Linited nations educational, scientific organization organization energy spectra energy spectra

the **abdus saiam** international centre for theoretical physics

SMR.1347 - 7

WORKSHOP ON STATISTICAL PHYSICS AND CAPACITY-APPROACHING CODES

AN OVERVIEW OF ITERATIVE CODING

R. URBANKE Ecole Polytechnique Federal de Lausanne (E.P.F.L.) DSC/LTHC CH-1015 Lausanne, Switzerland

Please note: These are preliminary notes intended for internal distribution only.

-

 g^{-2}

Other Ensembles: Turbo Codes [Berrou et. al.], Woven Codes [Johannesson et. al.], Concatenated Tree Codes [Ping et. al.], MN Codes [Kanter and Saad], ...

[LDPC Codes-Gallager][Tanner-Codes on Graphs][McKay, Neal, Wiberg-Rediscovered][Ensembles-Luby et. al.]

The Big Picture

Let $P_b^{IT}(G, \sigma)$ denote the expected *bit error* probability if G is used to transmit over a given binary-input memoryless output-symmetric channel and if the received word is decoded iteratively by a message passing decoder. (fixed # of rounds)

[Concentration Around Ensemble Average] $\exists \alpha(\delta) > 0$ such that

 $\Pr\{|P_{\mathbf{b}}^{\mathsf{IT}}(\mathbf{G},\sigma) - \mathbb{E}_{\mathcal{C}(n,\lambda,\rho)}\left[P_{\mathbf{b}}^{\mathsf{IT}}(\mathbf{G},\sigma)\right]| > \delta\} \le e^{-\alpha n}.$

[Convergence to Cycle-Free Case] $\exists \beta > 0$ such that

 $\left|\mathbb{E}_{\mathcal{C}(n,\lambda,\rho)}\left[P_{\mathsf{b}}^{\mathsf{IT}}(\mathsf{G},\sigma)\right] - \mathbb{E}_{\mathcal{C}(\infty,\lambda,\rho)}\left[P_{\mathsf{b}}^{\mathsf{IT}}(\mathsf{G},\sigma)\right]\right| \leq \frac{\beta}{n}.$

[Luby et. al-discrete setting; Belief Propagation][Richardson, Urbanke-general case]

Concentration

. .

.

Idea: Use vertex exposure technique on the bipartite graph to show that important quantities are tightly concentrated.

Theorem 1 [Azuma's Inequality] Let Z_0, Z_1, \ldots be a martingale sequence such that for each $k \geq 1$,

 $|Z_k - Z_{k-1}| \le \alpha_k,$

where the constant α_k may depend on k. Then, for all $i \geq 1$ and any $\lambda > 0$

$$\Pr\{|Z_i - Z_0| \ge \lambda\} \le 2e^{-\frac{\lambda^2}{2\sum_{k=1}^i \alpha_k^2}}.$$

Figure 1: Graph G from the ensemble $\mathcal{C}(10, x^2, x^5)$. The two dashed lines correspond to the two edges whose end points are switched.

Concentration Around Ensemble Average

Figure 2: Concentration of the bit erasure probability $P_b^{IT}(G, \epsilon)$ for specific instances $G \in C(512, x^2, x^5)$ around the ensemble average $\mathbb{E}_{C(512, x^2, x^5)}[P_b^{IT}(G, \epsilon)]$ (blue curve). Also shown is the performance of the cycle-free case, $\mathbb{E}_{C(\mathbf{CD}, x^2, x^5)}[P_b^{IT}(G, \epsilon)]$ (red curve).

Finite Length Analysis

 $\mathbb{E}_{\mathcal{C}(n,\lambda,\rho)}\left[P_{\mathrm{b}}^{\mathrm{IT}}(\mathbf{G},\sigma)\right]$

٠

Finite Length Analysis for the BEC

Figure 3: The set $\{v_1, v_2, v_3, v_4\}$ is a stopping set.

Definition 1 [Stopping Sets] A stopping set S is a subset of V, the set of variable nodes, such that all neighbors of S are connected to S at least twice.

