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Preface

This manuscript contains extended notes of the lectures presented by the au-
thor at the summer school “High-dimensional Manifold Theory” in Trieste in
May/June 2001. It is written not for experts but for talented and well edu-
cated graduate students or Ph.D. students. Sugery theory has been and is a
very successful and well established theory. It was initiated and developed by
Browder, Kervaire, Milnor, Novikov, Sullivan, Wall and others and is still a very
active research area. The idea of these notes is to give young mathematicians
the possibility to get access to the field and to see at least a small part of the
results which have grown out of surgery theory. Of course there are other good
text books and survey articles about surgery theory, some of them are listed in
the references.
We remark that these notes are not yet finished.

Miinster, May 14, 2001 Wolfgang Lick
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Chapter 1

The s-Cobordism Theorem

Introduction
In this chapter we want to discuss and prove the following result

Theorem 1.1 (s-cobordism theorem) Let My be a closed connected oriented
manifold of dimension n > 5 with fundamental group © = 71 (Mp). Then

1. Let (W; Mo, fo, M1, f1) be an h-cobordism over My. Then W is trivial
over My if and only if its Whitehead torsion (W, M) € Wh(w) vanishes;

2. For any x € Wh(n) there is an h-cobordism (W; My, fo, M1, f1) over My
with 7(W, My) = x € Wh(r);

3. The function assigning to an h-cobordism (W; My, fo, M1, f1) over My
its Whitehead torsion yields a bijection from the diffeomorphism classes
relative My of h-cobordism over My to the Whitehead group Wh(r).

Here are some explanations. An n-dimensional cobordism (sometimes also
called just bordism) (W; My, fo, M1, f1) consists of a compact oriented n-dimensional
manifold W, closed (n — 1)-dimensional manifolds My and M, a disjoint de-
composition W = GoW [[W of the boundary 8W of W and orientation
preserving diffeomorphisms fo : My — 0Wy and f1 : My — OW,. Here
and in the sequel we denote by M; the manifold M; with the reversed ori-
entation and we use on OW the orientation with respect to the decomposition
T.W = T,0W & R coming from an inward normal field for the boundary. If we
equip D? with the standard orientation coming from the standard orientation
on R?, the induced orientation on S' = D? corresponds to the anti-clockwise
orientation on S'. If we want to specify My, we say that W is a cobordism
over My. If OoW = Moy, O1W = M; and fo and f; are given by the iden-
tity, we briefly write (W;8,W, 5, W). Two cobordisms (W, My, fo, M1, f1) and
(W', Mo, f§, M1, fi) over My are diffeomorphic relative My if there is an ori-
entation preserving diffeomorphism F : W — W' with F o f, = fj. We call

1



2 CHAPTER 1. THE S-COBORDISM THEOREM

an h-cobordism over My trivial, if it is diffeomorphic relative My to the trivial
h-cobordism (Mg x [0, 1]; Mo x {0}, (Mo x {1})7). Notice that the choice of the
diffeomorphism f; do play a role although they are often surpressed in the nota-
tion. We call a cobordism (W; My, fo, M1, f1) an h-cobordism, if the inclusions
;W — W for i = 0,1 are homotopy equivalences.

We will later see that the Whitehead group of the trivial group vanishes.
Thus the s-Cobordism Theorem 1.1 implies

Theorem 1.2 (h-Cobordism Theorem) Any h-cobordism (W; My, fo, M1, f1)
over a simply connected closed n-dimensional manifold My with dim(W) > 6 is
trivial.

Theorem 1.3 (Poincaré conjecture) The Poincaré Congecture is true for a
closed n-dimensional manifold M with dim(M) > 5, namely, if M is simply
connected and its homology H,(M) is isomorphic to Hy(S™) for all p € Z, then
M is homeomorphic to S™.

Proof : We only give the proof for dim(M) > 6. Since M is simply con-
nected and H,(M) = H,(S™), one can conclude from the Hurewicz Theorem and
Whitehead Theorem [65, Theorem IV.7.13 on page 181 and Theorem IV.7.17
on page 188] that there is a homotopy equivalence f : M — S™. Let D? C M
for i = 0,1 be two embedded disjoint disks. Put W = M — (int(Dg) [ [ int(D7)).
Then W turns out to be a simply connected h-cobordism. Hence we can find
a diffeomorphism F' : (8D % [0,1],0D% x {0},0DF x {1}) — (W,0Dg,0D7)
which is the identity on 0D§ = dD§ x {0} and induces some (unknown) dif-
feomorphism f; : dD§ x {1} — 0D?}. By the Alexander trick one can extend
fi: 8D} = dDEx{1} — 8D? to a homeomorphism f; : D} — D}. Namely, any
homeomorphism f : S”~! — §”~1 extends to a homeomorphism f : D™ — D™
by sending ¢ -z for ¢t € [0,1] and z € S™~1 to ¢t - f(z). Now define a homeomor-
phism h : DF x {0}U;,0Dg x[0,1]U;, D§ x {1} — M for the canonical inclusions
ir : 0Dg x {k} = 0Dg x [0,1] for k = 0,1 by h|pz oy = id, hlapgx(o,1] = F
and h| Dpx{1} = fi. Since the source of A is obviously homeomorphic to S,
Theorem 1.3 follows.

In the case dim(M) = 5 one uses the fact that M is the boundary of a
contractible 6-dimensional manifold W and applies the s-cobordism theorem to
W with an embedded disc removed. ]

Remark 1.4 Notice that the proof of the Poincaré Conjecture in Theorem 1.3
works only in the topological category but not in the smooth category. In other
words, we cannot conclude the existence of a diffeomorphism h : S™ — W. The
proof in the smooth case breaks down when we apply the Alexander trick. The
construction of f given by coning f yields only a homeomorphism f and not a
diffeomorphism even if we start with a diffeomorphism f. The map f is smooth
outside the origin of D™ but not necessarily at the origin. We will see that not
any diffeomorphism f : S®7! — S”7! can be extended to a diffeomorphism
D™ — D™ and that there exist so called exotic spheres, i.e. closed manifolds
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which are homeomorphic to S™ but not diffeomorphic to S™. The classification
of these exotic spheres is one of the early very important achievements of surgery
theory and one motivation for its further development.

Remark 1.5 In some sense the s-Cobordism Theorem 1.1 is one of the first
theorems, where diffeomorphism classes of certain manifolds are determined by
an algebraic invariant, namely the Whitehead torsion. Moreover, the Whitehead
group Wh(m) depends only on the fundamental group = = w3 (Mg), whereas the
diffeomorphism classes of h-cobordisms over My a priori depends on M, itself.
The s-Cobordism Theorem 1.1 is one step in a program to decide whether two
closed manifolds M and N are diffeomorphic what is in general a very hard
question. The idea is to construct an h-cobordism (W; M, f, N, g) with van-
ishing Whitehead torsion. Then W is diffeomorphic to the trivial h-cobordism
over M what implies that M and N are diffeomorphic. So the surgery program
would be:

1. Construct a homotopy equivalence f : M — N;

2. Construct a cobordism (W; M, N) and a map (F, f,id) : (W; M,N) —
(N x [0,1], N x {0}, N x {1});

3. Modify W and F relative boundary by so called surgery such that F
becomes a homotopy equivalence and thus W becomes an h-cobordism.
During these processes one should make certain that the Whitehad torsion
of the resulting h-cobordism is trivial.

The advantage of this approach will be that it can be reduced to problems in
homotopy theory and algebra which can sometimes be handled by well-known
techniques. In particular one will get sometimes computable obstructions for
two homotopy equivalent manifolds to be diffeomorphic. Often surgery theory
has proven to be very useful when one wants to distinguish two closed manifolds
which have very similar properties. The classification of homotopy spheres (see
Chapter 6) is one example. Moreover, surgery techniques can be applied to prob-
lems which are of different nature than of diffeomorphism or homeomorphism
classifications.

In this chapter we want to present the proof of the s-Cobordism Theorem
and to explain why the notion of Whitehead torsion comes in. We will encounter
a typical situation in mathematics. We will consider an h-cobordism and try
to prove that it is trivial. We will introduce modifications which we can apply
to a handlebody decomposition without changing the diffeomorphism type and
which are designed to reduce the number of handles. If we could get rid of
all handles, the h-cobordism would be trivial. When attempting to cancel all
handles, we run into an algebraic difficulty. A priori this difficulty could be a lack
of a good idea or technique. But it will turn out to be the principal obstruction
and lead us to the definition of the Whitehead torsion and Whitehead group.

The rest of this Chapter is devoted to the proof of the s-cobordism Theorem
1.1. Its proof is interesting and illuminating and it motivates the definition of
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Whitehead torsion. But we mention that it is not necessary to go through it in
order to understand the following chapters.

1.1 Handlebody decompositions

In this section we explain basic facts about handles and handlebody decompo-
sitions.

Definition 1.6 The n-dimensional handle of index q or briefly q-handle is D7 x
D™4. Its core is D? x {0}. The boundary of the core is S~ x {0}. Its cocore
is {0} x D™ ? and its transverse sphere is {0} x S"7971.

Let (M,0M) be an n-dimensional manifold with boundary OM. If ¢9 :
S971 x D"=9=1 — M is an embedding, then we say that the manifold M + (¢7)
defined by M Uga DI x D™™9 is obtained from M by attaching a handle of index
q by ¢1.

Obviously M + (¢?) carries the structure of a topological manifold. To get a
smooth structure, one has to use the technique of straigthening the angle to get
rid of the corners at the place, where the handle is glued to M. The boundary
O(M + (#7)) can be described as follows. Delete from M the interior of the
image of ¢?9. We obtain a manifold with boundary together with a diffeomor-
phism from its boundary to S7! x S"~972 induced by ¢|ge-1ygn-q-2. If we
use this diffeomorphism to glue D? x S92 to it, we obtain a closed manifold,
namely, (M + (¢7)).

Let W be a compact manifold whose boundary OW is the disjoint sum
W [[1W. Then we want to construct W from 9yW x [0,1] by attaching
handles as follows. Notice that the following construction will not change W =
OoW x {0}. If ¢7 : S771 x D"~ — 9, W is an embedding, we get by attaching
a handle the compact manifold Wy = oW x [0,1] + (¢?) which is given by
W Uge D? x D™74. Its boundary is a disjoint sum 9oWi [ 8: W1, where 9, W3
is the same as oW . Now we can iterate this process, where we attach a handle
to 01 Wi. Thus we obtain a compact manifold with boundary

W = 8oW x [0,1] + (¢7) + (¢22) + ... + (67),

whose boundary is the disjoint union oW [[ 0, W, where 8o W is just oW x {0}.
We call such a description of W as above a handlebody decomposition of W
relative §oW. We get from Morse theory [31, Chapter 6], [45, part I].

Lemma 1.7 Let W be a compact manifold whose boundary OW is the disjoint
sum oW [[1W. Then W possesses a handlebody decomposition relative QoW ,
i.e. W is up to diffeomorphism relative oW = 0oW x {0} of the form

W = 0oW x [0,1] + (') + (¢2*) + ... + (¢T7).

If we want to show that W is diffeomorphic to oW x [0, 1] relative JoW =
SoW x {0}, we must get rid of the handles. For this purpose we have to find pos-
sible modifications of the handlebody decomposition which reduce the number
of handles without changing the diffeomorphism type of W relative 0o W'.
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Lemma 1.8 (Isotopy lemma) Let W be an n-dimensional compact manifold
whose boundary OW is the disjoint sum OoW [[O1W. If ¢9,47 : ST™1x D"~ —
MW are isotopic embeddings, then there is a diffeomorphism W + (¢°) - W +
(v?) relative OoW

Proof : Let i: S797! x D" 9x[0,1] — 6; W be an isotopy from ¢? to 1)?. Then
one can find a diffeotopy H : W x [0,1] = W with Hy = idw such that the
composition of H with ¢? X id[p 1} is ¢ and H is stationary on GoW [31, Theorem
1.3 in Chapter 8 on page 184]. Thus H; : W — W is a diffeomorphism relative
W and satisfies Hy o ¢? = 7. It induces a diffeomorphism W + (¢?) —
W + (7) relative GoW. n

Lemma 1.9 (Associativity lemma) Let W resp. W' be a compact manifold
whose boundary OW is the disjoint sum SoW [[ W resp. QW' [[O1W'. Let
F:W — W' be a diffeomorphism which induces a diffeomorphism fo : OgW —
OoW'. Let ¢ : 8971 x D" 9 — O, W be an embedding. Then there is an
embedding ¢ : ST x D" — &, W' and a diffeomorphism F' : W + (¢9) —
W'+ (¢") which induces fo on doW

Proof : Put Eq = Fo¢?. u

Lemma 1.10 Let W be an n-dimensional compact manifold whose boundary
OW s the disjoint sum OoW [[O1W. Suppose that V.= W + (1/1’) + (¢9) for
g <r. Then V is diffeomorphic relative OW to V' = W + (¢") + (¥") for an
appropriate ¢

Proof : By transversality and the assumption (¢~ 1)+ (n—1—-7r) <n-—-1
we can show that the embedding ¢?]ge-1x(0} : S9! x {0} = A (W + (¥"))
is isotopic to an embedding which does not meet the transverse sphere of the
handle (¥") attached by ¥" [31, Theorem 2.3 in Chapter 3 on page 78]. This
isotopy can be embedded in a diffeotopy on &, (W + (¥")). Thus the embedding
@7 : S971 x D=9 — 9 (W + (¢y7)) is isotopic to an embedding whose restriction
to S9! x {0} does not meet the transverse sphere of the handle (¢"). Since we
can isotope an embedding S9! x D"~9 — W +(3") such that its image becomes
arbitrary close to the image of S x {0}, we can isotope ¢7 : S9=! x D"~7 —
(W + (¥")) to an embedding which does not meet a closed neighborhood
U C 8,(W + (¢")) of the transverse sphere of the handle (0"). There is an
obvious diffeotopy on 8, (W + (¢")) which is stationary on the transverse sphere
of (¥") and moves any point on 9, (W + (¢")) which belongs to the handle (¢")
but not to U to a point outside the handle (¢"). Thus we can find an isotopy of
@7 to an embedding —qu which does not meet the handle (y)") at all. Obviously
W+ @)+ (87) and W + (¢°) + (¥") agree. By the Isotopy Lemma 1.8 there
is a diffeomorphism relative 8W from W + (47) + (6°) to W + (¥") + (¢%).

|

Example 1.11 Here is a standard situation, where attaching first a ¢g-handle
and then a (¢ + 1)-handle does not change the diffeomorphism type of an n-

dimensional compact manifold W whose boundary is the disjoint union oW [[ ;W
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Consider an embedding p : S9=! x D*™¢ Usq_lxsi_l_q D9 x Si—l_q — O W,

where S77'7? is the upper hemisphere in S"~17% = dD"~9. Let ¢? : S9~! x
Dn=9 — 5, W be its restriction to S77! x D"79. Let qﬁfl 1 8 x Si_q_l -
01 (W + (¢7)) be the embedding which is given by

ST x SYTT =D x S} C DT x §7I = 8(¢7) C (W + (¢9)).

Tt does not meet the interior of W. Let ¢2™" : §2 x S77'7% — 9, (W U (¢7)) be
the embedding obtained from g by restriction to S x S77'7% = D% x §77174.
Then ¢7™* and @2 fit together to yield an embedding ¢?+! : S¢ x D971 =
S % ST M Uggmaysp-a-1 S x ST = 01(W +(¢")). Then it is not difficult
to check that W + (¢7) + (4971) is diffeomorphic relative oW to W.

This cancellation of two handles of consecutive index can be generalized as
follows.

Lemma 1.12 (Cancellation lemma) Let W be an n-dimensional compact
manifold whose boundary OW is the disjoint sum QoW [[O1W . Let ¢? : S971 x
D=7 — O, W be an embedding. Let 97! : S x D"71=9 — §;(W + (¢7)) be an
embedding. Suppose that 1I+1(S% x {0}) is transversal to the transverse sphere
of the handle (¢?) and meets the transverse sphere in exactly one point. Then
there is a diffeomorphism relative oW from W to W + (¢9) + (¢7+1).

Proof : Given any neighborhood U C 9(¢4?) of the tranverse sphere of (¢7),
there is an obvious diffeotopy on 01 (W + (¢?)) which is stationary on the trans-
verse sphere of (¢?) and moves any point on 91 (W + (¢7)) which belongs to
the handle (¢?) but not to U to a point outside the handle (¢?). Thus we
can achieve that ¥7"! maps the lower hemisphere S? x {0} to points outside
(¢7) and is on the upper hemisphere ST x {0} given by the obvious inclusion
D% x {2} — DP x D"9 = (¢?) for some z € S9! and the obvious identifica-
tion of S{ x {0} with D?x{z}. Now it is not hard to construct an diffeomorphism
relative OgW from W + (¢9) + (¥911) to W modelling the standard situation of
Example 1.11. |

The Cancellation Lemma 1.12 will be our only tool to reduce the number
of handles. Notice that one can never get rid of one handle alone, there must
always be involved at least two handles simultaneously. The reason is that the
Euler characteristic x(W, 3, W) is independent of the handle decomposition and
can be computed by 3° -,(—1)? - py, where p, is the number of g-handles (see
Section 1.2). -

We conclude from the Cancellation Lemma 1.12

Lemma 1.13 Let ¢ : S9=! x D""% — O,W be a trivial embedding. Then
there is an embedding ¥It! : S x D"7179 — 9 (W + (¢9)) such that W and
W + (¢9) + (¢971) are diffeomorphic relativ OoW .

Consider a compact n-dimensional manifold W whose boundary is the dis-
joint union W [[1W. In view of Lemma 1.7 and Lemma 1.10 we can write
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Wox AW x0+ 36+ 36+ S e, (11
=1 =1 =1

where = means diffeomorphic relative OoW'.

Notation 1.15 Put for -1 <qg<n

W, = aOWx[0,1]+Z(¢>‘,?)+Z(¢})+...+i(¢?);

1=1 i=1
81Wq = 8Wq - 80W X {0},
Pq+1
KW, = oW, — [] o7 (S x int(D""179)).
i=1

Notice for the sequel that W, C 01 Wy41.

Lemma 1.16 (Elimination Lemma) Fiz an integer ¢ with 1 < g < n — 3.
Suppose that p; =0 for j < gq, i.e. W looks like

Pq Pg+1 Pn
W= W x[0,1]+Y (¢D)+ Y (¢7H +...+ D (6.
=1 =1 =1

Fiz an integer ig with 1 < iy < p,. Suppose that there is an embedding I+! :
S? x D177 — 9 W, with the following properties:

1. It | gax (o} is isotopic in W, to an embedding Pt 81 {0} —» B, W,
which meets the transverse sphere of the handle (¢§O) transversally and in
exactly one point and is disjoint from to the transverse sphere of ¢] for

i # io;
2. Y7 5ax g0} 18 isotopic in Oy Wy to a trivial embedding Pt 8% {0} —
61 Wq+1 .

Then W is diffeomorphic relative oW to a manifold of the shape

pq+1 pq+2 Pn
WX+ S @)+ GBI+ Y@+ D60,
i=1,2,...pq,i#10 =1 i=1 i=1

Proof : Since 97| gqy {0} 1s isotopic to 1,[1?“ and ng“ is trivial, we can extend

9*1 and ¢3! to embeddings denoted in the same way ?*" : S¢ x D"—¢=1 —
AW, and $It! : §9 x D*1=¢ — J°W,,; with the following properties [31,
Theorem 1.5 in Chapter 8 on page 180]: %! is isotopic to 93" in 8, W, %I+"
does not meet the transverse spheres of the handles (¢7) for ¢ # 4o, ¢f+1 |s9x{0}
meets the transverse sphere of the handle ((f)?o) transversally and in exactly one
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point, 71 is isotopic to 92T within 8 W,y and 9§t is trivial. Because of
the Associativity Lemma 1.9 we can assume without loss of generality that there

are no handles of index > ¢+ 2, i.e. pgt2 = pgys = ... = pp = 0. It suffices to
show for appropriate embeddings 53“ and 97*2 that
Pg+1
8oW x [0,1] + Z(qs") D CAR
=1
Pq+1
= QW x[0,1+ > @)+ @)+ @,
i=1,2,...pq,i%1%0 i=1

where = means diffeomorphic relative ;. Because of Lemma 1.13 there is an
embedding (1972) satisfying

Dq+1
8oW x [0, 1]+Z(¢q + Z (@7
1=1 i=1
=~ GW x[0,1] +Z (69 + i: ($971) + (3 + (p7+2).
i=1 =1

We conclude from the Isotopy Lemma 1.8 and the Associativity Lemma 1.9 for
appropriate embeddings ¢z+l for k=1,2

Dqg+1
oW x [0,1] +Z (@) + > (@) + (™) + (v7*?)
=1 =1
Pq+1
= W x [0,1] +Z(¢")+ D@ + @) + (@)
=1 g=1
Pq Pg+1
= QW x[0, 1+ Y. (#D)+ L)+ @)+ Y (@) + i),
1=1,2,...pq,i#%0 i=1

We get from the Associatiwty Lemma 1.9 and the Cancellation Lemma 1.12 for
appropriate embeddings $ and pit!

