on the BEC
Using Message Passing

1. ,:•--: C

t
34



Decoding an RA Code on the BEC
Using Message Passing

t t t
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Decoding an RA Code on the BEC
Using Message Passing

t
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Decoding an RA Code on the BEC
Using Message Passing

t t
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Decoding an RA Code on the BEC
Using Message Passing

, i _ n

t t t
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What is the Complexity of Iterative
Message-Passing Decoding?

Complexity per iteration:

XIT = 2
E
P

where E is the number of edges in the Tanner graph, and
k is the number of information bits (XIT is an ensemble
invariant).

• iV(e, TT) = Number of iterations needed to achieve error
probability TT.
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Theory is Available!

The Capacity of Low-Density Parity Check Codes
under Message-Passing Decoding

Tom Richardson, Riidiger Urbanke
Bell Labs, Lucent Technologies

Murray Hill, NJ 07974

November 7, 1998

Design of Provably Good Low-Density Parity Check Codes

Tom Richardson, Amin Shokrollahi and Riidiger Urbanke
Bell Labs, Lucent Technologies

Murray Hill, NJ 07974

April 5, 1999
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Analysis and Design of RA Codes
The Fine Print)

• The ensemble of RA codes satisfies the RU condition:
For any fixed L, the probability that the depth-L neighbor-
hood of a randomly selected edge contains a cycle goes to
zero as k —> oo.

• Therefore L-fold density evolution gives the limiting value
(k —• oo) of the ensemble bit error probability after L it-
erations. This limiting value will depend on the "noise pa-
rameter" of the channel. The largest noise parameter for
which the limiting bit error probability is zero is called the
ensemble noise threshold.
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Density Evolution for a q = 3 RA Code,
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Density Evolution for a g - 3 RA Code
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Summary:

If x-L^ denotes the value of x{t on the Lth iteration, then

where

fq(x) = p(l - (1 - x)(l - (1 - (1
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The Erasure threshold for R = 1/4
RA codes is p = 0,703

0 . 4 0 .6 0 . 8

X
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Irregular" Repeat-Accumulate Codes
(systematic)

Information
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= 2/3 IRA Codes
for the Binary Erasure Channel

x10 Decoding Complexity
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Erasure Probability
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0.3 S.L(1/3)
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R = 2/3 IRA C
for the Binary Erasure Channel
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R = 2/3 IRA Codes
for the Binary Erasure Channel
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R = 2/3 IRA Codes
for the Binary Erasure Channel

Degree Sequence (a=7)
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R = 2/3 IRA Codes
for the Binary Erasure Channel
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R = 2/3 IRA Codes
for the Binary Erasure Channel
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R — 2/3 IRA Codes
for the Binary Erasure Channel
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A New Result

Theorem C. For the binary erasure channel, for IRA
codes,

1 1
-2 log-)

Conjecture D. For the binary erasure channel, for IRA
codes,

= O(log-)

Note: We can prove that Xo(e, vr) = O(j log j) for irregu-
lar LDPC codes.
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R = 1/3 IRA Codes for the AWGN Channel
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1/3 IRA Codes for the AWGN Channel
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R = 1/3 IRA Codes for the AWGN Channel
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A Conjecture

Conjecture E. For any discrete memoryless channel, there
exists a sequence of ensembles plus matched iterative decod-
ing algorithms, such that for any fixed ir7 as e —> 0?

= O(log-)

= O(-log-)
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Variations on the Theme

• Irregular Turbo Codes (Frey and MacKay)

• Asymmetric Turbo codes (Costello and Massey)

• Mixture Inner and/or outer codes (Divsalar and Dolinar)

• Doped Turbo codes (ten Brink)

• Irregular LDPC codes (Richardson, ShokroUahi and Ur-
banke)

• Finite Geometry LDPC codes (Fossorier and Lin)

• Concatenated Tree codes (Ping and Wu)
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How We May Appear to Future Generations

Claude Shannon (1918—2001 A.D.). Generally regarded
as the father of the Information Age, he formulated the
notion of channel capacity in 194-8 A.D. Within several
decades, mathematicians, engineers, and physicists had de-
vised practical ways to communicate reliably at data rates
within 1% of the Shannon limit ...

Encyclopedia Galactica, 166th ed.
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