Theorem Let $P_b^{\text{IT}}(G, \epsilon)$ denote the *bit erasure* probability when transmitting over a BEC with erasure probability ϵ using a code G, $G \in C(n, x^{1-1}, x^{r-1})$, and a belief propagation decoder. In a similar manner, let $P_B^{\text{IT}}(G, \epsilon)$ denote the *block erasure* error probability. Define the functions T(v, c, d), N(v, c, d), M(v, c, d) and O(v, s, c, d) by the recursions

$$\begin{split} T(v,c,d) &:= \binom{d+cr}{v1}(v1)!, \\ N(v,c,d) &:= T(v,c,d) - M(v,c,d), \\ M(v,c,d) &:= \sum_{s} \binom{v}{s} O(v,s,c,d), \\ O(v,s,c,d) &:= \sum_{k} \binom{c}{k} \operatorname{coef}(((1+x)^{r}-1-rx)^{k}(1+x)^{d},x^{s1})(s1)! \\ & N(v-s,c-k,d+kr-s1), \end{split}$$

and the boundary condition

$$O(v, s, c, d) = 0$$
 if $s \le 0$ or $vl > cr + d$.

Then

$$\mathbb{E}_{\mathbf{G}}\left[P_{\mathbf{b}}^{\mathsf{IT}}(\mathbf{G},\epsilon)\right] = \sum_{e} \binom{n}{e} \epsilon^{e} \left(\bar{\epsilon}\right)^{n-e} \sum_{v} \frac{v}{n} \frac{\binom{e}{v} O(e,v,n\frac{1}{x},0)}{(e1)!\binom{n1}{e1}},$$
$$\mathbb{E}_{\mathbf{G}}\left[P_{\mathbf{B}}^{\mathsf{IT}}(\mathbf{G},\epsilon)\right] = \sum_{e} \binom{n}{e} \epsilon^{e} \left(\bar{\epsilon}\right)^{n-e} \sum_{v} \frac{\binom{e}{v} O(e,v,n\frac{1}{x},0)}{(e1)!\binom{n1}{e1}}.$$

[Di, Proietti, Telatar, Richardson, Urbanke]

Finite Length Analysis for the BEC

Figure 4: $\mathbb{E}_{\mathcal{C}(n,x^2,x^5)}\left[\mathbf{P}_{\mathbf{B}}^{\mathrm{IT}}(\mathbf{G},\epsilon)\right]$ as a function of ϵ for $n=2^i, i \in [10]$.

Finite Length Analysis Open Questions

11

1. Expurgated Ensembles?

2. Find simpler expressions for $\mathbb{E}_{\mathcal{C}(n,x^2,x^5)}\left[\mathsf{P}_{\mathsf{b}}^{\mathsf{IT}}(\mathsf{G},\epsilon)\right]$ and $\mathbb{E}_{\mathcal{C}(n,x^2,x^5)}\left[\mathsf{P}_{\mathsf{B}}^{\mathsf{IT}}(\mathsf{G},\epsilon)\right]$.

3. Irregular Case.

4. Optimization.

5. Other Ensembles.

6. Other Channels.

7. Distribution of number of iterations [McKay, Kanter]

· · · ·

· ·

.

· · · ·

Asymptotic Analysis

$\mathbb{E}_{\mathcal{C}(\infty,\lambda,\rho)}\left[P_{\mathsf{b}}^{\mathsf{IT}}(\mathsf{G},\sigma)\right]$

.

Gallager's Bound

Lemma 1 Arbitrarily reliable transmission over the BSC with parameter ϵ using a linear code with "maximal degree" d is not possibly at rates above $1 - h(\epsilon) - \frac{h(\epsilon)}{2\ln 2}(1 - 2\epsilon)^{2d}$.

Proof Outline:

÷

 $\begin{array}{ll} \underline{X} & \text{transmitted word} \\ \underline{Y} & \text{received word} \\ \underline{Y} = (\underline{U},\underline{V}) & \underline{U} \text{ is an information set} \\ \underline{S}^T = \underline{HY}^T & \text{syndrome} \end{array}$