Pq Pg+1
oW x [0,1]+ > (@D + (L) + @)+ D> (67 + i)
i=1,2,...pq,i#i0 i=1
Pq Pg+1

> gWx[01+ > ¢>")+Z ) + (e,

1=1,2,...pq,iF# %0
This finishes the proof of the Elimination Lemma 1.16. |

1.2 Handlebody decompositions and CW-structures

Next we explain how we can associate to a handlebody decomposition (1.14) a
CW-pair (X,0,W) such that there is a bijective correspondence between the
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g-handles of the handlebody decomposition and the g-cells of (X,8,W). The
key ingredient is the elementary fact that the projection (D? x D™ 9 S971 x
D"%) — (D?,S971) is a homotopy equivalence and actually — as we will explain
later — a simple homotopy equivalence.

Recall that a (relative) CW-complex (X, A) consists of a pair of topological
spaces (X, A) together with a filtration

X_ :ACX0CX1C...XqCXq+1C---ququ:X

such that X carries the colimit topology with respect to this filtration and for
any g > 0 there exists a pushout of spaces

g—1 Hiexq o
Hielq S > Xg

l l

The map ¢! is called the attaching map and the map (®7,¢7) is called the
characteristic map of the g-cell belonging to ¢ € I;. The pushouts above are
not part of the structure, only their existence is required. Only the filtration
{X, | ¢ > —1} is part of the structure. The path components of X, — X,_1 are
called the open cells. The open cells coincide with the sets ®J(D? — S91). The
closure of an open cell ®!(D? — S971) is called closed cell and turns out to be
(D).

Suppose that X is connected with fundamental group n. Let p: X > X be
the universal covering of X. Put X, = p~}(X,) and 4 = —l(A) Then (X, A)
inherits a CW-structure from (X, A) by the filtration {Xq | ¢ > —1}. The
cellular Zx-chain complex C, ()Z' ,Z) has as g-th Zn-chain module the singular
homology H, ()?;,)?q\_/l) with Z-coefficients and the m-action coming from the
deck transformations. The g-th differential d, is given by the composition

= o B i e~
Hy(Xg, Xg-1) = Hy1(Xg1) = Hyo1(Xg-1, Xg-2),

where 8q is the boundary operator of the long exact sequence of the pair
(X Xq- 1) and 4 is induced by the inclusion. If we choose for each i € I,
a lift (<I>f,¢3) (D1,8971) — (Xq,Xq 1) of the characteristic map (@7, 97), we
obtain a Zz-basis {b; | i € I,,} for Cp(X, A), if we define b; as the image of a
generator in in Hy(D?, 87" 1) = Z under the map H (Qz,ql) H,(D?,877 %) —

Hy (X, X,_1) = Cy(X,A). We call {b; | i € I,} the cellular basis. Notice
that we have made several choices in defining the cellular basis. We call two
Zm-basis {o; | j € J} and {B | k € K} for Cy(X, A) equivalent if there is a
bijection ¢ : J — K and elements ¢; € {£1} and ~; € 7 for j € J such that
€ - aj = Bg(;)- The equivalence class of the basis {b; | i € I,} constructed
above does only depend on the CW-structure on (X, A) and is independent
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of all further choices such as (®7,¢7), its lift (®{,47) and the generator of
H,(D™, 8™ 1.

Now suppose we are given a handlebody decomposition (1.14). Next we
construct by induction over ¢ = —1,0,1,...n a sequence of spaces X_; =
OW C Xo C X; C X2 C ... C X, together with homotopy equivalences
fq : Wy = X, such that f,lw,_, = fy—1 and (X,0,W) is a CW-complex with
respect to the filtration {X, | ¢ = —1,0,1,...n}. The induction beginning
f1:W_1 =0W x[0,1] = X1 = oW is given by the projection. The induction
step from (g — 1) to ¢ is done as follows. We attach for each handle (¢7) for
i =1,2,...py a cell D? to X,_; by the attaching map f,_; o ¢g|Sq—1X{O}. In
other words, we define X, by the pushout

Pq q
U:2y fa-100715a-1x 0y,

f—q_—1 §a-t ’ Xq—l
e, De - Xq

Recall that W is the pushout

1172, ¢¢
fil Se-l x D1 == W,

l l

Pa,DIx D1 —— W,
Define a space Y; by the pushout

I_Il"zl #7] q-1
Pq g—1 i= ils x {0}
e S — Wy

! l

p
i=1 D1 — Y

Define (gq, fg—1) : (Yq, Wy—1) = (X4, X4—1) by the pushout property applied
to homotopy equivalences given by f,—1 : Wy—1 — X,-1 and the identity
maps on S77! and D?. Define (hy,id) : (Y, Wy—1) — (Wy, Wy—1) by the
pushout property applied to homotopy equivalences given by the obvious inclu-
sions S?71 — S§971 x D"% and D? — D? x D™ 7 and the identity on W,_;.
The resulting maps are homotopy equivalences of pairs since the upper hori-
zontal arrows in the three pushouts above are cofibrations (see [10, page 249]).
Choose a homotopy inverse (h;*,id) : (W,, Wy—1) — (Y, Wy—1). Define f; by
the composition g, o h;'.

In particular we see that the inclusions W, — W are g-connected since the
inclusion of the g-skeleton X, — X is always g-connected for a C'W-complex
X.

Denote by p : W — W the universal covering with = = w1 (W) as group

of deck transformations. Let I/IA/; be the preimage of W, under p. Notice that
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this is the universal covering for ¢ > 2 since each inclusion W, — W induces
an isomorphism on the fundamental groups. Let C,(W,3,W) be the Zn-chain

complex whose g-th chain group is Hq(ﬁ/';, W,—1) and whose g-th differential is
given by the composition

H,(Wy,Wy_1) = Hy(Wy—1) — Hyy (W1, Wy—2),

where 0, is the boundary operator of the long homology sequence associated to

the pair (W’;, Wp—1) and i4 is induced by the inclusion. The map f: W — X
induces an isomorphism of Zn-chain complex

C.(): Cu(W,8W) = C(X,5W). (117)
Each handle (¢7) determines an element
(7] € Cy(W,80W7) (1.18)

after choosing a lift (®7,¢7) : (D x D""9,89-1 x Dn=9) — (W,,W,_;) of
its characteristic map (®7,¢7) : (D? x D"=2,5971 x D" %) — (W,,W,_1),
namely, the image of the preferred generator in H, (D4 x D"~%, 5971 x D"~7) =
Ho({*} = Z under the map H,(®?,47). This element is only well-defined up
to multiplication with an element v € 7. The elements {[¢]] | i = 1,2,...p,}
form a Zm-basis for Cj (,W,WV ). Its image under the isomorphism (1.17) is a
cellular Zn-basis.

If W has no handles of index < 2, i.e. pg = p; = 0, one can express
C*(W,ém// ) also in terms of homotopy groups as follows. Fix a base point
z € oW and a lift z € 8/0\1/7' . All homotopy groups are taken with respect to
these base points. Let . (W., W,._1) be the Zr-chain complex, whose ¢g-th Zm-
module is 7y (W,, W,_.1) for ¢ > 2 and zero for ¢ < 1 and whose ¢-th differential
is given by the composition

3, a1 (i
Tq(Wy, Wo-1) = mg—1(Wy-1) ”—1()> Tg—1 (W1, Wy2)-

The Zm-action comes from the canonical 7 (Y)-action on the group my(Y, A)
[65, Theorem 1.3.1 on page 164]. Notice that w,(Y, A) is abelian for any pair of
spaces (Y, A) for ¢ > 3 and is abelian also for ¢ = 2 if A is simply connected or
empty. For ¢ > 2 the Hurewicz homomorphism is an isomorphism [65, Corollary

IV.7.11 on page 181] ﬂq(WA/;,V/Vq\_/l) — Hq(VT/';,ﬁ/;_/l) and the projection p :
W — W induces isomorphisms wq(WZ, Wq-1) = mq(Wg, W,—1). Thus we obtain
an isomorphism of Zw-chain complexes

C.(W,86W) = e (We, Wa_y). (1.19)

Fix a path w; in W from a point in the transverse sphere of (¢!) to the base
point z. Then the handle (¢]) determines an element

[¢]] € mg(Wy, Wy). (1.20)
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It is represented by the obvious map (D? x {0}, xS97! x {0}) = (W,, W,_1)
together with w;. It agrees with the element [¢]] € Cy(W,0W) defined in

(1.18) under the isomorphism (1.19) if we use the lift of the characteristic map
determined by the path w;.

1.3 Reducing the handlebody decomposition of
an h-cobordism

In the next step we want to get rid of the handles of index zero and one in the
handlebody decomposition (1.14).

Lemma 1.21 Let W be an n-dimensional manifold for n > 6 whose boundary
is the disjoint union OW = JyW [[01W. Then the following statements are
equivalent

1. The inclusion OoW — W is 1-connected;

2. We can find a diffeomorphism relative OoW
P2 D3 3 Prn —n
W= oW x 0,11+ Y (1) + D (&) + Y _(%:)-
=1 i=1 =1

Proof : (2) = (1) has already been proven in Section 1.2. It remains to
conclude (2) provided that (1) holds.

We first get rid of all 0-handles in the handlebody decomposition (1.14). It
suffices to give a procedure to reduce the number of handles of index 0 by one.
Since the inclusion §yW — W is 1-connected, the inclusion §oW — W; induces
a bijection on the set of path components. Given any index ig, there must be
an index ¢; such that the core of the handle ¢,11 is a path connecting a point in
oW x {1} with a point in (¢9,). We conclude from the Associativity Lemma
1.9 and the Cancellation Lemma 1.12 that (¢;,) and (¢},) cancel another, i.e.
we have

Wos awxDU+ Y @+ S @)+ S0
=1

i=1,2,...po,i#10 1=1,2,...p1,i#%

Hence we can assume pp = 0 in (1.14).

Next we want to get rid of the 1-handles assuming that the inclusion OgW —
W is 1-connected. It suffices to give a procedure to reduce the number of handles
of index 1 by one. We want to do this by constructing an embedding v? :
Slx D2 07 W1 which satisfies the two conditions of the Elimination Lemma
1.16 and then applying the Elimination Lemma 1.16. Consider the embedding
Y2 : S} = D' = D! x {g¢} C D* x D™ = (¢}) for some fixed z € "% =
OD™" . The inclusion 8;Wy — &1 Wy = oW x {1} induces an isomorphism
on the fundamental group since 9 Wy is obtained from 8, Wy = oW x {1} by
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removing the interior of a finite number of embedded (n — 1)-dimensional disks.
Since by assumption the inclusion oW — W is 1-connected, the inclusion
0; Wy — W induces an epimorphism on the fundamental groups. Therefore we
can find an embedding ¥ : S — 97 W, with ¢2 |g0 = 93 |go such that the map
g : ST = S% Ugo ST — 8; W, given by ¢3 U2 is nullhomotopic in W. One
can isotop the attaching maps ¢2 : St x D"=2 — 8, W; of the 2-handles (¢?)
such that they do not meet the image of 12 because the sum of the dimension of
the source of 2 and of S x {0} C S! x D""? is less than the dimension (n —1)
of &;W; and one can always shrink inside D"~2. Thus we can assume without
loss of generality by the Isotopy Lemma 1.8 and the Associativity Lemma 1.9
that the image of ¥ lies in O W;. The inclusion W, — W is 2-connected.
Hence 92 is nullhomotopic in 8;W,. Let h : D? — 9, W, be a nullhomotopy
for 2. Since 2 - dim(D?) < dim(8; W>), we can change h relative to S* into an
embedding. (Here we need for the first time the assumption n > 6.) Since D?
is contractible the normal bundle of h and thus of ¥ U3 are trivial. Therefore
we can extend 92 to an embedding 1% : S x D*~! — §?W; which is isotopic
to a trivial embedding in 0; Wy and meets the transverse sphere of the handle
(¢1) transversally and in exactly one point and does not meet the transverse
spheres of the handles (¢}) for 2 < i < p;. Now Lemma 1.21 follows from the
Elimination Lemma 1.16. ]

Now consider an h-cobordism (W;8,W,0,W). Because of Lemma 1.21 we
can write it as

W = W x [0,1]+Zz(¢?)+i($f)+....

=1 =1

Lemma 1.22 (Homology lemma) Suppose n > 6. Fiz 2 < g < n—3 and
io € {1,2,...ps}. Let ST — 0, W, be an embedding. Then the following state-
ments are equivalent

1. f is isotopic to an embedding g : S? — 01 W, such that g meets the trans-
verse sphere of (¢go) transversally and in exactly one point and is disjoint
from transverse spheres of the handles (¢7) for i # io;

2. Let f: S7 — WA/'; be a lift of f under p|ﬁ,~q : I/IA/; — W,. Let [f] be the
image of the class represented by f~ under the obvious composition

mq(Wy) = mqg(Wy, Wy—1) — Hq(ﬁ;(an-l) = C’,,(W).

Then there is v € m with

[f] = £v-[8L]-

Proof : (1) = (2) We can isotop f such that f| e - 5S4 — 8, W, looks like
the canonical embedding S = D? x {z} C D? x §"'79 = (¢ ) for some
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z € S" 179 and f(S?) does not meet any of the handles (¢!) for i = 1,2,...p,.
One easily checks that then (2) is true.

(2) = (1) We can isotop f such that it is transversal to the transverse spheres
of the handles (¢) for ¢ = 1,2,...p,. Because the sum of the dimension of the
source of f and of the dimension of the transverse spheres is the dimension of
01W,, the intersection of the image of f with the transverse sphere of the handle
(¢?) consists of finitely many points z;1,Z;2,...,Tis; fori =1,2,...p,. Fix a
base point y € S?. It yields a base point z = f(y) € W. Fix for each handle
(¢?) a path w; in W from a point in its transverse sphere to z. Let u; ; be a path
in S? with the property that u;;(0) = y and f(u;;(1)) = z;; for 1 < j <r;
and 1 <4 < pg. Let v; ; be any path in the transverse sphere from z; ; to w;(0).
Then the composition f(u; ;) * v;; * w; is a loop in W with base point z and
thus represents an element denoted by ; ; in 7 = m (W, 2). It is independent
of the choice of u;; and v; ; since S? and the transverse sphere of each handle
(¢7) are simply connected. The tangent space Ty, ;61 Wy is the direct sum of
Ty-1(z,; ,)SP and the tangent space of the transverse sphere {0} x S"~'~¢ of
the handle (¢7) at z;;. All these three tangent spaces come with preferred
orientations. We define elements ¢; ; € {£1} by requiring that it is 1 if these
orientations fit together and —1 otherwise. Now one easily checks that

=73 z €ij Vi [87],

=1 j=1

where [¢]] is the element associated to the handle (¢!) after the choice of the
path w; (see (1.18) and (1.20)). We have by assumption [f] = +-7-[¢] ] for some
v € 7. We want to isotop f such that f does not meet the transverse spheres
of the handles (¢7) for i # 49 and the transverse sphere of (¢; ) transversally
and in exactly one point. Therefore it suffices to show that in the case that the
number f;l r; of all intersection points of f with the transverse spheres of the
handles (¢7) for ¢ = 1,2,...p; is bigger than one that we can change f up to
isotopy such that this number becomes smaller. We have

Pq 7y

£oy-[88] = D0 e 6]

i=1 j=1

Recall that the elements [¢!] for 7 = 1,2,...p, form a Zr-basis. Hence we can
find an index i € {1,2,...p,} and two different indices jq, jo € {1,2,...7;} such
that the composition of the paths f(ui,j, ) *vij, *v; 5, * f(u; ;,) is nullhomotopic
in W and hence in 8;W, and the signs ¢; ;, and ¢; ;, are different. Now by
the Whitney trick (see [46, Theorem 6.6 on page 71|, [67]) we can change f up
to isotopy such that the two intersection points x;j;, and x;j, disappear, the
other intersection points of f with transverse spheres of the handles (¢7) for
i € {1,2,...p,} remain and no further intersection points are introduced. For
the application of the Whitney trick we need the assumption n — 1 > 5. This
finishes the proof of the Homology Lemma 1.22. |
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Lemma 1.23 (Modification Lemma) Let f : S? — 9; W, be an embedding
and let x; € Z7 be elements for j = 1,2...ps11. Then there is an embedding
g: 589 = O W, with the following properties:

1. f and g are isotopic in 01 W41

2. For a given lifting f: S? — VI’\/Z of f one can find a lifting g : S — VT/’; of
g such that we get in Cy(W)

Pg+1

6 = A+ 2 degale?™],

j=1
where dgy1 is the (g + 1)-th differential in C., W, 3/0\1/1//')

Proof : Any element in Z7 can be written as a sum of elements of the shape
+v for v € 7. Hence it suffices to prove for a fixed number j € {1,2...p,},
fixed element v € 7 and fixed sign ¢ € {+1} that one can find an embedding
g : 87 — 0y W, which is isotopic to f in 0 W,+1 and satisfies for an appropriate
lifting g

6 = []+e-v-dpra[6™]:

Consider the embedding ; : S7 = 7 x {z} C §7 x §"~2¢ C 9(¢*") C AW,
for some point z € S"727¢ = 9D""179. Tt is in O, W,1 isotopic to a trivial
embedding. Choose a path w in W, connecting a point in the image of f with
a point in the image of £;. Without loss of generality we can arrange w to be
an embedding. Moreover, we can thicken w : [0,1] — 8;W, to an embedding
w: [0,1] x D? — 0 W, such that wW({0} x D?) and wW({1} x D?) are embedded
g-dimensional disks in the images of f and t; and @W((0,1) x D7) does not meet
the images of f and ¢;. Now one can form a new embedding, the connected
sum g := fl,t; : ST = Oy W,. It is essentially given by restriction of f and ¢;
to the part of S9, which is not mapped under f and ¢; to the interior of the
disks wW({0} x D), w({1} x D?), and W|jg 1)x se-1- Since t; is isotopic to a trivial
embedding in 0; W41, the embedding g is isotopic in 01 W41 to f. Recall that
we have fixed a lifting fof f- This determines a unique lifting of g, namely, we
require that f and g coincide on those points, where f and g already coincide.
For an appropriate element ' € 7 one gets [g] = [f] + 7 - dq+1([¢?+1]), since
tj : 87 = 01W, C W, is homotopic to ¢§+1|5qx{0} : 8T x {0} =87 > W,
in W,. We can change the path w by composing it with a loop representing
v+ (7))~ € n. Then we get for the new embedding g that

6] = [f] + 7 dgs1 ([07H]).

If we compose t; with a diffeomorphism S? — 57 of degree —1, we still get an
embedding g which is isotopic to f in 01 W, and satisfies

[G] = [f] — 7 dgr1 (6271
This finishes the proof of the Modification Lemma 1.23. n
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Lemma 1.24 (Normal form lemma) Let (W;0,W,01W) be an n-dimensional
oriented compact h-cobordism for n > 6. Let q be an integer with 2 < g <n—3.
Then there is a handlebody decomposition which has only handles of index q and
(g+1), i.e. there is a diffeomorphism relative oW

Pqg+1
W = §W x|[0,1] +Z @0 + > (¢™).
=1 t=1

Proof : In the first step we show that we can arrange W = W,, ie. p, =0
for r < g — 1. We do this by induction over g. The induction begin ¢ = 2 has
already been carried out in Lemma 1.21. In the induction step from ¢ to (g +1)
we must explain how we can decrease the number of ¢g-handles provided that
there are no handles of index < ¢. In order to get rid of the handle (¢}) we want
to attach a new (¢ + 1)-handle and a new (g + 2)-handle such that (¢7) and the
new (¢+ 1)-handle cancel and the new (g+1)-handle and the new (¢+2)-handle
cancel each other. The effect will be that the number of g-handles is decreased
by one at the cost of increasing the number of (¢ + 2)-handles by one.

