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Code Ensembles

LDPC [Gallager] RA [Divsalar et. al]

Other Ensembles: Turbo Codes [Berrou et. al.], Woven Codes
[Johannesson et. al.], Concatenated Tree Codes [Ping et, al.], MN Codes

[Kanter and Saad], ...



The Ensemble C(n^ A, p)

£5

x7

XQ

X(x) := X2x + X3x
2

p(x) := psx
A

A2 = 0.4; A3 = 0.6
ps = 1.0

variables checks

[LDPC Codes~Gallager][Tanner-Codes on Graphs][McKay, Neal, Wiberg-Rediscovered][EnsembIes~l_uby et. al.]



The Big Picture

Let Pt|T(G, a) denote the expected bit error probability if G is used to trans-

mit over a given binary-input memoryless output-symmetric channel and if

the received word is decoded iteratively by a message passing decoder. ("p*iec| # of fCH»dl3 J

[Concentration Around Ensemble Average] 3a(6) > 0 such that

" ( G , < 7 ) - E C { n . A « , [ i f ( G , < r ) j i > 5} < e~'ul.

[Convergence to Cycle-Free Case] 3j3 > 0 such that

[ P i T ( G . ^ •'

[Luby et. al-discrete setting; Belief Propagation][Richardson, Urbanke-general case]



Concentration

Idea: Use vertex exposure technique on the bipartite graph to show that
important quantities are tightly concentrated.

Theorem 1 [Azuma's Inequality] Let Z^Z\,... be a martingale se-
quence such that for each k > 1,

\Zk- Zk~i\ < a-h,

where the constant ajt may depend on k. Then, for alH > 1 and any
A > 0

A 2



Figure 1: Graph G from the ensemble C(10, x2,x5). The two dashed lines correspond to the two
edges whose end points are switched.



Concentration Around Ensemble Average

Figure 2: Concentration of the bit erasure probability P^T(G,e) for specific instances G 6
C(512, a:2, x5) around the ensemble average Ecrsia,*1,*5) [/^(G^)] (blue curve). Also shown is the
performance of the cycle-free case, ^{tm^,^) [P^iG*€)] (re^ curve).



Finite Length Analysis



Finite Length Analysis for the BEC

V i i

Figure 3: The set {v^ v2,V3,v4} is a stopping set.

Definition 1 [Stopping Sets] A stopping set S is a subset of V, the set
of variable nodes, such that all neighbors of S are connected to 5 at least
twice.



Theorem Let .PbT(G, e) denote the bit erasure probability when transmitting over a BEC with erasure
probability e using a code G, G G C(n, xl~l, xT~l), and a belief propagation decoder, in a similar manner,
let PBT(G,e) denote the block erasure error probability. Define the functions T(v,c,d), N(v,e,d),
M(v, c, d) and O(v, s, c, d) by the recursions

T(«,C ld) :« ( £ )
N(v,c,d) := r(«,c,d)-Af(«,c,d)I

Af(v,c,d) := ^ f nO(u,s,c,rf),

and the boundary condition

O(u, 3, c, d) = 0 if s < 0 or vl > ex + d.

Then

[Di,Proietti,Telatar,Richardson,Urbanke3



Finite Length Analysis for the BEC
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Figure 4: E c ^ ^ [P^T(G, e)] as a function of e for n = 2f, t e [10].
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Finite Length Analysis Open Questions

1. Expurgated Ensembles?

2. Find simpler expressions for E c ^ v 8 ) [?£& E)] a n d Ee<r>,*VB) [PB*(G>
 e)] •

3. Irregular Case.

4. Optimization.

5. Other Ensembles.

6. Other Channels.

7. Distribution of number of iterations [McKay, Kanter]
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Asymptotic Analysis

,IT
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Gallager's Bound

Lemma 1 Arbitrarily reliable transmission over the BSC with parameter e using a linear code with
"maximal degree" d is not possibly at rates above 1 - h(e) — j j ^ ( l - 2e)2d.

Proof Outline:

2L
y

ST = HYT

transmitted word

received word

U_ is an information set

syndrome
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H(X) = nR

HQQX) =

n~fc

<

< k+(n-k)hl ™ — I
\ 2 /

^ > ~h(t) + (1 - R)h
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Asymptotic Analysis for the Binary Erasure Channel

:= E[fraction of erasure messages passed in z'-th round]
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Asymptotic Analysis - Capacity Achieving Codes for
the BEC

Given: BEC with parameter e.
Task: For any 6 > 0 find degree distribution pair (X(x),p(x)) such that

and such that

A ( l ( l a ; ) ) >x,V0 < z < 1.

Solut ion: [Heavy Tail Poisson Sequence]

^a(aj) := — l n f l —s)== —> —, and

t = 0

[Lubyr Mitzenmacher, Shokrollahi, Spielman, Stehmann - LDPC codes][McEltece et. al. for RA codes]

16



Asymptotic Analysis - General Case

Densi ty Evo lu t ion : Determine the distribution of the messages passed in the i-th iteration.