$$\begin{split} H(\underline{X}) &= nR \\ H(\underline{Y}|\underline{X}) &= nh(\epsilon) \\ H(\underline{Y}) &= H(\underline{U},\underline{S}) = H(\underline{U}) + H(\underline{S}|\underline{U}) \le H(\underline{U}) + H(\underline{S}) \\ &= \sum_{i=1}^{k} H(\underline{U}_{i}|\underline{U}_{1}, \cdots, \underline{U}_{i-1}) + \sum_{i=1}^{n-k} H(\underline{S}_{i}|\underline{S}_{1}, \cdots, \underline{S}_{i-1}) \\ &\leq \sum_{i=1}^{k} H(\underline{U}_{i}) + \sum_{i=1}^{n-k} H(\underline{S}_{i}) \\ &\leq k + (n-k)h\left(\frac{1+(1-2\epsilon)^{d}}{2}\right) \\ &\frac{1}{n}H(\underline{U}|\underline{Y}) &= \frac{1}{n}\left[H(\underline{X}) - H(\underline{Y}) + H(\underline{Y}|\underline{X})\right] \ge -h(\epsilon) + (1-R)h\left(\frac{1+(1-2\epsilon)^{d}}{2}\right) \end{split}$$

.

,

14 ·

r

Asymptotic Analysis for the Binary Erasure Channel

 $\epsilon_i := \mathbb{E}[\text{fraction of erasure messages passed in } i\text{-th round}]$

 $\epsilon_i = \epsilon_0 \lambda (1 - \rho (1 - \epsilon_{i-1}))$

Asymptotic Analysis - Capacity Achieving Codes for the BEC

Given: BEC with parameter ϵ .

Task: For any $\delta > 0$ find degree distribution pair $(\lambda(x), \rho(x))$ such that

$$r(\lambda,
ho) := 1 - rac{\int
ho}{\int \lambda} \ge 1 - \epsilon - \delta.$$

and such that

$$\epsilon \lambda (1 - \rho(1 - x)) > x, \forall 0 < x < 1.$$

Solution: [Heavy Tail Poisson Sequence]

$$\lambda_{lpha}(x) := -rac{1}{lpha}\ln(1-x) = rac{1}{lpha}\sum_{i=1}^{\infty}rac{x^i}{i}, ext{ and}$$
 $ho_{lpha}(x) := e^{lpha(x-1)} = e^{-lpha}\sum_{i=0}^{\infty}rac{lpha^i x^i}{i!}.$

[Luby, Mitzenmacher, Shokrollahi, Spielman, Stehmann - LDPC codes][McEliece et. al. for RA codes]

Asymptotic Analysis – General Case

Density Evolution: Determine the distribution of the messages passed in the *i*-th iteration.

[concept, discrete setting-Gallager][general case, efficient algorithm for BP-Richardson, Shokrollahi, Urbanke]

Different Representations

ţ

Density	Representation	Domain
ν	$\log \frac{p_0}{p_1}$	$\mathbf{v} \in [-\infty,\infty]$
ð	$p_0 - p_1$	$d \in [-1,1]$
α	$\left p_{0}-p_{1}\right $	$\mathbf{a} \in [0,1]$
γ	$-\log p_0-p_1 $	$\mathtt{c} \in [0,\infty]$
σ	${\sf sign}\left(p_0-p_1 ight)$	$\mathbf{s} \in \{0,1\}$
	Density ν \eth α γ σ	$\begin{array}{llllllllllllllllllllllllllllllllllll$

.

Density Evolution for Belief Propagation Algorithm

	Variable node side	Check node side
Representation	$\mathbf{v} = \log \frac{p_0}{p_1}$	$(c,\mathbf{s}) = (-\log p_0 - p_1 , sign(p_0 - p_1))$
Message evolution	$m_{out} = m_{rec} + \sum m_{in}$	$(c,s)_{out} = \sum (c,s)_{in}$
Density evolution	$ u_{out} = (\otimes \nu_{in}) \otimes \nu_{rec}$	$(\gamma,\sigma)_{out} = \otimes (\gamma,\sigma)_{in}$

But density evolution is NOT limited to BP algorithm! Any *message* passing algorithm can be analysed in terms of the evolution of its message density.

Density Evolution

messages received from channel

•

.

[Bazzi, Richardson, Urbanke]

Suboptimal Decoders

Figure 6: Bit error probability versus parameter ϵ for the (3, 6)-regular ensemble transmitting over the BSC channel for three decoding algorithms. The solid curves correspond to a codeword length of 1000, whereas the dashed and the dotted-dashed curves correspond to codeword lengths of 10000 and 100000, respectively.