Fix a trivial embedding %° * : S¢ x D*~1-¢ — 7 — 0}W,. Since the inclusion
W — Wis a homotopy equlvalence H (W 30 ) = 0 for all p > 0. Since
the pth homology of C.(W, BOW) is H, (W BOW) = 0, the Zm-chain complex

(W aoW) is acyclic. Since Cj— 1(W 30W) is trivial, the g-th differential of

C.(W, (90W) is zero and hence the (¢ + 1)-th differential d,+; is surjective. We
can choose elements z; € Z7 such that

Pg+1

Z ;- dgs1([6] ID

Since a = Eq+l|5qx{0} — 0YW, is nullhomotopic, [a] = 0 in Hq(I/Vq,W;_/l).
Because of the Modification Lemma 1.23 we can find an embedding 7! :
S9 x D"=179 — 9W, such that 8 := 97| gax o} is isotopic in & Wy, to o and

we get
Pqg+1

18] = a1+Zx] w1851 = [e]l.

Because of the Homology Lemma 1.22 the embedding 3 = 1%|sqx 0 is isotopic
in 61 W, to an embedding vy : $7 = 0, W, which meets the transverse sphere of
(¢7) transversally and in exactly one point and is disjoint from the transverse
spheres of all other handles of index q By construction 97! is isotopic in
01Wy41 to the trivial embedding 1/1 . Now we can apply the Elimination
Lemma 1.16. This finishes the proof that we can arrange W = W,,.

Next we explain the dual handlebody decomposition. Suppose that W is
obtained from dyW x [0,1] by attaching one g-handle (¢?), i.e. W = gW x
[0,1]+ (#?). Then we can interchange the role of oW and 61 W and try to built
W from 0; W by handles. It turns out that W can be written as

W = &W x[0,1] + ("9 (1.25)
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by the following argument.
Let M be the manifold with boundary S9! x S?~1~¢ obtained from J,W
by removing the interior of ¢?(S97! x D"79). We get

W g a(]W X [0, 1] USq—l xDnr—a Dq X Dn_q
M x [O> 1] Usa-1 x8m—2-2x[0,1]
(8771 x D179 x [0,1] Uga-1x pr-ax {1} D? x D7) .

Inside S971 x D™ 179 x [0,1]Uge-1x pr-ax 1} D? x D"~7 we have the following
submanifolds

X = S7'x1/2-D" 170 x[0,1] Uge-1x1/2.pr-axf1} D! x 1/2- D"

Y = STl x1/2.8"11x [0,1] Usa-1x1/2.5n~ax{1} D? X 1/2- 85774,
The pair (X,Y) is diffeomorphic to (D? x D"9, D7 x S™~179) ie. it is a
handle of index (n — ¢). Let N be obtained from W by removing the interior
of X. Then W is obtained from N by adding a (n — g)-handle, the so called
dual handle. One easily checks that N is diffeomorphic to W x [0, 1] relative

AW x {1}. Thus (1.25) follows.
Suppose that W is relatively oW of the shape

W 60Wx[0,1]+Z(¢?)+Z(¢§)+...+zn:(¢;‘),
=1

=1 =1

Then we can conclude inductively using the Associativity Lemma 1.9 and (1.25)
that W is diffeomorphic relative to ;W to

Pn—1

W o= BlWx[0,1]+i:($?)+ Z($§)+...+Z($§‘). (1.26)

=1 =1

This corresponds to replacing a Morse function f by —f. The effect is that the
number of g-handles becomes now the number of (n — ¢)-handles.

Now applying the first step to the dual handlebody decomposition for ¢
replaced by (n —g—1) and then considering the dual handlebody decomposition
of the result finishes the proof of the Normal Form Lemma 1.24. [ |

1.4 Handlebody decomposition of an h-cobordism
and Whitehead groups
Let (W,0oW, 0, W) be an n-dimensional compact oriented h-cobordism for n >

6. By the Normal Form Lemma 1.24 we can fix a handlebody decomposition
for some fixed number 2 < g<n-3

Pg+1

W W x 014360 + 3 (60,

=1 =1
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Recall that the Zn-chain complex C, (W, 50\1/17 ) is acyclic. Hence the only non-
trivial differential dyq1 : Hyp1 (Wop1, Wy) — Hy(Wy, W,_,1) is bijective. Recall
that {[¢77] | i = 1,2...pyq1} is a Zm-basis for Hyp1(Wye1,W,) and {[¢] |

i =1,2...p,} is a Z7-basis for Hq(I/’I\/Jq,V/V;_/I). In particular p; = pg+1- The
matrix A, which describes the differential d,4; with respect to these basis, is an
invertible (pg, py)-matrix over Z7. Since we are working with left modules, dg41
sends an element z € (ZG)" to = - A € ZG™, or equivalently, d,,1([¢7"']) =
=1 0i(45]-

Next we define an abelian group Wh(r) as follows. It is the set of equivalence
classes of invertible matrices of arbitrary size with entries in Z 7, where we call an
invertible (m, m)-matrix A and an invertible (n, n)-matrix B over Zw equivalent,
if we can pass from A to B by a sequence of the following operations:

1. B is obtained from A by adding the k-th row multiplied with z from the
left to the [-th row for £ € Zm and k # [;

2. B is obtained by taking the direct sum of A and the (1,1)-matrix I; = (1),

i.e. B looks like the block matrix ( 61 (1) );

3. A is the direct sum of B and I. This is the inverse operation to (2);

4. B is obtained from A by multiplying the i-th row from the left with a
trivial unit , i.e. with an element of the shape £y for v € =;

5. B is obtained from A by interchanging two rows or two columns.

The group structure is given on representatives A and B as follows. By
taking the direct sum A @ I,, and B & I,, with the identity matrices I, and
I,, of size m and n for appropriate m and n one can arrange that A ® I,,, and
B @ I, are invertible matrices of the same size and can be multiplied. Define
[A]-[B] by [(A® 1) - (B® I,)]. The zero element 0 € Wh(r) is represented by
I, for any positive integer n. The inverse of [A4] is given by [A71]. We will show
later in Lemma 2.4 that the multiplication is well-defined and yields an abelian
group Wh(wr).

Lemma 1.27 1. Let (W,0,W,01 W) be an n-dimensional compact oriented
h-cobordism for n > 6 and A be the matriz defined above. If [A] = 0 in
Wh(r), then the h-cobordism W is trivial relative SoW ;

2. Consider an element w € Wh(n), a closed oriented manifold M of di-
mension n — 1 > 5 with fundamental group m™ and an integer q with
2 < q<n-—3. Then we can find an h-cobordism of the shape

DPq Pg+1
W=Mx[0,1]+) (¢)+ Y _ (¢
i=1 =1

such that [A] = u.
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Proof : (1) It suffices to show that we can modify the given handlebody de-
composition in normal form of W with associated matrix A such that we get
a new handlebody decomposition in normal form whose associated matrix B is
obtained from A by applying one of the operations (1), (2), (3), (4) and (5).
We begin with (1). Consider W’ = oW x[0, 1]+ 352, (¢)+ 354, (617).
Notice that we get from W' our h-cobordism W if we attach the handle (¢{*?).

By the Modification Lemma, 1.23 we can find an embedding 5;”1 : §Ix D
O, W' such that 5;”1 is isotopic to ¢;’+1 and we get

8 sxto] = [o et |+ dura (G617

If we attach to W' the handle (Efﬂ), the result is diffeomorphic to W relative
OoW by the Isotopy Lemma 1.8. One easily checks that the associated invertible
matrix B is obtained from A by adding the k-th row multiplied with z from the
left to the the [-th row.

The claim for the operations (2) and (3) follow from the Cancellation Lemma
1.12 and the Homology Lemma 1.22. The claim for the operation (4) follows
from the observation that we can replace the attaching map of a handle ¢7 :
S? x D""1~¢ — 5, W, by its composition with f x id for some diffeomorphism
f: 89 — 5% of degree —1 and that the base element [¢] can also be changed
to v - [#7] by choosing a different lift along I/IA/; — W,. Operation (5) can be
realized by interchanging the numeration of the g-handles and (g + 1)-handles.

(2) Fix an invertible matrix A = (a; ;) € GL(n,Z7). Choose trivial pairwise
disjoint embeddings ¢? : S* x D"~2 — M, x {1}. Consider

Wa = Mo x [0,1] + (¢7) + (63) + ... + (¢2)-

Since the embeddings ¢? are trivial, we can construct embeddings ¢3 : S% x
D=3 5 §; W, and lifts ¢3 : S? x D"=3 — 8; W, such that in 73 (W2, 8oW)

(63|52 x 03] = > ai;- )
Jj=1

Put W = Wa + (¢3) + (¢3) + ... + (#2). One easily checks that W is an h-
cobordism over My with a handlebody decompostion which realizes the matrix
A. This finishes the proof Lemma 1.27. [ |

Remark 1.28 If 7 is trivial, then Wh(n) is trivial. This follows from the
fact that any invertible matrix over the integers can be reduced by elementary
column operations, permutations of columns and rows and multiplication of
a row with +1 to the identity matrix. This is essentially a consequence of the
existence of an Euclidean algorithm for Z. Hence Lemma, 1.27 (2) implies already
the h-Cobordism Theorem 1.2. As soon as we have shown that [4] € Wh(r)
agrees with the Whitehead torsion 7(W, Mp) of the h-cobordism W over M,
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and that this invariant depends only on the diffeomorphism type of W relative
Moy, the s-Cobordism Theorem 1.1 (1) will follow.

Obviously Lemma 1.27 (2) implies the s-Cobordism Theorem Theorem 1.1
(2). We will later see that assertion (3) of the s-Cobordism Theorem 1.1 follows
from assertions (1) and (2) if we have more information about the Whitehead
torsion, namely the sum and the composition formulas.

1.5 Miscellaneous

The s-Cobordism Theorem 1.1 is due to Barden, Mazur, Stallings. Its topolog-
ical version was proven by Kirby and Siebenmann [36, Essay II]. More informa-
tion about the s-cobordism theorem can be found for instance in [33], [46] [55,
page 87-90]. The s-cobordism theorem is known to be false for n = dim(Mp) = 4
in general, by the work of Donaldson [22], but it is true for n = dim(Mp) = 4
for so called “good” fundamental groups in the topological category by results
of Freedman [26}, [27]. The trivial group is an example of a “good” fundamental
groups. Counterexamples in the case n = dim(Mp) = 3 n = dim(My) = 4 are
constructed by Cappell and Shaneson [17]. The Poincaré Conjecture (see The-
orem 1.3) is at the time of writing known in all dimensions except dimension

3.



Chapter 2

Whitehead torsion

Introduction

In this section we will assign to a homotopy equivalence f : X — Y of finite
CW -complexes its Whitehead torsion 7(f) in the Whitehead group Wh(n(Y))
associated to Y. The main properties of this invariant are summarized in the
following

Theorem 2.1 1. Sum formula

Let the following two diagrams be cellular pushouts of finite CW -complexes

X, —1 4 X, Yo kL y
i2l jll k2l lll
Xo —2 X YV, 2, v

Putly =lijoky =lyoky : Yy =Y. Let f; : X; = Y; be homotopy
equivalences for i = 0,1,2 satisfying f1 oi1 = k10 fo and faois = kyo fy.
Denote by f : X — Y the map induced by fo, f1 and fo and the pushout
property. Then f is a homotopy equivalence and

7(f) = ()«7(f1) + (l2)+7(F2) — (lo)«7(fo);

2. Homotopy invariance

Let f ~ g: X = Y be homotopic maps of finite CW -complexes. Then the
homomorphisms f., g« : Wh(n(X)) - Wh(n(Y)) agree. If additionally f
and g are homotopy equivalences, then
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3. Composition formula

Let f: X - Y and g : Y — Z be homotopy equivalences of finite CW -
complexes. Then

m(go f) = g.7(f) +7(9);
4. Product formula

Let f : X' - X and g : Y' — Y be homotopy equivalences of connected
finite CW -complezes. Then

(f x 9) = x(X)-7.7(9) + x(Y) - iu7(f),

where x(X),x(Y) € Z denote the Euler characteristics, j. : Wh(n(Y')) =
Wh(n(X xY)) is the homomorphism induced by j : Y — X xY,y — (y,Zo)
for some base point xo € X and i, is defined analogously;

5. Topological invariance

Let f : X — Y be a homeomorphism of finite CW -complexes. Then

7(f) = 0.

Given an h-cobordism (W; My, fo, M1, f1) over Mp, we define its Whitehead
torsion 7(W, My) by the Whitehead torsion of the inclusion oW — W (see
(2.14)). This is the invariant appearing in the s-Cobordism Theorem 1.1. We
will give some information about the Whitehad group Wh(#(Y)) in Section 2.1.
We will present the algebraic definition of Whitehead torsion and the proof of
Theorem 2.1 in Section 2.2. A geometric approach to the Whitehead torsion is
summarized in Section 2.3. A similar invariant, the Reidemeister torsion, will
be treated in Section 2.4. It will be used to classify lens spaces. In order to
understand the following chapters, it suffices to comprehend the statements in
the s-Cobordism Theorem 1.1 and Theorem 2.1

2.1 Whitehead groups

In this section we define K1(R) for an associative ring R with unit and the
Whitehead group Wh(G) of a group G and relate the definitions of this section
with the one of Section 1.4. Furthermore we give some basic information about
its computation.

Let R be an associative ring with unit. Denote by GL(n,R) the group
of invertible (n,n)-matrices with entries in R. Define the group GL(R) by
the colimit of the system indexed by the natural numbers ... C GL(n,R) C
GL(n+1,R) C ..., where the inclusion GL(n,R) to GL(n + 1, R) is given by

stabilization N
0
A ( 0 1 ) .

Define K1(R) by the abelianization GL(R)/|GL(R),GL(R)] of GL(R). Let
K;(R) be the cokernel of the map K;(Z) — K;(R) induced by the canonical
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ring homomorphism Z — R. The homomorphism det : K;(Z) — {£1}, [4] —
det(A) is a bijection, because Z is a ring with Euclidian algorithm. Hence K7 (R)
is the same as the quotient of K (R) by the cyclic subgroup of at most order two
generated by the class of the (1,1)-matrix (—1). Define the Whitehead group
Wh(G) of a group G to be the cokernel of the map G x {1} - K;(ZG) which
sends (g, +1) to the class of the invertible (1,1)-matrix (£g). This will be the
group, where Whitehead torsion will take its values in.

The Whitehead group Wh(G) is known to be trivial if G is the free abelian
group Z™ of rank n [5] or the free group *.,Z of rank n [60]. There is the
conjecture that it vanishes for any torsionfree group. This has been proven by
Farrell and Jones [23], [24], [25] for a large class of groups. This class contains
any subgroup G C G', where G' is a discrete cocompact subgroup of a Lie group
with finitely many path components, and any group G which is the fundamental
group of a non-positively curved closed Riemannian manifold or of a complete
pinched negatively curved Riemannian manifold. The Whitehead group satisfies
Wh(G x H) = Wh(G) @ Wh(H) [60].

If G is finite, then Wh(G) is very well understood (see [50]). Namely, Wh(G)
is finitely generated, its rank as abelian group is the number of conjugacy classes
of unordered pairs {g,¢g~ !} in G minus the number of conjugacy classes of
cyclic subgroups, and its torsion subgroup is isomorphic to the kernel SK;(G)
of the change of coefficient homomorphism K;(ZG) — K1(QG). For a finite
cyclic group G the Whitehead group Wh(G) is torsionfree. For instance the
Whitehead group Wh(Z /p) of a cyclic group of order p for an odd prime p is
the free abelian group of rank (p — 3)/2 and Wh(Z/2) = 0. The Whitehead
group of the symmetric group S, is trivial. The Whitehead group of Z2 x Z /4
is not finitely generated as abelian group.

Next we want to relate the definitions above to the one of Section 1.4. Denote
by E,(i,5) for n > 1 and 1 < i, < n the (n,n)-matrix whose entry at (¢, j)
is one and is zero elsewhere. Denote by I,, the identity matrix of size n. An
elementary (n,n)-matrix is a matrix of the form I, + r - E,(4,j) for n > 1,
1<4,7<n,i#jandr € R. Let A be a (n,n)-matrix. The matrix B =
A- (I, + 7 - Ey(i,j)) is obtained from A by adding the i-th column multiplied
with r from the right to the j-th column. The matrix C = (I, + 7 - E,(i,7)) - A
is obtained from A by adding the j-th row multiplied with 7 from the left to
the i-th row. Let E(R) C GL(R) be the subgroup generated by all elements in
GL(R) which are represented by elementary matrices.

Lemma 2.2 We have E(R) = [GL(R),GL(R)]. In particular E(R) C GL(R)
is a normal subgroup and K;(R) = GL(R)/E(R).

Proof : For n > 3, pairwise distinct numbers 1 < 1,7,k <n and r € R we can
write I, +r - E,(i,k) as a commutator in GL(n, R), namely

In+7-En(isk) = (In+7-En(i,5)) - (In + En(j, k) -
(In+7- En(5,1))™" - (In + En(j, k)"

This implies E(R) D [GL(R),GL(R)].
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Let A and B be two elements in GL(n, R). Let [A] and [B] be the elements
in GL(R) represented by A and B. Given two elements z and y in GL(R), we
write x ~ y if there are elements e; and e; in E(R) with x = ejyes, in other
words, if the classes of z and y in E(R)\GL(R)/E(R) agree. One easily checks

s~ (9 2[5 2105 2 )l 105% 5))

since each step is given by multiplication from the right or left with a block

Ié’l 19 ) or ( Ié’ IC ) and such a block matrix is

obviously obtained from I», by a sequence of column and row operations and
hence its class in GL(R) belongs to E(R). Analogously we get

on-[( 2 2)]

Since the element in GL(R) represented by 0 —In belongs to E(R), we
I, O

(5 9)]-10o 3)] -0 % §))

[AB] ~ [BA]. (2.3)

matrix of the form

conclude

This shows

This implies for any element z € GL(R) and e € E(R) that zex™! ~ez™lz =¢
and hence zex™ € E(R). Therefore E(R) is normal. Given a commutator

zyz~ly~! for z,y € GL(R), we conclude for appropriate elements ey, ez, e3 in
E(R)

zyzr Ty = eyyzesz Tyl = elyxz_ly_l(yx)eg(yx)_l =ee3 € E(R).
This finishes the proof of Lemma 2.2. ]

Lemma 2.4 The definition of Wh(G) of Section 1.4 makes sense and yields an
abelian group which can be identified with the definition of Wh(G) given in this
section above.

Proof : Notice that the operation (4) appearing in the definition of Wh(G) in
Section 1.4 corresponds to multiplication with an elementary matrix from the
left. Since E(R) is normal by Lemma 2.2, two invertible matrices A and B over
ZG are equivalent under the equivalence relation appearing in the definition
of Wh(G) as explained in Section 1.4 if and only their classes [A] and [B] in
Wh(G) as defined in this section agree. Now the claim follows from Lemma 2.2.
|
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Remark 2.5 Often K;(R) is defined in a little bit more conceptual way in
terms of automorphisms as follows. Namely, K;(R) is defined as the abelian
group whose generators [f] are conjugacy classes of automorphisms f : P — P
of finitely generated projective R-modules P and which satisfies the following
relations. For any commutative diagram of finitely generated projective R-
modules with exact rows and automorphisms as vertical arrows

0 y Pp ——s P, —2 5 P, s 0
fOla‘ fllﬁ‘ leé
0 sy Py —— P, —2— P, > 0

we get the relation [fo] — [fi] + [f2] = 0. If f,g : P — P are automorphisms
of a finitely generated projective R-module P, then [g o f] = [g] + [f]. Using
Lemma 2.2 one easily checks that sending the class [A] of an invertible (n,n)-
matrix A to the class of the automorphism R4 : R® — R™, z + x A defines an
isomorphism from GL(R)/[GL(R), GL(R)] to the abelian group defined above.

2.2 Algebraic approach to Whitehead torsion

In this section we give the definition and prove the basic properties of the White-
head torsion using an algebraic approach via chain complexes. This will enable
us to finish the proof of the s-Cobordism Theorem 1.1. The idea which underlies
the notion of Whitehead torsion will become more transparent in Section 2.3,
where we will develop a geometric approach to Whitehead torsion and link it
to the strategy of proof of the s-Cobordism Theorem 1.1.