[concept, discrete setting-Gallagerj[general case, efficient algorithm for BP-Richardson, Shokroilahi, Urbanke]
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Different Representations

iablt
V

d
a
c
s

: Density
V

3
a

1
a

Representation
l o g ^

Po-Ppi
bo - PI \

- log b o - P I 1
sign(po — Pi)

Domain
v G [—oo,oo

d G [-1,1]
ae[0,l]
c e [0, oo]
sG{0, l }
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Density Evolution for Belief Propagation Algorithm

Variable node side Check node side

Representation v = l o g ^ (c,s) = (— log|p0 -Pi|,sign(p0 -pi))

Message evolution m^t = m rec + Y, m™ (c, s)«.t = 5Z(c» s) i n

Density evolution v^t = {®vin) ® urec (1,0)out ~

But density evolution is NOT limited to BP algorithm! Any message

passing algorithm can be analysed in terms of the evolution of its message

density.
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Density Evolution

outgoing message How Does the Expected Value Evolve?

messages received from channel

20
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Gallager Algorithm A
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Figure 5: The solid curve corresponds to the capacity formula r — 1 — hfe^) whereas the dashed
curve corresponds to the optimal right-concentrated degree distribution. For rates above 0.4, right
concentrated degree distribution pairs are optimal.

[Bazzi,Richardson,Urbanke]
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Suboptimal Decoders

0.05-r

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Figure 6: Bit error probability versus parameter e for the (3,6)-regular ensemble transmitting over
the BSC channel for three decoding algorithms. The solid curves correspond to a codeword length
of 1000, whereas the dashed and the dotted-dashed curves correspond to codeword lengths of 10000
and 100000, respectively.
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Symmetry Condition for BP Densities

Assumptions: binary signalling (extension possible), output symmetric channel?
messages are in log-likelihood ratio form;

The densities which occur at any iteration fulfil) the symmetry condition

-tO -8 -a -7 -« -6 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 S 10
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Asymptotic Analysis - Stability for BEC

Progress Per iteration

Progress around Zero

Stability Condition

£*A(1 - p{\ - <•)) - £

- 1)6

< £

• 0 . 0 2

• 0 . 0 4

-0.06

-0.08

0 . 4 0 . 5

[Luby et. a!.]
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Asymptotic Analysis - General Stability Condition

Theorem 2 [General Stability Condition] Assume we are given a degree dis-
tribution pair (A, p) and a symmetric density Po. For I > 1 define
?e ••= PoO^r -^ rCP^ i ) ) ) ) . Let r := -ln(/RPo(:c)~§) and assume that
Jffie

sa:d(/Po)(x) < oo for all 5 in some neighborhood of zero.

[Necessity] If A'(0)//(l) > er then there exists a constant £ — £(A, p, Po), C > 0)
such that for all £eN, Pa(P/) > C-

[Sufficiency] If A'(0)//(l) < er then there exists a constant f ~ ^(A,p, Po),
^ > 0, such that if for some I € N, Pe(P^(P0)) < C t h e n Pe(P^) converges to
zero as £ tends to infinity.

[Richardson, Shokrollahi, Urbanke]
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The Final Reward...

[Chung, Forney, Richardson, Urbanke]
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Asymptotic Analysis - Linear Time Encodable
Codes

Theorem 3 [('odes with Liuem Encoding Complexity] Let (A,p) be a degree dis-
tribution pair satisfying a*(p, A) = 1, with minimum right degree at least three and
satisfying the strict inequality A'(0)//(l) > 1. Let G be chosen at random from the
ensemble C(n,X,p)). Then G is encodable in linear time with probability at least
1 — bc^ for some positive constants b and cr where c < 1.

Conclusion: Alt optimized codes are linear time encodable.

[Richardson, Urbanke]
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Asymptotic Analysis - Linear Time Encodable
Codes

m-g

Figure 7: The parity-check matrix in approximate lower triangular form.
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Asymptotic Analysis - Linear Time Encodable
Codes
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(1 - r)l
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Asymptotic Analysis - Linear Time Encodable
Codes

Consider the subgraph induced by degree two variable nodes. Pick a (degree two)
variable node at random and look at ail its neighbors. Look at neighbors of neighbors
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Asymptotic Analysis - Good Codes Have Bad
Minimum Distance

Flatness Condit ion [Shokroliahi] Consider the BEC with erasure probability e. Let (A^ft) be a
sequence of degree distribution pairs with a threshold of at least e and rate converging to 1 — e. Then

1 ) - ^ > 1.

Growth of M in imum Distance of LDPC Ensembles Let (A,p) be a degree distribution pair
and for each n € N let C(n, A,p) denote the ensemble of LDPC codes of length n and with degree
distribution pair (A,^).

(i) If A'(0)p'(l) < 1, then there exist constants a and (3, both strictly positive, such that at most a
fraction e~n& of codes in C(n, A,p) have a minimum distance below an,

(ii) If on the other hand \f(0)f/(l) > 1, then there exist constants a and 0, both strictly positive, such
that at most a fraction e~n/J of codes in C(n, A, p) have a minimum distance exceeding a ln(n).

Conclusion Capacity achieving LDCP ensembles can not have large minimum distance.

[Di, Richardson, Urbanke]

34