Symmetry Condition for BP Densities

Assumptions: binary signalling (extension possible), output symmetric channel, and the second second

The densities which occur at any iteration fulfill the symmetry condition

 $f(x)e^{-x/2} = f(-x)e^{x/2}$

ч, °

Asymptotic Analysis - Stability for BEC

Progress Per Iteration Progress around Zero Stability Condition $\begin{aligned} \epsilon^* \lambda (1 - \rho(1 - \epsilon)) &- \epsilon \\ (\epsilon^* \lambda'(0) \rho'(1) - 1) \epsilon \\ \lambda'(0) \rho'(1) &< \frac{1}{\epsilon^*} \end{aligned}$

[Luby et. al.]

Asymptotic Analysis - General Stability Condition

Theorem 2 [General Stability Condition] Assume we are given a degree distribution pair (λ, ρ) and a symmetric density P_0 . For $\ell \geq 1$ define $P_{\ell} := P_0 \otimes l(\Gamma^{-1}((\Gamma(P_{\ell-1}))))$. Let $r := -\ln(\int_{\mathbb{R}} P_0(x)^{-\frac{x}{2}})$ and assume that $\int_{\mathbb{R}} e^{sx} d(\int P_0)(x) < \infty$ for all s in some neighborhood of zero.

[Necessity] If $\lambda'(0)\rho'(1) > e^r$ then there exists a constant $\xi = \xi(\lambda, \rho, P_0), \xi > 0$, such that for all $\ell \in \mathbb{N}$, $P_e(P_\ell) > \xi$.

[Sufficiency] If $\lambda'(0)\rho'(1) < e^r$ then there exists a constant $\xi = \xi(\lambda, \rho, P_0)$, $\xi > 0$, such that if for some $\ell \in \mathbb{N}$, $P_e(P_\ell(P_0)) \leq \xi$ then $P_e(P_\ell)$ converges to zero as ℓ tends to infinity.

[Richardson, Shokrollahi, Urbanke]

. .

.

The Final Reward...

·

.

[Chung, Forney, Richardson, Urbanke]

. .

.

. .

and the second second

Fig. 2. Simulation results for $d_l = 100,200$ codes using a block length of 10^7 .

Theorem 3 [Codes with Linear Encoding Complexity] Let (λ, ρ) be a degree distribution pair satisfying $\alpha^*(\rho, \lambda) = 1$, with minimum right degree at least three and satisfying the *strict* inequality $\lambda'(0)\rho'(1) > 1$. Let G be chosen at random from the ensemble $C(n, \lambda, \rho)$). Then G is encodable in linear time with probability at least $1 - bc^{\sqrt{n}}$ for some positive constants b and c, where c < 1.

Conclusion: All optimized codes are linear time encodable.

[Richardson, Urbanke]

Figure 7: The parity-check matrix in approximate lower triangular form.

Consider the subgraph induced by degree two variable nodes. Pick a (degree two) variable node at random and look at all its neighbors. Look at neighbors of neighbors

 $Y_t = Y_{t-1} + X_t - 1$

Asymptotic Analysis - Good Codes Have Bad Minimum Distance

Flatness Condition [Shokrollahi] Consider the BEC with erasure probability ϵ . Let (λ_i, ρ_i) be a sequence of degree distribution pairs with a threshold of at least ϵ and rate converging to $1 - \epsilon$. Then

 $\lambda_i'(0)\rho_i'(1) \to \frac{1}{\epsilon} > 1.$

Growth of Minimum Distance of LDPC Ensembles Let (λ, ρ) be a degree distribution pair and for each $n \in \mathbb{N}$ let $\mathcal{C}(n, \lambda, \rho)$ denote the ensemble of LDPC codes of length n and with degree distribution pair (λ, ρ) .

- (i) If $\lambda'(0)\rho'(1) < 1$, then there exist constants α and β , both strictly positive, such that at most a fraction $e^{-n\beta}$ of codes in $C(n, \lambda, \rho)$ have a minimum distance below αn .
- (ii) If on the other hand $\lambda'(0)\rho'(1) > 1$, then there exist constants α and β , both strictly positive, such that at most a fraction $e^{-n\beta}$ of codes in $C(n, \lambda, \rho)$ have a minimum distance exceeding $\alpha \ln(n)$.

Conclusion Capacity achieving LDCP ensembles can not have large minimum distance.

[Di, Richardson, Urbanke]