We begin with some input about chain complexes. Let f. : C. — D, be
a chain map of R-chain complexes for some ring R. Define cyl,(f«) to be the
chain complex with p-th differential

—Cp-—-1 0 0
—id ¢ O
fo-1 0 dp

Cp—l D Cp © D, > Cp—2®Cp_1 @ Dp_s.

Define cone, (f.) to be the quotient of cyl, (f.) by the obvious copy of C.. Hence
the p-th differential of cone.(f.) is

( —Cp—1 0
fo-1 d
Cp..l (S5} Dp P i > Cp—2 Dp_l.

Given a chain complex C,, define ¥C, to be the quotient of cone,(idc,) by the
obvious copy of C\, i.e. the chain complex with p-th differential

—Cp—
Cpt 25 0, s,
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Definition 2.6 We call cyl,(f.) the mapping cylinder, cone,(f.) the mapping
cone of the chain map f. and EC, the suspension of the chain complex C,.

These algebraic notions of mapping cylinder, mapping cone and suspension are
modelled on their geometric counterparts. Namely, the cellular chain complex of
a mapping cylinder of a cellular map of CW-complexes is the mapping cylinder
of the chain map induced by f. From the geometry it is also clear why one
obtains obvious exact sequences such as 0 — C. — cyl(f.) — cone(f.) = 0 and
0 — D, — cone.(fi) = XC, — 0.

A chain contraction 7. for a R-chain complex C, is a collection of R-
homomorphisms vy, : Cp — Cpy1 for p € Z such that ¢ppy 0y, +7p-10¢p =idg,
holds for all p € Z. We call a R-chain complex C, finite based free if there is a
number N with Cp, = 0 for |p| > N and each R-chain module C, is a finitely
generated free R-module with a preferred basis. Suppose that C, is a finite
based free R-chain complex which is contractible, i.e. which possesses a chain
contraction. Put Coaq = ®pezCap+1 and Cey = SpezCap- Let v, and J, be two
chain contractions. Define R-homomorphisms

(cx +Ve)odd : Coaa = Cev;
(C* + 6*)ev :Cev — Coda-

Let A be the matrix of (¢« + 74 )oda With respect to the given bases. Let B be
the matrix of (¢, + d.)ev With respect to the given bases. Put p, = (yp41 —
On+1) 0 6p and vy, := (Opt+1 — Ynt1) © Yn. One easily checks that (id +p4)odd,
(id +v4)ev and both compositions (c. + Y«)oad © (id +L4)odd © (Cx + O4)ey and
(cx + 0u)ev © (id +¥4)ev © (Cx + Y4)odd are given by upper triangular matrices
whose diagonal entries are identity maps. Hence A and B are invertible and
their class [A], [B] € Ki1(R) satisfy [A] = —[B]. Since [B] is independent of the
choice of 7., the same is true for [A4]. Thus we can associate to a finite based
free contractible R-chain complex C, an element

(C,) = [A € Ki(R). (2.7)

Let f. : C. — D, be a homotopy equivalence of finite based free R-chain
complexes. Its mapping cone cone(f,) is a contractible finite based free R-chain
complex. Define the Whitehead torsion of f. by

7(f.) = t(cone.(f.)) € Ki(R). (2.8)

We call a sequence of finite based free R-chain complexes 0 — C, —» D, <%
E, — 0 based ezact if for any p € Z the basis B for D, can be written as a
disjoint union B’ [[ B" such that the image of the basis of Cp, under i, is B’
and the image of B” under g, is the basis for E,.
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Lemma 2.9 1. Consider a commutative diagram of finite based free R-chain
complexes whose rows are based ezact.

0 > y D! s E, > 0
f*l g*l h*l
0 y Cy y D, > B, > 0

Suppose that two of the chain maps f., g« and h, are R-chain homotopy
equivalences. Then all three are R-chain homotopy equivalences and

7(fe) = 7(9+) + 7(hs) = 0;

2. Let fo ~ g« : Cx — D, be homotopic R-chain homotopy equivalences of
finite based free R-chain complezes. Then

T(fo) = 7(g94);

3. Let f. : Cs = Dy and g, : D, — E,. be R-chain homotopy equivalences of
based free R-chain complexes. Then

7(g« © fi) = 7(gs) + 7(f+)-

Proof : (1) A chain map of projective chain complexes is a homotopy equiv-
alence if and only if it induces an isomorphism on homology. The five-lemma
and the long homology sequence of a short exact sequence of chain complexes
imply that all three chain maps f., h. and g. are chain homotopy equivalences
if two of them are.

To prove the sum formula, it suffices to show for a based free exact sequence

0— C. LN D, %5 E, — 0 of contractible finite based free R-chain complexes
that

7(Cy) = 7(Dy) +7(Ey) = 0. (2.10)

Let u, : Fy — G, be an isomorphism of contractible finite based free R-chain
complexes. Since the choice of chain contraction does not affect the values of
the Whitehead torsion, we can compute 7(F,) and 7(G.) with respect to chain
contractions which are compatible with u,. Then one easily checks in K; (R)

TG = 7(F) = D _(=1)"-[uy, (2.11)

pEZ

where [up] is the element represented by the matrix of u, with respect to the
given bases.

Let €, be a chain contraction for E,. Choose for any p € Z an R-homomorphism
op : Ep = D, satisfying p, 0 04 = id. Define s, : E, = Dy by dpy1 00py1 ©
€p + 0p 0 €p—1 0 €p. One easily checks that the collection of the sp,-s defines a
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chain map s, : E, — D, with g, o s, = id. Thus we obtain an isomorphism of
contractible based free R-chain complexes

e Dqu: Co @ Ey = D,

Since the matrix of i, ® s, with respect to the given basis is a block matrix

of the shape Ig’ I* ) we get [ip, @ sp] = 0in Ki(R). Now (2.11) implies

7(C+ ® D) = 7(E,). Since obviously 7(C. ® D.) = 7(Cy) + 7(D,), (2.10) and
thus assertion (1) follows.

(2) If h. : fx = g« is a chain homotopy, we obtain an isomorphism of based free
R-chain complexes

( hld1 i(()i ) :coney(fu) = Cu1 @ Dy — cones(g«) = Cuzq & D,

We conclude from (2.11)

e -1 = e[ 8 )] =

pEZ

(3) Define a chain map h, : £71 cone,(g.) — cone.(f.) by

0 o0
( —id 0 > : Dp@Ep+1 ——)Cp_l @Dp.
There is an obvious based exact sequence of contractible finite based free R-
chain complexes 0 — cone.(f.) — cone(h.) — cone(g.) — 0. There is also a
based exact sequence of contractible finite based free R-chain complexes 0 —

cone, (g« o fi) N cone,(h.) — cone,(id : D, — D,) — 0, where i, is given by

fp—l 0
0 id |
id 0 : Cp—l [S5) Ep - .Dp_l D Ep (&) Cp._l (&) Dp.
0 0

We conclude from assertion (1)

T(he) = 7(fe) +7(94);
7(he) = 7(g«o fo) +7(ids : D, = D,);
7(ide : D« > Dy) = 0.

This finishes the proof of Lemma 2.9. [ ]

Now we can pass to CW-complexes. Let f : X — Y be a homotopy equiv-
alence of connected finite CW-complexes. Let px : X > Xandpy : Y =Y
be the universal coverings. Fix base points € X and y € Y such that f maps
z = px(Z) toy = py(@). Let f: X — YV be the unique lift of f satisfying
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f(%) = §. We abbreviate 7 = m;(Y,y) and identify m; (X, x) in the sequel with
m by m(f,z). After the choice of the base points Z and § we get unique op-
erations of m on X and V. The lift f is m-equivariant. It induces a Zm-chain
homotopy equivalence Cy(f) : Co(X) — C.(Y). We can apply (2.8) to it and
thus obtain an element

7(f) € Wh(m(Y,y)). (2.12)

So far this definition depends on the various choices of base points. We can
get rid of these choices as follows. If y’ is a second base point, we can choose path
w from y to ¥’ in Y. Conjugation with w yields a homomorphism ¢,, : 71 (Y, y) —
m1(Y,y") which induces (¢y )« : Wh(m1 (Y, y)) = Wh(m (Y, y')). If v is a different
path from y to 3', then ¢, and ¢, differ by an inner automorphism of m; (Y, y).
Since an inner automorphism of (Y, y) induces the identity on Wh(m (Y, y)),
we conclude that (cy,). and (¢,). agree. Hence we get a unique isomorphism
t(y,y") : Wh(m (Y,y)) = Wh(m (Y,y')) depending only on y and y'. Moreover
t(y,y) = id and t(y,y") = t(v',y") o t(y,y"). Therefore we can define Wh(x(Y"))
independently of a choice of a base point by ][,y Wh(m1(Y,y)/ ~, where ~
is the obvious equivalence relation generated by a ~ b < t(y,y')(a) = b for
a € Wh(m(Y,y)) and b € Wh(m (Y,y')). Define 7(f) € Wh(m (Y)) by the
element represented by the element introduced in (2.12). Notice that Wh(w(Y"))
is isomorphic to Wh(m (Y, y)) for any base point y € Y. It is not hard to check
using Lemma 2.9 that 7(f) depends only on f : X — Y and not the choice of
the universal coverings and base points. Finally we want to drop the assumption
that Y is connected. Notice that f induces a bijection mo(f) : mo(X) — 7o (Y).

Definition 2.13 Let f : X — Y be a homotopy equivalence of finite CW -
complezes. Define the Whitehead group Wh(n(Y)) of Y and the Whitehead
torsion 7(f) € Wh(w(Y)) by

Wh(n(Y)) = ®cenyy) Wh(m(C));
7(f) Bcen()T (Flro(n)-1(c) 1 mo(f) 1 (C) = C) .

In the notation Wh(7(Y)) one should think of #(Y) as the fundamental
groupoid of Y. Notice that a map f : X — Y induces a homomorphism f, :
Wh(n(X)) = Wh(n(Y) such that id. =id, (9o f)x = gsofrand f g = f. =
G-

Suppose that the following diagram is a pushout

I

A——f——>B

i| |4

X —Y
g

the map ¢ is an inclusion of CW-complexes and f is a cellular map of CW-
complexes, i.e. respects the filtration given by the CW-structures. Then Y
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inherits a CW-structure by defining Y,, as the union of j(By) and g(X,). If we
equip Y with this CW-structure, we call the pushout above a cellular pushout.
Next we give the proof of Theorem 2.1.

(1), (2) and (3) follow from Lemma 2.9.
(4) Because of assertion (3) we have
T(f xg) = 7(f xidy) + (f x idy).7(idx xg).

Hence it suffices to treat the case g = idy. Now one proceeds by induction over
the cells of Y using assertions (1), (2) and (3).

(5) This (in comparision with the other assertions a much deeper result) is due

to Chapman [18], [19]. This finishes the proof of Theorem 2.1. [ |
We define the Whitehead torsion of an h-cobordism (W; Mg, My, fo, f1)
T(W, M) € Wh(n(Mop)). (2.14)

by 7(W, Mp) = (ig o fo):* (7(ig o fo : Mg — W)), where we equip W and M,
with some CW-structure, for instance one coming from a smooth triangulation.
This is independent of the choice of CW-structure by Theorem 2.1 (5). Because
of Theorem 2.1 (5) two h-cobordism over M, which are diffeomorphic relative
My have the same Whitehead torsion.

Let R be a ring with involution i : R — R ,r — T, i.e. a map satisfying
T+s=7+57-s=3-7 and 1 = 1. Given a (m,n)-matrix A = (a; ;) define
the (n, m)-matrix A* by (a;,;). We obtain an involution

«: K (R) —» Ki(R) ,[A] ~ [4%]. (2.15)

Let P be a left R-module. Define the dual R-module P* to be the left R-
module whose underlying abelian group is P* = hom(P, R) and whose left
R-module structure is given by (rf)(z) := f(z)7 for f € P* and z € P. Then
the involution on K;(R) corresponds to [f : P — P] — [f* : P* — P*]
if one defines K;(R) as in Remark 2.5. We equip ZG with the involution
YoecAg 9 = 2geq g -9+ Thus we get an involution on Ki(ZG) which
induces an involution * : Wh(G) — Wh(G).

Lemma 2.16 1. Let (W; My, fo, M1, f1) and (W'; M{, f§, M1, f1) be h-cobordisms
over Moy and M} and let g : My — M} be a diffeomorphism. Let W U W'
be the h-cobordism over My obtained from W and W' by glueing with the
diffeomorphism fyogo fi' : W — 8oW'. Let u : Wh(M{) — Wh(Mo)
be the isomorphism given by the composition (fo)7 o (i0) o (i1)«0 (f1)«0
(9+)~ %, where iy : Oh4W — W is the inclusion for k =0,1. Then

T(WUW' My) = 7(W, M) +u (r(W', M{)) .
2. Let (W; My, fo, M1, f1) be an h-cobordism over My. Let v : Wh(M;) —

Wh(My) be the isomorphism given by the composition (fo);' o (ig); ! o
(i1)«° (f1)+. Then

*(1(W, Mo)) = (—=1)HmM) . (7 (W, My)).
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Proof : (1) follows from Theorem 2.1.

(2) Let C, (W oW ) be the cellular Zz-chain complex with respect to a trian-
gulation of W of the universal covering W Wifrr=m (W) =m (BOW)
w1 (1 W). Put n = dim(W). The dual Zn-chain complex cn- *(W R4 ) has as
p-th chain module the dual module of C’n-p(W,Bl W) and its p-th differential
is the dual of cp—py1 : Cn_p+1(W,8/1\VI//) - Cn_p(W,gfﬁ//). Poincare duality
yields a Zm-chain homotopy equivalence for n = dim(W) and

AW, W] : C™*(W,0,W) — C.(W,8,W),

where C"‘*(W,Bfl\ﬂ// ) is the dual chain complex of C., (W,é:l/l// ). Inspecting
the proof of Poincaré duality using dual cells [37] shows that this is a base
preserving chain map if one passes to subdivisions. This implies that this Zx-
chain homotopy equivalence has trivial Whitehead torsion. We conclude from
Lemma 2.9

r(C.(W, W) = r(C"*(W,8W)) = (-1 -+ (+(C.(W,8W)))

This finishes the proof of Lemma 2.16 |

Next we can finish the proof of the s-Cobordism Theorem 1.1. As mentioned
already in Remark 1.28, Theorem 1.1 (1) would follow if we can show that
the class of the matrix [A] € Wh(w) agrees with 7(W, My) and that 7(W, My)
depends only on the diffeomorphism type of W relative My (see Lemma 1.27
(1)). Using Theorem 2.1 one can show that the homotopy equivalence f : W —

X of Section 1.2 satisfies 7(f) = 0 and hence 7(W,M,) = T(C*()Z,a/g\ﬁ//)).

We conclude [A] = 7(C.(X ,50747 )) from the existence of the base preserving
isomorphism (1.17). In view of Remark 1.28 and Theorem 1.1 assertions (1)
and (2) of Theorem 1.1 follow. In order to prove Theorem 1.1 (3), we must
show for two h-cobordisms (W; My, My, fo, f1) and (W'; My, M{, fy, f1) over My
with 7(W, M) = (W', Myp) that they are diffeomorphic relative My. Choose
an h-cobordism (W'"; My, M3, f1, f5) over My such that 7(W"; My, Ms, fi, f2) €
Wh(n(M;)) is the image of (W, M) under the isomorphism (f1 041)7 o (foo
20)« : Wh(n(Mp)) — Wh(n(My)), where i, : W — W for k = 0,1 is the
inclusion. We can glue W and W" along M; to get an h-cobordism W Uy, W"
over Mp. From Lemma 2.16 (1) we get 7(W Up,, W, Mp) = 0. Hence there
is a diffeomorphism G : W Uy, W” — M x [0, 1] which induces the identity
on My = My x {0} and a diffeomorphism g, : M2 — My x {1} = M,. Now
we can form the h-cobordism W Uy, W' U, W'. Using G we can construct a
diffeomorphism relative My from W Ups, W Uy, W' to W'. Similarly one can
show that W"U,, W' is diffeomorphic relative M; to the trivial h-cobordism over
M;. Hence there is also a diffeomorphism relative Mo from W Up,, WU, W'
to W. Hence W and W' are diffeomorphic relative My. This finishes the proof
of the s-Cobordism Theorem 1.1. |
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2.3 The geometric approach to Whitehead tor-
sion

In this section we introduce the concept of a simple homotopy equivalence
f : X = Y of finite CW-complexes geometrically. We will show that the
obstruction for a homotopy equivalence f : X — Y of finite CW-complexes to
be simple is the Whitehead torsion. This proof is a CW-version or homotopy
version of the proof of the s-Cobordism Theorem 1.1.

We have the inclusion of spaces S"~2 ¢ ST~ C S"~! C D™, where S7™' C
S™~1 is the upper hemisphere. The pair (D", S7™") carries an obvious relative
CW-structure. Namely, attach a (n — 1)-cell to S_'i_l by the attaching map
id : S»2 — 8™~2 to obtain S”~!. Then we attach to S®~! an n-cell by the
attaching map id : S"~1 — S™~! to obtain D™. Let X be a CW-complex. Let
q: S_’}__l — X be a map satisfying ¢(S™2) C Xp—2 and ¢(ST™') C Xn_1. Let
Y be the space D™ U, X, i.e. the push out

st L, X

| s

D —— Y
9

where ¢ is the inclusion. Then Y inherits a CW-structure by putting Yz = 7(Xi)
fork<n-—2,Y,1 = j(X,_1)Ug(S™ ) and Y} = j(Xi) U g(D™) for k > n.
Notice that Y is obtained from X by attaching one (n — 1)-cell and one n-
cell. Since the map i : Si_l — D™ is a homotopy equivalence and cofibration,
the map j : X — Y is a homotopy equivalence and cofibration. We call j an
elementary ezpansion and say that Y is obtained from X by an elementary
expansion. There is a map r : Y — X with r o j = idx. This map is unique up
to homotopy relative j(X). We call any such map an elementary collaps and
say that X is obtained from Y by an elementary collaps.

An elementary expansion is the CW-version or homotopy version of the
construction in Example 1.11, where we have added a ¢g-handle and a (g + 1)-
handle to W without changing the diffeomorphism type of W. This corresponds
to an elementary expansion for the CW-complex X which we have assigned to
W in Section 1.2.

Definition 2.17 Let f : X = Y be a map of finite CW -complexes. We call it
a simple homotopy equivalence if there is a sequence of maps

X =X[0] & x 2 x2S X[ =y

such that each f; is an elementary expansion or elementary collaps and f is
homotopic to the composition of the maps f;.

The idea of the definition of a simple homotopy equivalence is that such a
map can be written as a composition of elementary maps which are obviously
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homotopy equivalences. This is similar to the idea in knot theory that two
knots are equivalent if one can pass from one knot to the other by a sequence of
elementary moves, the so called Reidemeister moves. A Reidemeister move ob-
viously does not change the equivalence class of a knot and, indeed, it turns out
that one can pass from one knot to a second knot by a sequence of Reidemeister
moves if the two knots are equivalent. The analogous statement is not true for
homotopy equivalences f : X — Y of finite CW-complexes because there is an
obstruction for f to be simple, namely its Whitehead torsion.

Lemma 2.18 1. Let f : X — Y be a simple homotopy equivalence. Then
its Whitehead torsion 7(f) € Wh(Y') vanishes;

2. Let X be a finite CW-complex. Then for any element x € Wh(n(X))
there is an inclusion i : X — Y of finite CW-complexes such that i is a
homotopy equivalence and it (7(i)) = z.

Proof : (1) Because of Theorem 2.1 it suffices to prove for an elementary
expansion j : X — Y that its Whitehead torsion 7(j) € Wh(Y') vanishes. We
can assume without loss of generality that Y is connected. In the sequel we
write 7 = m(Y) and identify 7 = m(X) by m1(f). The following diagram of
based free finite Zm-chain complexes

0 —— C.(X) 2Y o.7) 2 0V, X) —— 0

id*T C*G)T O*T
0 — C(X) L5 (X)) 2 0 ——0

has based exact rows and Zm-chain homotopy equivalences as vertical arrows.
We conclude from Lemma 2.9 (1)

(C.(G)) = 7(idy : Co(X) = Co(X)) +7(0, : 0 = Co(V, X)) = 7(C.(Y,X)).

The Zn-chain complex C, (Y, X) is concentrated in two consecutive dimensions
and its only non-trivial differential is id : Zw — Zn if we identify the two
non-trivial Zm-chain modules with Z7 using the cellular basis. This implies
7(C.(Y, X)) = 0 and hence 7(j) := 7(C.(5)) = 0.

(2) We can assume without loss of generality that X is connected. Put 7 =
m1(X). Choose an element A € GL(n,Zw) representing z € Wh(n). Choose
n > 2. In the sequel we fix a zero-cell in X as base point. Put X' = XVV7_,S™.
Let b; € m,(X') be the element represented by the inclusion of the j-th copy
of S™ into X for j = 1,2...n. Recall that 7,(X’) is a Zn-module. Choose
fori =1,2...n amap f; : S® - X/, such that [f;] = Z?:l a;j - b; holds in
mn(X"). Attach to X’ for each i € {1,2...n} an (n + 1)-cell by f; : S™ = X,.
Let Y be the resulting CW-complex and i : X — Y be the inclusion. Then
1 is an inclusion of finite CW-complexes and induces an isomorphism on the
fundamental groups. In the sequel we identify m and 71 (Y) by m1(2). The
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cellular Z7-chain complex C, (Y, X) is concentrated in dimensions n and (n+1)
and its (n + 1)-differential is given by the matrix A with respect to the cellular
basis. Hence C,(Y,X) is a contractible finite based free Zm-chain complex
with 7(C. (Y, X)) = [A] in Wh(n). This implies that i : X — Y is a homotopy
equivalence with i, !(7(i)) = z. This finishes the proof of Lemma 2.18. |

Notice that Lemma 2.18 (2) is the CW-analogue of Theorem 1.1 (2).

Recall that the mapping cylinder cyl(f) of a map f: X — Y is defined by
the pushout

xx{0y Lo v

! !

X x{0,1] —— cyl(f)

There are natural inclusions ix : X = X x {1} — cyl(f) and iy : Y = cyl(f)
and a natural projection p : cyl(f) — Y. Notice that ix is a cofibration and
poix = f and py oY =idy. Define the mapping cone cone(f) by the quotient
cyl(f)/ix(X).

Lemma 2.19 Let f : X — Y be a cellular map of finite CW -complezes and
A C X be a CW-subcomplex. Then the inclusion cyl(fla) — cyl(f) and in
particular iy : Y — cyl(f) is a composition of elementary expansions and hence
a simple homotopy equivalence.

It suffices to treat the case, where X is obtained from A by attaching an n-cell
by an attaching map g : S* ! — X. Then there is an obvious pushout

8™ % [0,1] Ugn-1x (o3 D™ x {0} —— cyl(f]a)

! !

D™ x [0,1] —  cyl(f)

and an obvious homeomorphism (D" x [0, 1], $™~! x [0, 1]Ugn-14 t0} D" x {0}) =
(D™, 87). .

Lemma 2.20 A map f: X =Y of finite CW -complexes is a simple homotopy
equivalence if and only if ix : X — cyl(f) is a simple homotopy equivalence.

Proof : follows from Lemma 2.19 since a composition of simple homotopy
equivalence and a homotopy inverse of a simple homotopy equivalence is again
a simple homotopy equivalence. | |

Fix a finite CW-complex X. Consider to pairs of finite CW-complexes
(Y,X) and (Z, X) such that the inclusions of X into Y and Z are homotopy
equivalent. We call them equivalent, if there is a chain of pairs of finite CW-
complexes

(Y, X) = (Y[O]vX)a (Y[1]7X)7 (Y[2]7X)7' . 1(Y[n]7X) =(Z,X),
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such that for each k € {1,2,...n} either Y[k] is obtained from Y[k — 1] by
an elementary expansion or Y[k — 1] is obtained from Y[k] by an elementary
expansion. Denote by Wh&®°(X) the equivalence classes [Y, X] of such pairs
(Y, X). This becomes an abelian group under the addition [Y, X] + [Z, X] :=
[Y Ux Z,X]. The zero element is given by [X, X]. The inverse of [Y, X] is
constructed as follows. Choose a map r : ¥ — X with rx = id. Let p :
X x [0,1] =& X be the projection. Then [(cyl(r) U, X) U, X, X] + [Y, X] = 0.
A map g : X = X’ induces a homomorphism g, : Wh&*°(X) — Wh&*°(X') by
sending [V, X] to [Y U, X', X']. We obviously have id, = id and (goh). = g.«oh..
In other words, we obtain a covariant functor on the category of finite CW-
complexes with values in abelian groups.

The next result may be viewed as the homotopy theoretic analogon of the
s-Cobordism Theorem 1.1 (3), where Wh8%°(X) plays the role of the set of the
diffeomorphism classes relative My of h-cobordism over M,

Theorem 2.21 1. Let X be a finite CW -complex. The map
7 : Wh8*°(X) - Wh(X)

sending [Y, X| to i;17(i) for the inclusion i : X =Y is a natural isomor-
phism;

2. A homotopy equivalence f : X — Y is a simple homotopy equivalence if
and only if 7(f) € Wh(Y") vanishes.

Proof : (1) The map 7 is a well-defined homomorphism by Theorem 2.1 and
Lemma 2.18 (1). It is surjective by Lemma 2.18 (2).

We give only a sketch of the proof of injectivity which is similar but much
easier than the proof of s-Cobordism Theorem 1.1 (1). Consider an element
[Y, X] in Wh8®°(X) with i;'7(¢) = 0 for the inclusion i : X — Y. We want
to show that [Y,X] = [X, X] by reducing the number of cells, which must
be attached to X to obtain Y, to zero without changing the class [Y, X] €
Wh8®°(X). This corresponds in the proof of the s-Cobordism Theorem 1.1 (1)
to reducing the number of handles in the handlebody decomposition to zero
without changing the diffeomorphism type of the s-cobordism.

In the first step one arranges that Y is obtained from X by attaching only
cells in two dimensions r and (r + 1) for some integer r. This is analogous to,
but much easier to achieve than in the case of the s-Cobordims Theorem 1.1 (1)
(see Normal Form Lemma 1.24). Details of this construction for CW-complexes
can be found in [21, page 25-26].

Let A € GL(n,Z~) be the matrix describing the (r + 1)-differential in the
Zm-chain complex C, (17, X ). As in the proof of the s-Cobordims Theorem 1.1
(1) (see also [21, chapter II, Section §8]) one shows that we can modify (Y, X)
without changing its class [V, X] € Wh®°(X) such that the new matrix B
is obtained from A by applying one of the operations (1), (2), (3), (4) and
(5) introduced in Section 1.4. Since one can reduce A by a sequence of these
operation to the trivial matrix if and only if its class [A] € Wh(X) vanishes and
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this class [A] is i, 17(:), the map 7 is injective. Hence 7 is a natural isomorphism
of abelian groups.

(2) follows from Lemma 2.18 (1), Lemma 2.20 and the obvious fact that i : X —
Y is a simple homotopy equivalence if [V, X] = 0 in Wh8®°(X). This finishes
the proof of Theorem 2.21

2.4 Reidemeister torsion and lens spaces

In this section we deal with Reidemeister torsion which was defined earlier than
Whitehead torsion and motivated the definition of Whitehead torsion. Reide-
meister torsion was the first invariant in algebraic topology which could distin-
guish between spaces which are homotopy equivalent but not homeomorphic.
Namely, it can be used to classify lens spaces up to homeomorphism.

Let X be a finite CW-complex with fundamental group w. Let U be an
orthogonal finite-dimensional 7-representation. Denote by H,(X;U) the ho-
mology of X with coefficients in U, i.e. the homology of the C-chain complex
U ®zr C(X). Suppose that X is U-acyclic, i.e. Hp(X;U) = 0 for all p > 0.
If we fix a cellular basis for C,(X) and some orthogonal R-basis for U, then
U ®zx Cs ()E ) is a contractible based free finite R-chain complex and defines an
element 7(U @z, C.(X)) € K1(R) (see (2.7)). Define the Reidemeister torsion

p(X;U) € R>® (2.22)

to be the image of 7(U®z:Cx (X)) € K1 (R) under the homomorphism K; (R) —
R>? sending the class [A] of A € GL(n, R) to det(A)?. Notice that for any trivial
unit +v the automorphism of U given by multiplication with £+ is orthogonal
and that the square of the determinant of any orthogonal automorphism of U
is 1. Therefore p(X;U) € R>? is independent of the choice of cellular basis for
C.(X) and the orthogonal basis for U and hence is an invariant of the CW-
complex X and U.

Lemma 2.23 Let f : X — Y be a homotopy equivalence of connected fi-
nite CW -complexes and let U be an orthogonal finite-dimensional m = m(Y)-
representation. Suppose that'Y is U-acyclic. Let f*U be the orthogonal m (X)-
representation obtained from U by restriction with the isomorphism m (f). Let
dety : Wh(n(Y)) — R>? be the map sending the class [A] of A € GL(n,Zm(Y))
to det(idy ®z.Ra : U @z Z7" — U @z, Z71")?, where R : Zw™ — Z7" is the
Z-automorphism induced by A. Then

p(Y,U)
p(X, f*U)
Proof : This follows from Lemma 2.9 (1) applied to the based exact sequence

of contractible based free finite R-chain complexes 0 — U ®z, C. (17) -+ U Q®zx
cone,(Ci(f)) = = (U QzZmi(f) C*(X)) — 0. [ |

= dety(7(1)).
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Next we introduce the family of spaces which we want to classify completely
using Reidemeister torsion. Let G be a cyclic group of finite order |G|. Let
V be a unitary finite-dimensional G-representation. Define its unit sphere SV
and its unit disk DV to be the G-subspaces SV = {v € V | ||v|]| = 1} and
DV ={v eV |||u]] <1} of V. Notice that a complex finite-dimensional vector
space has a preferred orientation as real vector space, namely the one given by
the R-basis {b1,ib1,b2,1bs,...bp,ib,} for any C-basis {b1,b2,...b,}. Any C
linear automorphism of a complex finite-dimensional vector space preserves this
orientation. Thus SV and DV are compact oriented Riemannian manifolds with
isometric orientation preserving G-action. We call a unitary G-representation
V free if the induced G-action on its unit sphere SV = {v € V | |ju|| = 1} is
free. Then SV — G\SV is a covering and the quotient space L(V) := G\SV
inherits from SV the structure of an oriented closed Riemannian manifold.

Definition 2.24 We call the closed oriented Riemannian manifold L(V') the
lens space associated to the finite-dimensional unitary representation V of the
finite cyclic group G.

One can specify these lens spaces also by numbers as follows.

Notation 2.25 Let Z /[t be the cyclic group of order t > 2. The 1-dimensional
unitary representation Vi for k € Z/t has as underlying vector space C and
1 € Z/t acts on it by multiplication with exp(2wikl/t). Notice that Vi is free
if and only if k € Z/t*, and is trivial if and only if k = 0 in Z/t. Define the
lens space L(t; k1, ...k.) for an integer ¢ > 1 and elements k1, ...k, in Z [t* by
L(eazq:lvki)'

These lens spaces form a very interesting family of manifolds which can be
completely classified as we will see. Two lens spaces L(V) and L(W) of the same
dimension n > 3 have the same homotopy groups, namely their fundamental
group is G and their p-th homotopy group is isomorphic to 7,(S™). They also
have the same homology with integral coefficients, namely H,(L(V)) = Z for
p=0,2n—1, Hy(L(V)) = G for podd and 1 < p < n and H,(L(V)) = 0 for
all other values of p. Also their cohomology groups agree. Nevertheless not of
all them are homotopic. Moreover, there are homotopic lens spaces which are
not diffeomorphic (see Example 2.41).

Suppose that dimc (V) > 2. We want to give an explicit identification

m(LV),z) = G. (2.26)

Given a point z € L(V), we obtain an isomorphism s(z) : w1 (L(V), z) = G by
sending the class of a loop w in L(V') with base point z to the element g € G for
which there is a lift w in SV of w with w(1) = g-w(0). One easily checks using el-
ementary covering theory that this is a well-defined isomorphism. If y is another
base point, we obtain a homomorphism ¢(z,y) : m(L(V),z) = 71 (L(V),y)
by conjugation with any path v in L(V) from z to y. Since m(L(V),z) is
abelian, t(z,y) is independent of the choice of v. One easily checks t(z,z) = id,
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t(y,z) o t(z,y) = t(z,z) and s(y) o t(x,y) = s(z). Hence we can in the sequel
identify m (L(V),z) with G and ignore the choice of the base point z € L(V).

Let p : EG — BG be a model for the universal principal G-bundle. It
has the property that for any principal G-bundle ¢ : £ — B there is a map
f : B — BG called classifying map of q which is up to homotopy uniquely
determined by the property that the pull back of p with f is isomorphic over B
to q. Equivalently p can be characterized by the property that BG is a CW-
complex and EG is contractible. The space BG is called the classifying space
for G. Let f(V) : L(V) — BG be the classifying map of the principal G-bundle
SV — L(V). Put n = dim(L(V)) = 2 - dim¢(V) — 1. Define the element

I(V) € Ho(BG) (2.27)

by the image of the fundamental class [L(V)] € H,(L(V)) associated to the
preferred orientation of L(V') under the map H,,(f(V)) : Ho(L(V)) — Hn(BG)
induced by f(V') on homology with integer coefficients. The map f(V) : L(V) —
BG is n-connected since its lift SV — EG is n-connected. Hence H,(f(V))
is surjective. As H,(L(V)) is infinite cyclic with [L(V)] as generator, (V)
generates H,(BG). Notice that n is odd and that H,(BG) is isomorphic to
Z /|G| for a cyclic group G of finite order |G|. A map f: L(V) — L(W) of lens
spaces of the same dimension n = dim(L(V)) = dim(L(W)) for two free unitary
G-representations V and W induces a homomorphism 7 (f,z) : 71 (L(V)) —
m1(L(W)). Under the identification (2.26) this is an endomorphism 7 (f) of G.
Define

e(f) € z/|G| (2.28)

to be the element for which 7, (f) sends g € G to g¢/). Notice that e(f) depends
only on the homotopy class of f and satisfies e(go f) = e(g) -e(f) and e(id) = 1.
In particular e(f) € Z/|G|* for a homotopy equivalence f : L(V) — L(W).
Define the degree

deg(f) € Z (2.29)

to be the integer for which H,(f) sends [L(V)] € H,(L(V)) to deg(f)-[L(W)] €
H,(L(W)).
Given two spaces X and Y, define their join X *Y by the push out

XxY — X x cone(Y)

l !

cone(X) x Y —— X*xY

If X and Y are G-spaces, X * Y inherits a G-operation by the diagonal oper-
ation. Given two free finite-dimensional unitary G-representations, there is a
G-homeomorphism

S(VeW) = SVxSW. (2.30)
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Theorem 2.31 (Homotopy classification of lens spaces) Let L(V) and L(W)
be two lens spaces of the same dimension n > 3. Then

1. The map
e x deg: [L(V),L(W)] = Z/|G| X Z, [f] — e(F), deg(f)

is injective, where [L(V), L(W)] is the set of homotopy classes of maps
from L(V') to L(W);

2. An element (u,d) € Z /|G| X Z is in the image of e x deg if and only if we
get in H,(BG) _
d-1W) = e(f)m=V) - (V)

3. L(V) and L(W) are homotopy equivalent if and only if there is an element
e € Z/|G|* satisfying in H,(BQG)

(W) = edimeV) . (V).

L(V) and L(W) are oriented homotopy equivalent if and only if there is
an element e € Z/|G|* satisfying in H,(BG)

I(W) = im0V (v,

4. The lens spaces L(t; k1,...ke) and L(t;lq,...,1l.) are homotopy equivalent
if and only if there is e € Z/t* such that we get [[;_, ki = +e®-[[;; li in
Z/t*.

The lens spaces L(t;ky,...k.) and L(t;11,...,l.) are oriented homotopy
equivalent if and only if there is e € Z/t* such that we get [[;_, ki =
e - Tl i in Z/t~.

Proof : (1) Obviously e(f) and deg(f) depend only on the homotopy type of
f. Consider two maps fo, f1 : L(V) — L(W) with e(fo) = e(f1) and deg(fo) =
deg(f1). Choose lifts fo,f1: SV = SW. Let a : G — G be the automorphism
sending g to g¢(fo) = g¢(/1). Then both lifts f; are a-equivariant. Since G
acts orientation preserving and freely on SV and SW, the projection induces
a map H,(SV) — H,(L(V)) resp. Hp(SW) — H,(L(W)) which send the
fundamental class [SV] resp. [SW] to |G| - [L(V)] resp. |G|-[L(W)]. Hence
deg(fx) = deg(fx) for k = 0,1. Thus deg(fo) = deg(f1) implies deg(fo) =
deg(f1). Let a*SW be the G-space obtained from SW by restricting the group
action with a. Then fo and ﬁ : SV — o*SW are G-maps with deg(fo) =
deg(f1). It suffices to show that they are G-homotopic.

We outline an elementary proof of this fact. There is a G-CW -structure on
SV such that there is exactly one equivariant cell G x D* in each dimension.
It induces a G-CW-structure on SV x [0, 1] using the standard CW-structure
on [0,1]. We want to define inductively for £ = —1,0,...,n G-maps h; :
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SV x {0 1} U SV, x [0,1] —» a*SW such that hj extends hx_y and h_; =
foll f1 : SV x {0,1} = a*SW. Then h, will be the desired G-homotopy
between fo and f;. Notice that SV x {0,1} U SV} x [0,1] is obtained from
SV x {0,1} U SV4_; x [0,1] by attaching one equivariant cell G x D**! with
some attaching G-map g : G x S¥ — SV. In the induction step we must show
that the composition hr_1 0 g : G x S¥* — SW can be extended to a G-map
G x D*¥+1 — SW. This is possible if and only if its restriction to S¥ = {1} x S*
can be extended to a (non-equivariant) map D**! — SW. Since SW is n-
connected, this can be done for any map S* — SW for k < n. In the final step
we run into the obstruction that a map S™ — SW can be extended to a map
D™t - SW if and only if its degree is zero. Now one has to check that the
degree of the map (hn—1 © gn)lq1yxs» : {1} x ™ = S™ — SW is exactly the
difference deg(fo) — deg(f1) and hence zero.

(2) Given amap f: LV — LW, let m(f) : G — G be the map induced on the
fundamental groups under the identification (2.26). Then the following diagram
commutes

H(Lv) 29 moaow)
v | |y
H,(BG) ————— Hn(BG)
H,(Bm1(f))
This implies
deg(f) - UW) = Hn(Bm(f))U(V)). (2.32)
Given e € Z, let m, : Z/t — Z/t be multiplication with e. Let e, k1, ...k,
ly, ...l be integers which are prime to t. Fix integers ki,...k, such that

we get in Z/t the equation k; - k} = 1. Define a me-equivariant map d; :
Vk — Vi, by z + zFikie, Tt has degree kil;e. The m,-equivariant map *$_,d; :

¢_ 1SV, = x{_, SV}, yields under the 1dent1ﬁcat10n (2.30) a me-equxvarlant map
f S(®5-, ) — S(®¢_ Vi;) of degree e°-[];_, kjl;. By taking the quotient un-
der the G—actlon yields amap f : L(¢t; k1, ... k ) —+ L(t li,...1.) of n = (2¢—1)-
dimensional lens spaces with deg(f) = e°- [];_, kil; and e( f) = e. We con-
clude from (2.32) in the special case k; = I; for i = 1,...,¢ that H,(Bm,) :
H,(BZ/t) - H,(BZ/t)is multiplication with e since {(¢; k1 . . . k¢) := (D, Vi,)
is always a generator of H,(BG). Thus (2.32) becomes

deg(f) - UW) = e(H)T™M (V). (2.33)
We conclude from (2.33) in the special case e = 1 that we get in H,(B(Z/t))

the equation

ﬁhwmh”. Hk Wt ky, ... ke). (2.34)
i=1

Next we show for a map f : L(V) — L(W) and m € Z that we can find
another map f': LV — LW with e(f) = e(f') and deg(f’) = deg(f) +m - |G|.
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Fix some embedded disk D™ C SV such that g- D" N D™ # ¢ implies g = 1.
Let f : SV — SW be a lift of f. Recall that f is m.-equivariant for m, :
G = G, g — g°. Define a new mc-equivariant map f': SV — SW as follows.
Outside G - D™ the maps f and f’ agree. Let 1D" be {zx € D" | ||z|| < 1/2}.
Define /' on G - (D" — 1D") by sending (g,t - z) for g € G, t € [1/2,1] and
z € S"t = 9D to g° - f((2t — 1)z). Let ¢ : (AD",81D™) — (SW, F(0)) for
0 € D™ the origin be a map such that the induced map (3D"™)/8(3D™) - SW
has degree m. Define f’lg_%D,. :G-1D™ — SW by sending (g,z) to g° - c(z).
One easily checks that f’ has degree deg(f) +m-|G|. Then G\f’ is the desired
map f'.

Notice that there is at least one map f : L(V) — L(W) with e(f) = e for
any given e € Z/|G|. This follows by an argument similar to the one above,
since G acts freely on SV and SW is (dim(SV) — 1)-connected. Now assertion
(2) follows.

(3) Let f : SV — SW be a map. Then f is a homotopy equivalence if and only
if it induces isomorphisms on all homotopy groups. This is the case if and only
if m(f) is an automorphism and f : SV — SW induces an isomorphism on
all homotopy groups. Hence f is a homotopy equivalence if and only if e(f) €
Z/|G)* and deg(f) = deg(f) = +1. Recall that f is an oriented homotopy
equivalence if and only if f is a homotopy equivalence and deg(f) = 1. Now the
claim follows from assertion (2). '

(4) follows from (2.34) and assertion (3). This finishes the proof of Theorem
2.31. |

Lemma 2.35 Let G be a cyclic group of finite order |G|.

1. Let V be a free unitary finite-dimensional G-representation. Let U be an
orthogonal finite-dimensional G-representation with US = 0. Then L(V)
is U-acyclic and the Reidemeister torsion p(L(V);U) € R0 is defined;

2. Let V,Vi, V3 be free unitary finite-dimensional G-representations. Let U,
Uy and U, be orthogonal finite-dimensional G-representations with U® =
UF =U§ =0. Then

(L1 ®V2),U) = p(L(V1);U) - p(L(V2);V));
p(L(V),Uh@Uz) = p(L(V);Uh) - p(L(V);U2))-

Proof : (1) Let X be a finite CW-complex with fundamental group G. We

show that X is U-acyclic if G acts trivial on H,(X) and U is an orthogo-
nal finite-dimensional G-representation with UY = 0. We have to show that
Hy(Cu(X)®z6U) = Hp(X) ®z R®re U vanishes. By assumption H,(X) ®z R
is a direct sum of copies of the trivial G-representation R and U is a direct sum
of non-trivial irreducible representations. Since for any non-trivial irreducible
G-representation W the tensor product R g W is trivial, the claim follows.
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(2) The claim for the second equation is obvious, it remains to prove the first.
Since G-acts trivially on the homology of SV and SW and hence on on the
homology of SV x SW, SV x DV and DV x SW, we conclude from Theorem
2.1 (1), Lemma 2.9 (1), Lemma 2.23 and (2.30)

p(L(VoW);U)
= p(G\(DV x SW;U) - p(G\(SV x DW;U) - (p(G\(SV x SW;U))"L.

Hence it remains to show

p(G\(DV x SW;U) p(L(W);U);
p(G\(SV x DW;U) p(L(V);U);
p(G\(SV x SW;U) = 1.

These equations will follow from the following slightly more general formula
(2.36) below. Let D, be a finite RG-chain complexes such that G-acts trivially
on its homology. Assume that D, comes with a R-basis. Then C.(SV) ®z
D, with the diagonal G-action is a finite RG-chain complex such that G acts
trivially on its homology and there is a preferred RG-basis. Let xr(D.) be the
Euler characteristic of D,, i.e.

Xr(D.) = Y (=1)?-dimg(D,) = Y (~1)7 - dimg(Hp(D.)).
PEZ PEZ

Then
p(Ce(SV) @z D, ®rgU) = p(L(V);U)XeP4)] (2.36)

where p(C.(SV)®z D. ®rgU) € R is the Reidemeister torsion of the acyclic
based free finite R-chain complex C,(SV) ®z D. ®rc U which is defined to be
the image of the Whitehead torsion 7(C\ (SV)®z D.®rcU) € K1 (R) (see (2.7))
under the homomorphism Ki(R) — R>?, [A] ~ det(4)2.

It remains to prove (2.36). Since RG is semi-simple, there is a RG-chain
homotopy equivalence p, : D, — H,(D.), where we consider H,(D,) as RG-
chain complex with the trivial differential. .

Equip H.(D.) with an R-basis. Then we get in K;(RG) from Lemma 2.9

(1)
T (idc*(gv) ®ps : Cu(SV)®z Dy = Cu(SV) ®2z H*(D*))

= Y (-1)7 7 (idc,(sv) ®px : C4(SV) ®z Du = Co(SV) ®z H.(D.))
qEZ

> (-1)P - dimze(Cp(SV)) - 7 (idz ®pa : ZG @z Du = ZG ©z H.(D.))
qEZ

X(L(V)) -7 (idzg ®p« : ZG ®z Dy — ZG @z H.(D.))

0.
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The chain complex version of Lemma 2.23 shows

p(Cu(SV) ®z D ®rgU) = p(C(SV) ®z Hi(Ds) ®rc U).
Obviously
P(C.(SV) @z H.(Ds)®raU) = p(Ca(SV)®z6U)P) = p(L(V); U)*(P-).
This finishes the proof of Lemma 2.35. |

Theorem 2.37 (Diffeomorphism classification of lens spaces) Let L(V)
and L(W) be two lens spaces of the same dimension n > 3. Then the following
statements are equivalent.

1. There is an automorphism a : G = G such that V and oW are isomor-
phic as orthogonal G-representations;

There is an isometric diffeomorphism L(V) — L(W);
There is a diffeomorphism L(V) — L(W);
There is homeomorphism L(V) — L(W);

There is simple homotopy equivalence L(V) — L(W);

S ;o

There is an automorphism « : G — G such that for any orthogonal finite-
dimensional-dimensional representation U with U® =0

p(L(W),U) = p(L(V),a"U)
holds.

7. There is an automorphism o : G = G such that for any non-trivial 1-
dimensional unitary G-representation U

p(L(W),resU) = p(L(V),a* resU)

holds, where the orthogonal representation resU is obtained from U by
restricting the scalar multiplication from C to R.

Proof : The implications (1) = (2) = (3) = (4) = (5) = (6) = (7) are obvious
or follow directly from Theorem 2.1 (5) and Lemma 2.23. Hence it remains to
prove the implication (7) = (1).

Fix a generator g € G, or equivalently, an identification G = Z /|G|. Choose
e € Z/|G)* such that @ : G — G sends g to g°. Recall that V; denotes the
1-dimensional unitary G-representation for which g acts by multiplication with
exp(27mik/|G|). The based ZG-chain complex of SV} is concentrated in dimen-
sion 0 and 1 and its first differential is g* — 1 : ZG — ZG. If g acts on U by
multiplication with the |G|-th root of unity ¢, then we conclude

p(LVi;U) = [|¢* = 1%
p(LVi;U) = |I¢** - 1|
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We can write for appropriate numbers ¢ € Z, ¢ > 1, k;,l; € Z/G*

vV = @le Vki 3
W = @;:1 ‘/lj -

We conclude from Lemma 2.35

p(Lv;U) = [ -1 (" -1y
i=1

[

[Tt =1 (¢ —).

=1

p(LW;a*U)

This implies that for any |G|-th root ¢ of unity with ¢ # 1 the following equation
holds

c

[Ie-v-* -1 = Je5 -5 -1 (239
3=1

=1

We will need the following number theoretic result due to Franz whose proof
can be found for instance in [34].

Lemma 2.39 (Franz’ Independence Lemma) Lett > 2 be an integer and
S={j€Z|0<j<t (jt)=1}. Let (a;)jes be a sequence of integers indexed
by S such that Y ;ega; =0, a; = a;; for j € S and [],c5(¢? = 1)* =1 holds
for every t-th root of unity ( #1. Then a; =0 for j € S.

Putt=|G|. Forje S={j€Z|0<j<|G| (|G| =1} let z; be the
number of elements in the sequence ki, —ki1, k2, —ka, ..., ke, —k., which are
congruent 7 modulo |G|. Each of the elements k; is prime to |G| and hence +x;
is congruent mod |G| to some j € S. This implies ). s z; = 2c. Obviously
zj = 1)g|—; for j € S. Define analogously a sequence yj)jes for the sequence
eli, —ely, ely, —ely, ..., ele, —el.. Puta; =z;—y;forj € S. Then )  ga; =0,
aj = a|g|—; for j € S and we conclude from (2.38) that Hjes(cj —1)% =1for
any |G|-th root of unity ¢ # 1. We conclude from Franz Independence Lemma
2.39 that a; = 0 and hence z; = y; holds for j € S. This implies that there
is a permutation ¢ € X, together with signs ¢; € {£1} for i = 1,2,...¢ such
that k; and ¢; - [,(;) are congruent modulo |G|. But this implies that V; and
a*W,(;) are isomorphic as orthogonal G-representations. Hence V and o*W are
isomorphic as orthogonal representations. This finishes the proof of Theorem
2.37. [ |

Corollary 2.40 Two lens spaces L(t; ki, .., k.) and L(t;11,...,l.) are home-
omorphic if and only there are e € Z/t*, signs €; € {£1} and a permutation
o € . such that k; = €; - e - l,(;) holds in Z[t* fori=1,2,...,c.

Notice that ®f_, Vi, and @;_,V}, are isomorphic as orthogonal representations
if and only if there are signs ¢; € {£1} and a permutation o € X, such that k; =
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€i-ly(;) holds in Z /t* for i = 1,2,...,c. f m, : Z/t — Z [t is multiplication with
e € Z/t*, then the restriction m} (®{_,Vi,) is ®¢_, Vei,. Now apply Theorem
2.37. [ |

Example 2.41 We conclude from Theorem 2.31 and Corollary 2.40 the follow-
ing facts:

1. Any homotopy equivalence L(7; k1, ks) — L(7; k1, k2) has degree 1. Thus
L(7; k1, ko) possesses no orientation reversing selfdiffeomorphism;

2. L(5;1,1) and L(5;2, 1) have the same homotopy groups, homology groups
and cohomology groups, but they are not homotopy equivalent;

3. L(7;1,1) and L(7;2,1) are homotopy equivalent, but not homeomorphic.

2.5 Miscellaneous

We mention that lens spaces are the only closed manifolds M which carry a Rie-
mannian metric with sectional curvature which is constant 1, provided 71 (M) is
cyclic. Reidemeister torsion can be used to classify all such manifolds without
any assumption on 73 (M) and to show that two finite-dimensional (not necessar-
ily free) orthogonal representations V' and W have G-diffeomorphic unit spheres
SV and SW if and only if they are isomorphic as orthogonal representations
(see [54]). The corresponding statement is false if one replaces G-diffeomorphic
by G-homeomorphic. [16],[15], [29].

Let (W,L,L') is an h-cobordism of lens spaces which is compatible with
the orientations and the identifications of m; (L) abd m;/L') with G. Then W
is diffeomorphic relative L to L x [0,1] and L and L' are diffeomorphic [47,
Corollary 12.13 on page 410].

We refer to [21] and [47] for more information about Whitehead torsion and
lens spaces.
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Chapter 3

Normal maps and the
surgery problem

Introduction

In this chapter we want to take the first step to the following problem

Problem 3.1 Let X be a topological space. When is X homotopy equivalent to
a closed manifold?

We will begin with discussing Poincaré duality, which is the first obstruction
from algebraic topology for a positive answer to Problem 3.1 above, in Section
3.1. In Section 3.2 we will deal with the Spivak normal fibration of a finite
Poincaré complex X which is a reminiscense of the normal bundle of the em-
bedding of a closed manifold into some high-dimensional Euclidean space. We
will explain and motivate the notion of a normal map of degree one in Section
3.3. This is a map of degree one f : M — X from a closed manifold M to a
finite Poincaré complex X covered by some bundle data. The surgery problem
is to change it to a homotopy equivalence leaving the target fixed and changing
the source without loosing the structure of a closed manifold. In Section 3.4 we
will introduce the surgery step. This is the manifold analogue of the process
in the world of CW-complexes which is given by adding a cell in order to kill
an element in the homotopy group. We will show that we can make a normal
map f : M — X highly connected by carrying out a finite number of surgery
steps. The surgery obstructions will later arise as obstructions to make f con-
nected in the middle dimension. If f is also connected in the middle dimension,
then Poincaré duality implies that f is a homotopy equivalence from a closed
manifold to X.

We mention that Problem 3.1 is an important problem but the main suc-
cess of surgery comes from its contribution to the question whether two closed
manifolds are diffeomorphic (see the surgery program in Remark 1.5) and the
construction of exotic structures, i.e. different smooth structures on the same

47
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topological manifold. We will restrict our attention for some time to Problem
3.1 because it is a good motivation and guide line for certain techniques like the
surgery step, certain notions like normal maps of degree one and obstructions
and obstruction groups like the signature and the L-groups. After we have de-
veloped the machinery which allows us to solve Problem 3.1 in principle, we will
develop it further in order to carry out the surgery program.

3.1 Poincaré Duality

In order to state Poincaré duality on the level we will need we have to introduce
some algebra. Recall that a ring with involutionR is an associative ring R
with unit together with an involution of rings - : R — R, r +— T such that
T+s=7+% 75 =3r and 1 = 1 holds for r,s € R. Our main example will
be the group ring AG for some commutative associative ring A with unit and a
group G together with a homomorphism w : G — {£1}. The so called w-twisted
involution sends 3_ 5 ag-9t0 D5 cqw(g)-ag -g71. Let M be a left R-module.
Then M* := homg(M, R) carries a canonical right R-module structure given
by (fr)(m) = f(m) - r for a homomorphism of left R-modules f : M — R
and m € M. The involution allows us to view M* = homg(M;R) as a left
R-module, namely define rf for r € R and f € M* by (rf)(m) := f(m) - T for
m € M. Given an R-chain complex of left R-modules C, and n € Z, we define
its dual chain complex C™™* to be the chain complex of left R-modules whose
p-th chain module is homg(Cp_p, R) and whose p-th differential is given by

hompg(cn-pt1,id) : (C"™*)p = homp(Cp—p, R) = (C""*)p—1 = homp(Cp_p+1, R).

Consider a connected finite CW-complex X with fundamental group = and
a group homomorphism w : # —» {£1}. In the sequel we use the w-twisted
involution. Denote by C. (X' ) the cellular Z7-chain complex of the universal
covering. Recall that this is a free Z7-chain complex and the cellular structure
on X determines a cellular Zz-basis on it such that each basis element corre-
sponds to a cell in X. This basis is not quite unique but its equivalence class
depends only on the CW-structure of X (see Section 1.2). The product X x X
equipped with the diagonal 7-action is again a m-C'W-complex. The diagonal
map D : X — X x X sending 7 to (%, %) is m-equivariant but not cellular. By
the equivariant cellular Approximation Theorem (see for instance [39, Theorem
2.1 on page 32]) there is up to cellular m-homotopy precisely one cellular 7-map
D: X — X x X which is m-homotopic to D. It induces a Zm-chain map unique
up to Zm-chain homotopy

C.(D) : Co(X) = Cu(X x X). (3.2)
There is a natural isomorphism of based free Zw-chain complexes

iv : Co(X) ®2 Co(X) S Cu(X x X). (3.3)
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Denote by Z" the Zm-module whose underlying abelian group is Z and on which
g € G acts by w(g) -id. Given two projective Zx-chain complexes C, and D,
we obtain a natural Z-chain map unique up to Z-chain homotopy

$:Z% Rzn (C* KRz D*) — hOmZﬂ-(C—*,D*) (34)
by sending 1@z ®y € ZQ® C, ® D, to
s(1®z®y) : homz.(Cp,Z7) = Dy, (¢p:Cp = Z7) — ¢(x) - y.

The composite of the chain map (3.4) for C, = D, = C,(X), the inverse of the
chain map (3.3) and the chain map (3.2) yields a Z-chain map

Z"* @z Cy(X) = homz(C™*(X), Co(X)).

Notice that the n-homology of homz(C~*(X), C (X)) is the set of Zr-chain ho-
motopy classes [C™™* (X),C, ()A({)]Z,r of Zr-chain maps from C"~*(X) to C\.(X).
Define H,(X;Z") := Hn(Z" ®z C.(X)). Taking the n-th homology group
yields a well-defined Z-homomorphism

N: Hy(X;Z%) = [C"*(X), Co(X)]zx (3.5)

which sends a class € Hp(X;ZY) = H,(Z" ®zx C.(X)) to the Zm-chain
homotopy class of a Zn-chain map denoted by 2Nz : C" *(X) — C.(X).

Definition 3.6 A connected finite n-dimensional Poincaré complex is a con-
nected finite CW -complex of dimension n together with a group homomorphism
w = w(X) : m(X) = {1} called orientation homomorphism and an ele-
ment [X] € Ho(X;Z"Y) called fundamental class such that the Zm-chain map
?7N[X]: C"*(X) = C.(X) is a Zr-chain homotopy equivalence. We will call
it the Poincaré Zm-chain homotopy equivalence.

The orientation homomorphism w : m(X) — {£1} is uniquely determined
by the homotopy type of X by the following argument. Denote by C™* (X ) untw
the Zm-chain complex which is analogously defined as C""*()Z' ), but now with
respect to the untwisted involution. Its n-th homology Hy,(C™ *(X)untw) de-
pends only on the homotopy type of X. If X carries the structure of a Poincaré
complex with respect to w : w1 (X) — {£1}, then the Poincaré Z=-chain homo-
topy equivalence induces a Zm-isomorphism Hn(C"‘*()? Juntw) = Z¥. Thus we
rediscover w from Hn(C’"_*()? Juntw)- Obviously there are two possible choice
for [X], since it has to be a generator of the infinite cyclic group Hp(X,Z"Y) =
H°(X;Z)= 7. A choice of [X] will be part of the Poincaré structure.

The connected finite n-dimensional Poincaré complex X is called simple if
the Whitehead torsion (see (2.8)) of the Zn-chain homotopy equivalence of finite
based free Zz-chain complexes ? N [X]: C"*(X) — C,(X) vanishes.
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Theorem 3.7 Let M be a connected closed manifold of dimension n. Then
M carries the structure of a simple connected finite n-dimensional Poincaré
complex.

For a proof we refer for instance to [64, Theorem 2.1 on page 23]. We explain
at least the idea and give some evidence for it.

Any closed manifold admits a smooth triangulation h : K — M, i.e. a finite
simplicial complex together with a homeomorphism h : K — M such that h
restricted to a simplex is a smooth C*°-embedding. Two such smooth trian-
gulations have common subdivisions. In particular M is homeomorphic to a
finite CW-complex. Fix such a triangulation K. Denote by K' its barycentric
subdivision. The vertices of K’ are the ba/r\yc/g\nters/éF of simplices ¢” in K.
A p-simplex in K’ is given by a sequence gi¢® ...o'%, where 0% is a face of
o%+1, Next we define the dual CW-complex K* as follows. It is not a simplicial
complex but shares the property of a simplicial complex that all attaching maps
are embeddings. Each p-simplex o in K determines a (n — p)-dimensional cell
o* of K* which is the union of all simplices in K’ which begin with o?. So
K has as many p-simplices as K* has (n — p)-cells. The cap product with the
fundamental cycle, which is given by the sum of the n-dimensional simplices,
yields an isomorphism of Zr-chain complexes C"~*(K*) — C.(K). It preserves
the cellular Zw-bases and in particular its Whitehead torsion is trivial. Since K’
is a common subdivision of K and K™, there are canonical Zn-chain homotopy
equivalences C,.(K') = C.(K) and C.(K') — C.(K*) which have trivial White-
head torsion. Thus we can write the Zm-chain map ?N[M] : C™~* (K") = Cu(K")
as a composite of three simple Zn-chain homotopy equivalences. Hence it is a
simple Zr-chain homotopy equivalence.

Remark 3.8 Theorem 3.7 gives us the first obstruction for a topological space
X to be homotopy equivalent to a connected closed n-dimensional manifold (see
Problem 3.1). Namely, X must be homotopy equivalent to a connected finite
simple n-dimensional Poincaré complex.

Remark 3.9 Suppose that X is a Poincaré complex with respect to the triv-
ial orientation homomorphism. Definition 3.6 of Poincaré duality implies that
Poincaré duality holds for any G-covering X — X and yields Poincaré duality
for all possible coefficient systems. In particular we get a Z-chain homotopy
equivalence

ZQzx(?N[X]) 1 Z ®zr C**(X) = C" *(X) = Z®z:Cu(X) = Cu(X),

which induces for any commutative ring R an R-isomorphism on (co-)homology
with R-coefficients

?Nn[X]: H**(X;R) = H.(X;R).
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Remark 3.10 From a Morse theoretic point of view Poincaré duality corresp-
nds to the dual handlebody decomposition of a manifold which we have already
described in (1.26).

Remark 3.11 From the analytic point of view Poincaré duality can be ex-
plained as follows. Let M be a connected closed oriented Riemannian manifold.
Let (2*(M),d*) be the de Rham complex of smooth p-forms on M. The p-th
Laplacian is defined by A, = (dP)*dP + dP~1(dP~1)* : QP (M) — QP(M), where
(dP)* is the adjoint of the p-differential dP. The kernel of the p-th Laplacian is
the space HP(M) of harmonic p-forms on M. The Hodge-de Rham Theorem
yields an isomorphism

o2

AP HP(M) — HP(M;R) (3.12)

from the space of harmonic p-forms to the singular cohomology of M with
coefficients in R. Let [M]g € H®(M;R) be the fundamental cohomology class
with R-coeflicients which is characterized by the property ((M]g,i.([M])) =1
for { , ) the Kronecker product and i, : H,(M;Z) — H,(M;R) the change of
rings homomorphism. Then A™ sends the volume form dvol to the class ﬁf) .

[M]g. The Hodge-star operator * : Q*P(M) — QP(M) induces isomorphisms
wHPP(M) S HP(M). (3.13)
We obtain from (3.12) and (3.13) isomorphisms
H™?(M;R) = HP(M;R).

This is the analytic version of Poincaré duality. It is equivalent to the claim
that the bilinear pairing

PP :HP(M) @ H" P(M) - R (w,n) — /Mw AT (3.14)

is non-degenerate. Recall that for any commutative ring R with unit we have
the intersection pairing

I : HP(M;R)®@r H""P(M;R) — R, (z,y)w (xzUy,i.[M]), (3.15)

where i, is the change of coefficients map associated to Z — R. The fact
that the intersection pairing is non-degenerate is for R a field equivalent to the
bijectivity of the homomorphism ? N [X]: H™ *(X; R) —» H.(X; R) appearing
in Remark 3.9. If we take R = R, then the pairings (3.14) and (3.15) agree
under the Hodge-de Rham isomorphism (3.12).

One basic invariant of a finite CW-complex X is its Euler characteristic
x(X). It is defined by x(X) := > (~1)P - np, where n, is the number of
p-cells. Equivalently it can be defined in terms of its homology by x(X) =
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>-p(—1)P - dimg Hp(X; Q). A basic invariant for Poincaré complexes is defined
next.

Consider a symmetric bilinear non-degenerate pairing s : V@grV — R for a
finite-dimensional real vector space V. Choose a basis for V and let A be the
square matrix describing s with respect to this basis. Since s is symmetric and
non-degenerate, A is symmetric and invertible. Hence A can be diagonalized
by an orthogonal matrix U to a diagonal matrix whose entries on the diagonal
are non-zero real numbers. Let ny be the number of positive entries and n_
be the number of negative entries on the diagonal. These two numbers are
independent of the choice of the basis and the orthogonal matrix U. Namely
n4 is the maximum of the dimensions of subvector spaces W C V on which s is
positive-definite, and analogous for n_. Obviously n +n_- = dimg(V'). Define
the signature of s to be the integer ny. — n_.

Definition 3.16 Let X be a finite connected Poincaré complex. Suppose that
X is orientable, i.e. wy(X) : m(X) — {£1} is trivial and that its dimension
n = 4k is divisible by four. Define its intersection pairing to be the symmetric
bilinear non-degenerate pairing

I:H*(XGR) ox B (X;R) S H(x;B) 0 g

Define the signature sign(X) to be the signature of the intersection pairing.

Remark 3.17 The notion of a Poincaré complex can be extended to pairs as
follows. Let X be a connected finite n-dimensional CW-complex with fun-
damental group = together with a subcomplex A C X of dimension (n — 1).
Denote by AC X the preimage of A under the universal covering X > X. We
call (X, A) a finite n-dimensional Poincaré pair with respect to the orientation
homomorphism w : m (X) - {£1} if there is a fundamental class [X, 4] €
H,(X, A;Z™) such that the Zm-chain maps ? N [X, 4] : C" (X, A) = C.(X)
and ?N[X, A] : C"*(X) — C.(X, A) are Zm-chain equivalences. We call (X, A)
simple if the Whitehead torsion of these Zn-chain maps vanish.

Each component C' of the space A inherits from (X, A) the structure of a
finite (n — 1)-dimensional Poincaré complex. Its orientation homomorphisms
w1 (C) is obtained from w; (X) by restriction with the homomorphism m; (C') —
m1(X) induced by the inclusion. The various fundamental classes [C] of the com-
ponents C' € mp(A) are given by the image of the fundamental class [X, A] under
the boundary map Hy (X, 4,Z%) = Hy_1(4,Z"'Y) = ®ce oty Hn-1(C, Z%(9)).
If M is a compact connected manifold of dimension n with boundary OM, then
(M,0M) is a simple finite n-dimensional Poincaré pair.

The signature will be the first and the most elementary surgery obstruction
which we will encounter. This is due to the following lemma.
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Lemma 3.18 Let (X, A) be a (4k + 1)-dimensional oriented finite Poincaré
pair. Then
Z sign(C) = 0.

C EWQ(A)
For its proof and later purposes we need the following lemma.

Lemma 3.19 Let s : V Qr V — R be a symmetric bilinear non-degenerate
pairing for a finite-dimensional real vector space V. Then sign(s) = 0 if and
only if there exists a subvector space L C V such that dimg(V) = 2 - dimg(L)
and s(a,b) =0 for a,b € L.

Proof : Suppose such an L C V exists. Choose subvector spaces V. and V_
of V such that s is positive-definite on V. and negative-definite on V_ and V.
and V_ are maximal with respect to this property. Then V, N V_ = {0} and
V =V; & V_. Obviously V, NL=V_nNL={0}. From

dimgp (V1) + dimg (L) - dimg(Ve N L) < dimR(V)

we conclude dimg(Vy) < dimg(V) — dimg(L). Since 2 - dimg(L) = dimg(V) =
dimg (V) + dimg(V-) holds, we get dimg(Vy) = dimg(L). This implies

sign(s) = dimg(V4) — dimg(V_) = dimg(L) — dimg(L) = 0.

Now suppose that sign(s) = 0. Then one can find a orthonormal (with respect to
s) basis {b1, b2, ...,bn,,C1,C2,...,cn_} such that s(b;, b;) = 1 and s(cj,¢j) = —1
holds. Since 0 = sign(s) =ny — n_, we can define L to be the subvector space
generated by {b;i+¢; | ¢ =1,2,...n1}. One easily checks that L has the desired
properties. n
Now we can give the proof of Lemma 3.18.

Proof: Let i : A — M be the inclusion. Then the following diagram commutes
for n = 4k.

sz(i) §2k
H?*(X;R) —— H*(A4;R) —4—— H>*(X,A4;R)
?n[X,A]lef ?ma4k+1([X,A])lg ?n[X,A]lE

Hoyp (1,)

Hypyr (X, 4 R) 222 Hy(A;R) Haw(X;R)

This implies dimg(ker(Hax(i))) = dimg(im(H?*(i))). Since R is a field, we
get from the Kronecker pairing an isomorphism H2*(X;R) = (Hs(X;R))* and
analogously for A. Under these identifications H?* (i) becomes (Ho(7))*. Hence
dimpg (im(Hax (1)) = dimg (im(H2*(7))). From

dimR(Hgk(A; R)) = dimR(ker(sz(i))) + dlmR(lm(sz(l)))

we conclude
dimg (H?**(A;R)) = 2 - dimg (im(H?* (4))).
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We have for z,y € H?*(M;R)

(H?*(i)(x) U H?* (i) (y), Oar+1 (1X, A))) (H?*(i)(z Uy), Osrr1([X, A]))
= (zUy, H2x (i) 0 Oart1([X, A]))

= (zUy,0) = 0.

If we apply Lemma 3.19 to the non-degenerate symmetric bilinear pairing

(?,8ar+1 ([ X, A]))

H?(A;R)er H*(A;R) % HY*(4;R) HY(A;R) = @, 4R 5 R

with L the image of H2*(i) : H?*(X;R) — H?*(A;R), we see that the signature
of this pairing is zero. One easily checks that its signature is the sum of the
signatures of the components of A. |

The signature has the following further properties.

Lemma 3.20 1. Let M and N be compact oriented manifolds and f : OM —
ON be an orientation reversing diffemorphism. Then M Uy N inherits an
orientation from M and N and

sign(M Uy N) = sign(M) + sign(N);

2. Let p : M — M be a finite covering with d sheets of closed oriented
manifolds. Then

sign(M) = d-sign(N).

Proof : (1) is due to Novikov. For a proof see for instance [3, Proposition 7.1
on page 588].

(2) For a smooth manifold M this follows from Atiyah’s L?-index theorem [2,
(1.1)]. Topological closed manifolds are treated in [57, Theorem 8]. [ |

Example 3.21 Wall has constructed a finite connected Poincaré space X to-
gether with a finite covering with d sheets X — X such that the signature does
not satisfy sign(X) = d-sign(X) (see [53, Example 22.28], [63, Corollary 5.4.1])).
Hence X cannot be homotopy equivalent to a closed manifold by Lemma 3.20.

3.2 The Spivak normal fibration

In this section we introduce the Spivak normal fibration which is the homotopy
theoretic analogue of the normal fiber bundle of an embedding of a manifold
into some Euclidean space. In order to motivate the construction we briefly
recall the Pontrjagin-Thom construction which we will need later anyway.
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3.2.1 Pontrjagin-Thom construction

Let (M,i) be an embedding i : M™ — R"** of a closed n-dimensional man-
ifold M into R***. Notice that TR™** comes with an explicit trivialization
Rk x RrE =, TR and the standard Euclidean inner product induces a
Riemannian metric on TR***. Denote by v(M) = v(M, i) the normal bundle of
i which is the orthogonal complement of TM in *TR"**. For a vector bundle
¢ . E — X with Riemannian metric define its disk bundle ppg : DE = X
by DE = {v € E | |lv|]| € 1} and its sphere bundle psg : SE — X by
SE = {v € E | ||v|]| = 1}, where ppg and psg are the restrictions of p. Its Thom
space Th(¢) is defined by DE/SE. It has a preferred base point co = SE/SE.
The Thom space can be defined without of choice of a Riemannian metric as
follows. Put Th(¢) = E U {oco} for some extra point co. Equip Th(¢) with the
topology for which E C Th(FE) is an open subset and a basis of open neighbor-
hoods for oo is given by the complements of closed subsets A C E for which
AN E, is compact for each fiber E,. If X is compact, E is locally compact and
Th(¢) is the one-point-compactification of E. The advantage of this definition
is that any bundle map (7, f) : & — & of vector bundles & : Ey — Xo and
& : By = X induces canonically a map Th(f) : Th(&) — Th(&;). Notice that
we require that f induces a bijective map on each fiber. Denote by R the trivial
vector bundle with fiber R¥. We mention that there are homeomorphisms

Th(¢ @ n) Th(£) A Th(n); (3.22)
Th(€®RE) = TFTh(o), (3.23)

1R

where A stands for the smash product of pointed spaces
XAY = XxY/X x{ylu{z}xY (3.24)

and T¥Y = S*¥AY is the (reduced) suspension. Let (N(M),0N(M)) be a tubu-

lar neighborhood of M. Recall that there is a diffeomorphism u : (Dv(M), Sv(M)) —
(N(M),0N(M)) which is up to isotopy relative M uniquely determined by the
property that its restriction to M is 7 and its differential at M is € -id for
small € > 0 under the canonical identification T'(Dv(M))|y = TM & v(M) =
i*TR™*. The collapse map

c: SMF =R [J{oo} — Th(v(M)) (3.25)

is the pointed map which is given by the diffeomorphism u~! on the interior of
N(M) and sends the complement of the interior of N(M) to the preferred base
point co. The homology group Hy,rx(Th(TM)) = H,r(N(M),ON(M)) is
infinite cyclic, since N(M) is a compact orientable (n+k)-dimensional manifold
with boundary ON(M). The Hurewicz homomorphism h : w1 (Th(TM)) —
H, . +(Th(T'M)) sends the class [c] of ¢ to a generator. This follows from the fact
that any point in the interior of N(M) is a regular value of ¢ and has precisely
one point in his preimage.

Before we deal with the Spivak normal fibration, we apply this construction
to bordism. Fix a space X together with a k-dimensional vector bundle £ : E —
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X. Let us recall the definition of the bordism set Q,(X,£) . An element in it is
represented by a quadruple (M, i, f, f) which consists of a closed n-dimensional
manifold M, an embedding i : M — R*** amap f: M — X and a bundle
map f : v(M) — £ covering f. We briefly explain what a bordism (W, I, F, F)
from one such quadruple (My, o, fo, fo) to another quadruple (Mj,i1, f1,f1)
is. We need a compact (n + 1)-dimensional manifold W together with a map
F:W — X x[0,1]. Its boundary OW is written as a disjoint sum oW [ W
such that F maps 9W to X x {0} and ;W to X x {1}. There is an embedding
I:W — R x[0,1] such that I=}(R*** x {j}) = 8;W holds for j = 0,1
and W meets R** x {j} for j = 0,1 transversally. We require a bundle map
(F,F) : v(W) = & x [0,1]. Moreover for j = 0,1 there is a diffeomorphism
Uj : R**% — Rk % {j} which maps M; to 9;W. It satisfies FoUj| s, <453 = fj-
Notice that U; induces a bundle map v(U;) : v(M;) = v(W) covering Uj|as;-
The composition of F with v(U;) is required to be f;.

Theorem 3.26 (Pontrjagin-Thom construction) Let £ : E — X be a k-
dimensional vector bundle over a CW -complex X. Then the map

Pa(€) : Qu(X,€) = maar(Th(E)),

which sends the class of (M,i,f,f) to the class of the composite S"** 5
Th(v(M)) ULEIN Th(§) is a well-defined bijection and natural in &.

Proof : The details can be found in [7, Satz 3.1 on page 28, Satz 4.9 on page
35,]. The basic idea becomes clear after we have explained the construction of
the inverse for a finite CW-complex X. Consider a pointed map (S™**,00) —
(Th(§), 00). We can change f up to homotopy relative {oo} such that f becomes
transverse to X. Notice that transversality makes sense although X is not a
manifold, one needs only the fact that X is the zero-section in a vector bundle.
Put M = f~1(X). The transversality construction yields a bundle map f :
v(M) — & covering f|ar. Leti: M — R*F = Stk _ {00} be the inclusion.
Then the inverse of P,(£) sends the class of f to the class of (M,3, f|um, f)-
|

Let Q,(X) be the bordism group of pairs (M, f) of oriented closed n-
dimensional manifolds M together with reference maps f : M — X. Let
& @ Er — BSO(k) be the universal oriented k-dimensional vector bundle.
In the sequel we will denote for a finite-dimensional vector space V by V the
trivial bundle with fiber V. Let j; : & @ R — &41 be a bundle map cov-
ering a map jx : BSO(k) - BSO(k + 1). Up to homotopy of bundle maps
this map is unique. Denote by 7, the bundle X x Ey — X x BSO(k) and by
(ik»9%) : Y ® R = v141 the bundle map idx x (Jx, jx). The bundle map (i, i)
is unique up to homotopy of bundle maps and hence induces a well-defined map
Dn(ix) : (k) = Qn(yrt1), which sends the class of (M, i, f, f) to the class of

the quadruple which comes from the embedding j : M - Rr+k ¢ Rr+r+1 and
the canonical isomorphism v(i) @ R = v(j). Consider the homomorphism

Vi Qn(’Yk) - Qn(X)
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which sends the class of (M, i, f, f) to (M,prx of), where we equip M with
the orientation determined by f. Let colimy_ o Q,(7%) be the colimit of the
directed system indexed by k£ > 0

Qn (tk41)

Qn(ie_1 Q.. Gix)
2 g ) 20 () S

Since Viy1 o4 = Vi holds for all £ > 0, we obtain a map

V : colimpaoo Qi) — Qn(X). (3.27)

This map is bijective because of the classifying property of v and the facts that
for k > n+1 any closed manifold M of dimension n can be embedded into R***
and two such embeddings are isotopic.

We see a sequences of spaces Th(~g) together with maps

Th(ix) : BTh(y) = Th(yx ® R) - Th(741)-
They induce homomorphisms

Tn Th(s

sk ¢ Tk (Th(6)) = T (S Th(g)) TN, o et (Th(yes1)),
where the first map is the suspension homomorphism. Define colimy—, oo Tn+k(Th(vz))
to be the colimit of the directed system

.o Sk_—l_) 7Tn+k(Th(’yk)) S—k) Tn+k+1 (Th(’)’k+1)) —siti-) eas

We get from Theorem 3.26 a bijection

P : colimy s 00 O (1) = colimg— o0 Trntk (Th(yz)).
This implies

Theorem 3.28 (Pontrjagin Thom construction and oriented bordism)
There is an isomorphism of abelian groups natural in X

P Qu(X) S colimysoo Tk (Th(v)).

Remark 3.29 Notice that this is the beginning of the theory of spectra and
stable homotopy theory. A spectrum E consists of a sequence of spaces (Ex)kez
together with so called structure maps o : XEr — Epy;. The n-th sta-
ble homotopy group w,(E) is the defined as the colimit colimy_ oo Tnir(Ek)
with respect to the directed system given by the composites mpir(Er) —

Tosipr (BER) 20, i ().

Theorem 3.28 is a kind of mile stone in homotopy theory since it is the
prototype of a result, where the computation of geometrically defined objects
are translated into a computation of (stable) homotopy groups. It applies to
all other kind of bordism groups, where one puts additional structures on the
manifolds, for instance a Spin-structre. The bijection is always of the same
type, but the sequence of bundles £, depends on the additional structure. If we
want to deal with the unoriented bordism ring we have to replace the bundle
&x — BSO(k) by the universal k-dimensional vector bundle over BO(k).
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3.2.2 Spherical fibrations

A spherical (k — 1)-fibration p : E — X is a fibration, i.e. a map having the
homotopy lifting property, whose typical fiber is homotopy equivalent to S*~1.
Define its associated disk fibration Dp : DE — X by DE = cyl(p), where cyl(p)
is the mapping cylinder of p and Dp the obvious map. Define its Thom space
Th(p) to be the pointed space cone(p), where cone(p) is the mapping cone of p
with its canonical base point. Notice that Th(p) = DE/E.

If £: E — X is a k-dimensional vector bundle with Riemannian metric, its
sphere bundle p : SE — X is an example of a (k—1)-spherical fibration. The role
of the disk bundle D¢ is now played by DE = cyl(p). Notice that the canonical
inclusion of X in cyl(p) is a homotopy equivalence analogous to the fact that
the inclusion of the zero-section of £ into E is a homotopy equivalence. The
canonical inclusion of E into cyl(p) corresponds to the inclusion of SE C DE.
Hence it is clear that Th(p) = DE/FE = cone(p) for a (k — 1)-spherical fibration
corresponds to Th(§) = DE/SE for a k-dimensional vector bundle £ : E — X.

If one has two vector bundles & : Ey — X and & : E; — X, one can form
the Whitney sum &, & & . Notice that S(Ey @ E;), is homeomorphic to the
join S(Ep)s * S(Ey),. This allows us to rediscover S(& @ £2) as a spherical
fibration from S& and S&; by the fiberwise join construction. Namely, given
a (k — 1)-spherical fibration py : Ep — X and an (I — 1)-spherical fibration
p1 - E1 — X, define the (k + | — 1)-spherical fibration pg * py : Eg * By —» X
called fiberwise join as follows. The total space Ey x Ey is the quotient of the
space {(eq,e1,t) € Eg x Ey x [0,1] | po(eo) = pi(e1)} under the equivalence
relation generated by (eg,e1,1) ~ (eo,€},1) and (eg,e1,0) ~ (ep,e1,0). The
projection py * p; sends the class of (eg,e1,t) to po(eo) = pi(er). Given a
spherical (k — 1)-fibration p : E — X, its [-fold suspension is the spherical
(k + | — 1)-fibration given by the fiberwise join of p and the trivial (I — 1)-
spherical fibration pr: X x §'=1 — X.

There are canonical homeomorphisms for spherical fibrations £ and n

Th(& *n) Th(§) A Th(n); (3-30)
Th(¢ +RF—1) = xk-1Th(e). (3.31)

(12

Given two fibrations po : Ey — X and p; : E; — X, afiber map (f, f) : po = p1
consists of maps f : Eg — E1 and f : Xo — X, satisfying pyof = fopo. Thereis
an obvious notion of fiber homotopy (h, k). A fiber homotopy is called a strong
fiber homotopy if h; : Xo — X; is stationary for ¢ € [0,1]. Two fibrations po
and p; over the same base space are called strongly fiber homotopy equivalent
if there are fiber maps (f,id) : po — p1 and (g,id) : p; — po such that both
composition are strongly fiber homotopy equivalent to the identity. Given a
topological space F, let G(F') be the monoid of selfhomotopy equivalences of F'.
One can associate to such a monoid a classifying space BG(F') together with
a fibration pp : EG(F) — BG(F') with typical fiber F such that the pullback
construction yields a bijection between the homotopy classes of maps from X to
BG(F') and the set of strong fiber homotopy classes of fibrations over X with
typical fiber F [61]. We will abbreviate in the sequel G(k) := G(S*¥~1).
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Given a fibration p: E — X, and z € X, the fiber transport along loops at «
defines a map of monoids t, : m1 (X, z) = [p~!(z),p~1(z)]. We call p orientable
if ¢, is trivial for any base point x € X. In the case of (k — 1)-spherical fibration
this fiber transport is the same as a homomorphism w : w1 (X) — {%1} called the
orientation homomorphism since the degree defines a bijection [S*~1,5*~1] — Z
for k > 2. An orientation for an orientable spherical (k — 1)-fibration p is the
choice of fundamental class [p~!(z)] € Hi(p~(z)) = Z for any fiber p~1(z)
for z € X such that for any path w in X the fiber transport along w yields a
homotopy equivalence p~!(w(0)) — p~!(w(1)) for which the induced map on
Hj,_, sends [p~1(w(0))] to [p~(w(1))].

Theorem 3.32 (Thom isomorphism) Let p: E — X be a (k — 1)-spherical
fibration over a connected CW -complex X. Then there exists a group homo-
morphism w : m(X) = {1} and a so called Thom class U, € H*(DE, E;Z")
such that the composites

H,(DE,E;2) =% B, (DE;z*) 2%, g (x;2v);  (3.33)

H,(DE,E;z*) 2% 1, (DE-Z) Hoor®) pg(x;2); (3.34)
arri(x;2) 20, gepEiz) 2%, Hrrk(DE, SE;ZY);  (3.35)

mrrk(x;zey) IO, gopE, gy 2%, geik(DE, SE;Z); (3.36)
are bijective. These maps are called Thom isomorphisms.

There are precisely two possible choices for U, because H k(DE,E;Zv) =
H°(X;Z) = 7Z is infinite cyclic. Moreover, w is uniquely determined by the
spherical (k — 1)-fibration. The proof is analogous to the one for Poincaré
complexes.

If the spherical fibration p is orientable, then U, is uniquely determined by

k 1y—
the property that the composition H*(DE, E) — H*(pp(z),p™ ' (z); Z) KGN
H*1(p~'(x)) sends U, to [p~!(z)]. Moreover, a choice of orientation for p is
the same as a choice of Thom class.

3.2.3 The existence and uniqueness of the Spivak normal
fibration

Definition 3.37 A Spivak normal fibration for an n-dimensional connected
finite Poincaré complex X is a (k — 1)-spherical fibration p = px : E - X
together with a pointed map ¢ = cx : S™™* — Th(p) such that X and p have
the same orientation homomorphism w : m (X) — {£1} and for some choice of
Thom class U, € H*(DE, E;Zv) the fundamental class [X] € Hn,(X;Z") and
the image h(c) € Huk(Th(p)) = Hpyk(DE,E;Z) of [¢] under the Hurewicz
homomorphism h : wpyk(Th(p)) = Hptx(Th(p),Z) are related by the formula

[X] = Hn(p)(Up N h(c)).
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Remark 3.38 A closed manifold M of dimension n admits a Spivak normal
fibration. Namely, choose an embedding i : M — R*** and take p to be the
sphere bundle Sv(i) - M and c to be the collaps map defined in (3.25).

Theorem 3.39 (Existence and uniqueness of the Spivak normal fibra-
tion) Let X be a connected finite n-dimensional Poincaré complex. Then:

1. For k > n there exists a Spivak normal (k — 1)-fibration for X ;

2. Let p; : E; = X together with c¢; : S”t* — Th(p;) be a Spivak normal
(k; — 1)-fibration of X for i = 0,1. Let k be an integer satisfying k >
ko, k1. Then there is up to strong fiber homotopy precisely one strong fiber
homotopy equivalence f : X¥~Fopy — Tk=F1p, for which mnyr(Th(f)) :
Ttk (Th(po)) = mntk(Th(po)) sends [co] to [c1].

At least we want to give the idea of the proof of assertion (1) of Theorem 3.39
provided that the orientation homomorphism is trivial. For a detailed proof we
refer for instance to [9, 1.4], [59].

Consider a connected finite n-dimensional CW-complex X. One can al-
ways find an embedding X C R*** for k > n together with a regular neigh-
borhood (N(X),0N(X)). The regular neighboorhood is a compact manifold
N(K) with boundary ON(K) such that X C N(K) is a strong deformation
retraction [55, Chapter 3]. This regular neighborhood corresponds in the case,
where X is a closed manifold M, to a tubular neighborhood (N(M), 0N (M)) =
(Dv(M), Sv(M)). Let [N(X),0N(X)] € Hpyx(N(X),0N(X)) be a fundamen-
tal class of the compact manifold N(X) with boundary ON(X) which corre-
sponds to the orientation inherited from the standard orientation on R***. Let
i : X — N(X) be the inclusion which is a homotopy equivalence. Then the
following diagram commutes for any class u € H*(N(K),ON (X))

?ﬂ(H,.(i)_l(ur\[N(X),aN(X)]))\

H™?(X) y  Hy(X)
(uU?)oH""”(i)’ll al(i)
H™+=P(N(X),0N(X)) — Hp(N (X))

2A[N(X),8N(X)]

The lower horizontal arrow and the right vertical arrow are bijective by Poincaré
duality and homotopy invariance. Hence the upper horizontal arrow is bijective
if and only if the left vertical arrow is bijective. Notice that bijectivity of the
upper horizontal arrow corresponds to Poincaré duality for X with H, (i)~} (un
[N(X),0N(X)]) as fundamental class and the bijectivity of the left vertical
arrow corresponds to the Thom isomorphism with u as Thom class.

Suppose that X is a connected finite Poincaré complex with fundamental
class [X] € H,(X). Let u € H¥(N(X),0N(X)) be the class uniquely deter-
mined by the property that H,(¢)"!(u N [N(X),0N(X)]) = [X]. Then the
map

H"?(X) —» H"P(N(X),0N(X), Z) v wU HY ()" ()
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is bijective. Our first approximation of the Spivak normal (k — 1)-fibration is

the composition f : IN(X) L N(X) L x , where j is the inclusion and i 7! a
homotopy inverse of . Of course f is not a fibration but possess a candidate for a
Thom class, namely u. By a general construction we can turn f into a fibration.
More precisely, for any map g : X — Y there is a functorial construction which
yields a fibration p, : E; — Y together with a homotopy equivalence i, : X —
E, satisfying py 0 i, = g. Namely, define E; = {(z,w) € X x map([0,1],Y) |
f(z) = w(0)}, py(z,w) = w(1) and iy(x) = (z, cs()) for cs(s) the constant path
at f(z) (see [65, Theorem 7.30 on page 42]). We apply this to f : ON(X) - X
and obtain a fibration py : Ey — X together with a homotopy equivalence iy :
ON(X) — Ey satisfying py oiy = f. Since j : ON(X) — N(X) is a cofibration
and i7! : N(X) — X a homotopy equivalence, we can find an extension of
if to a homotopy equivalence of pairs (Iy,if) : (N(X),0N(X)) = (DEy, Ey)
for DE; = cyl(py). This extension is unique up to homotopy relative ON (X).
Let U,, € H*(DE;y, Ey) be the preimage of u € H*(N(X),0N(X)) under the
isomorphism induces by (If,if). One easily checks that the map

20U, +k -1
HP(DE;,E) BRRGEIN H”+k(DEf) M HP(X)

is bijective. So Uy looks like a Thom class. We have already seen that a
spherical fibration has a Thom class and it turns out that this does characterize
the homotopy fiber of a fibration. Hence py : 9N (X) — X is a spherical (k—1)-
fibration. The collaps map ¢ : S"t* — N(X)/ON(X) can be composed with
the map N(X)/ON(X) — Th(py) induced by (I,,%,) and yields a pointed map
cp; : S™F — Th(py). It has the desired property [X] = Hn(ps)([Up, Nh(cy,))-
Hence py and U, yield a normal Spivak fibration for X.

Remark 3.40 Recall that we want to address Problem 3.1, whether a space
X is homotopy equivalent to a connected closed n-dimensional manifold. We
have already seen in Remark 3.8 that we only have to consider connected finite
n-dimensional Poincaré complexes X. From Theorem 3.39 and Remark 3.38 we
get the following new necessary condition. Namely, we must be able to find for
k > n a k-dimensional vector bundle £ : E — X such that the associated sphere
bundle SE — X is strongly fiber homotopy equivalent to the Spivak normal
(k — 1)-fibration of X.

Lemma 3.41 Let p; : E; — X; be a spherical (k—1)-fibration over a connected
finite n-dimensional Poincaré compleze X; for i = 0,1. Let (f,f) : po = m
be a fiber map which is fiberwise a homotopy equivalence. Then we get for the
orientation homomorphisms w(p1) o m1(f) = w(po). Consider a pointed map
co : S"t* — Th(po). Let ¢; : S™* — Th(py) be the composition Th(f) o co.
Then

1. Suppose that the degree of f is £ — 1. Then (po,co) is the Spivak normal
fibration of Xo if and only if (p1,c1) is the Spivak normal fibration for X;;
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2. Suppose that (p;, c;) is the Spivak normal (k—1)-fibration of X; fori =0,1.
Then the degree of f is £1.

Proof : The claim about the orientation homomorphisms follows from the
fact that the fiber transport of py and p, are compatible with m;(f). We
can choose the Thom classes of pp and p; such that the map H*(Th(f)) :
H"*(DE,, Ey;2*(®)) - H*(DE,, Eo; Z*()) sends Uy, to Up,. Thus we get

Hy(f) (Hn(po) (Up, Nh(co))) = Halp1) (Up, Nh(cr))-

Now the claim follows from the definitions. [ ]

3.3 Normal maps
Motivated by Remark 3.40 we define

Definition 3.42 Let X be a connected finite n-dimensional Poincaré complex.
A normal k-invariant (£, c) consists of a k-dimensional vector bundle £ : E —+ X
together with an element ¢ € 7,1 (Th(§)) such that for some choice of Thom
class U, € H¥(DE, SE;w?) the equation [X] = H,(p)(Up, N h(c)) holds. We
call a normal k-invariant (§,co) and a normal k-invariant (§1,¢1) equivalent
if there is a bundle isomorphism (f,id) : & 2 & such that Tk (Th(F)) :

Ttk (Th(Ep)) Zs Ttk (Th(&1)) maps co to cy. The set of normal k-invariants
Ta(X, k) is the set of equivalence classes of normal k-invariant of X.

Given a normal k-invariant (£,c), we obtain a normal (k + 1)-invariant
(£ ® R,Xc), where ¥ : m(Th(€)) = mk41(Z Th(¢)) = 741 (Th(€ & R)) is the
suspension homomorphism. Define

Definition 3.43 Let X be a connected finite n-dimensional Poincaré complex
X . Define the set of normal invariants T,,(X) of X to be the colimit colimy_, 0 Tn(X, k).

Let Jr : BO(k) — BG(k) be the classifying map for the universal k-
dimensional vector bundle & : E;, — BO(k) viewed as a spherical fibration.
Taking the Whitney sum with R or the fiberwise join with SR yields stabiliza-
tion maps BO(k) — BO(k + 1) and BG(k) — BG(k + 1). This corresponds
to the obvious stabilization maps O(k) — O(k + 1) and G(k) = G(k + 1)
given by direct sum with the identity map R — R and by suspending a selfho-
motopy equivalence of S*. One can arrange that these stabilization maps are
cofibrations by a mapping cone construction and are compatible with the vari-
ous maps J; by a cofibration argument. Define O = colimg_,o, O(k) and G =
colimg 00 G(k) and J : BO — BG by colimy_yo0 Ji. BO = colimy_,oc BO(K)
and BG = colimy_, o, BG(k) and J : BO — BG by colimg_,e Jk-

From Theorem 3.39 we get for a connected finite n-dimensional Poincaré
complex X a map sx : X — BG which is given by the classifying map of the
Spivak normal (k — 1)-bundle for large k. It is unique up to homotopy. We
obtain from the universal properties of the classifying spaces
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Theorem 3.44 Let X be a connected finite n-dimensional Poincaré complex.
Then T(X) is non-empty if and only there is a map S : X — BO such that
J o S is homotopic to sx.

Remark 3.45 In view of Remark 3.41 we see that a necessary condition for
a connected finite n-dimensional Poincaré complex to be homotopy equivalent
to a closed manifold is that the classifying map s : X 2% BG(k) lifts along
J : BO — BG, where BG is defined by BG = colimy_,, BG(k) analogously
to BO = colimg_s00 BO(k). There is a fibration BO — BG — BG/O. Hence
this condition is equivalent to the statement that the composition X 2% BG —
BG/0 is homotopic to the constant map. There exists a finite Poincaré complex
X for which composition X 2% BG — BG/O is not nullhomotopic (see [42,
page 32 f]). In particular X cannot be homotopy equivalent to closed manifold.

Let G/O be the homotopy fiber of J : BO — BG. This is the fiber of the
fibration J : Ej — BG associated to J. Then the following holds

Theorem 3.46 Let X be a connected finite n-dimensional Poincaré complex.
Suppose that T, (X) is non-empty. Then there is a canonical group structure on
the set [X,G /O] of homotopy classes of maps from X to G/O and a transitive
free operation of this group on T,(X).

Proof : Define an abelian group G/O(X) as follows. We consider pairs (§,t)
consisting of a k-dimensional vector bundle £ for some k£ > 1 and a strong fiber
homotopy equivalence t : S¢ — S*~! from the associated spherical fibration
given by the sphere bundle S¢ and the trivial spherical (k — 1)-fibration. We
call two such pairs (£,%0) and (&1,¢1) equivalent, if for some k which is greater
or equal to both kg = dim(&) and k; = dim(&;) there is a bundle isomorphism
(F,id) : & @ RE=k0 =5 & @ RE=*1 such that T¥~*1¢; o ST is fiber homotopic to
Tk—kot,. Let G/O(X) be the set of equivalence classes [¢, ¢] of such pairs (,t).
Notice that [¢, ] for a pair (,t) depends only on the fiber homotopy class of ¢.
Addition is given by the Whitney sum. The neutral element is represented by
(R*,id) for some k > 1. The existence of inverses follows from the fact that for
a vector bundle £ over X we can find another vector bundle 7 such that £ & 7
is trivial and for a map f : X — G(k) we can find [ and a map f' : X — G()
such that the map given by the join f * f' : X — G(k + 1) is homotopic to the
identity.

Next we describe an action p : G/O(X) x Tp(X) — Ta(X). Consider a pair
(&,t) representing an element [¢,¢] € G/O(X) and a normal k;-invariant (7, ¢)
representing an element [n, ¢] € T,(X). If ko is the dimension of &, then £ @7 is
a (ko + kp)-dimensional vector bundle. Consider the composition

Th(¢ ®n) = Th(SE * Sn) = Th(S¢) A Th(Sn)

tAid =

2% Th(S*0~1) A Th(Sn) — ko Th(y).
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This together with the suspension Y*o¢ yields an element d € T4 k,+%, (Th(é @
n)). One easily checks that (£ @ n,d) is a normal (ko + ky)-invariant for X.
Define

P([f, t]? [7]70]) = [f ®n, d]

We leave it to the reader to check that this is a well-defined group action. It
follows from Theorem 3.39 that this operation is transitive and free. Hence it
remains to construct a bijection

p:[X,G/0] = G/O(X).

Recall that G/O is the fiber of the fibration J : E; — BQ@ associated to
J : BO — BG over some point z € BG. By definition this is the space
{(y,w) € BO x map([0,1], BG) | J(y) = w(0),w(1l) = z}. Hence a map F :
X — G/O is the same as a pair (f,h) consisting of a map f : X — BO
and a homotopy h : X x [0,1] — BG such that hg = J o f and h; is the
constant map c¢,. Since X is compact, the can find k such that the image of f
and h lie in BO(k) and BG(k). Recall that J;, : BO(k) — BG(k) is covered
by a fiber map Jy : S& — i which is fiberwise a homotopy equivalence,
where & is the universal k-dimensional bundle over BO(k) and 7y, the universal
spherical (k — 1)-fibration. By the pullback construction applied to f and &
and h and ny, we get a vector bundle £ over X and a spherical (k — 1)-fibration
n over X x [0,1] together with fiber homotopy equivalences (u,id) : S¢ —
Nxxgoy and (v,id) : nlxxqy = X x Sk=1. Up to fiber homotopy there is
precisely one fiber homotopy equivalence (g,pr) : 7 = X x [0,1] x S¥~! whose
restriction to X x {1} = X is v [62, Proposition 15.11 on page 342]. Thus we
obtain a fiber homotopy equivalence v|xx o} : Mxx{o} — X X Sk=1 covering
the identity X x {0} — X which is unique up to fiber homotopy. Composing
v|x x {0} and u yields a fiber homotopy equivalence unique up to fiber homotopy
(w,id) : S¢ — S*~!. Thus we can assign to map F : X — G/O an element
[€,w] € G/O(X). We leave it to the reader to check that this induces the desired
bijection g : [X,G/0] = G/O(X). This finishes the proof of Theorem 3.46.
| |

Notice that Theorem 3.46 yields after a choice of an element in 7,(X) a

bijection of sets [X,G/0] = Tn(X).

Definition 3.47 Let X be a connected finite n-dimensional Poincare complex
together with a k-dimensional vector bundle £ : E — X. A normal k-map
(M,i, f, f) consists of a closed manifold M of dimension n together with an
embedding i : M — R** and a bundle map (f, f) : v(M) — €. A normal map
of degree one is a normal map such that the degree of f : M — X is one.

Notice that this definition is the same as the definition of an element rep-
resenting a class in Q,(X;€) except that we additionally require the map of
degree 1. Analogously one requires in the definition of a bordism that the
map F : (W,0W) — (X x [0,1],X x 9[0,1]) has degree one. Denote by
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No(X, k) the set of normal bordism classes of normal k-maps to X. Define
No(X, k) = Np(X,k + 1) by sending the class of (M,1, f, f) to the class of

(M, f, f’), where i’ : M — R**+*+1 is the composition of ¢ with the standard

inclusion R**% — R**+1 and 7 is v(#') = v(5) ® R ADSid, (DR

Definition 3.48 Let X be a connected finite n-dimensional Poincaré complez.
Define the set of normal maps to X

No(X) = colimy_yoo Np(X, k).
The proof of the next result is similar to the one of Theorem 3.26.

Theorem 3.49 Let X be a connected finite CW -complex. Then the Pontrjagin-
Thom construction yields for each k > 1 a bijection

Py(X) : Na(X, k) = Ta(X, k).
This induces a bijection

P(X): Na(X) = Ta(X).

Remark 3.50 In view of the Pontrjagin Thom construction it is convenient
to work with the normal bundle. On the other hand one always needs an
embedding and one would prefer an intrinsic definition. This is possible if one
defines the normal map in terms of the tangent bundle which we will do below.
Both approaches are equivalent. We will use in the sequel the one which is
adequate for the concrete purpose. We mention that for a generalization to the
equivariant setting the approach using the tangent bundle is more useful [40],

[41].

Definition 3.51 Let X be a connected finite n-dimensional Poincaré complex
together with a vector bundle £ : E — X. A normal map with respect to the
tangent bundle (f, f) : M — X consists of an oriented closed manifold M of
dimension n together with a bundle map (f, f) : TM ®R® — ¢ for some integer
a > 0. If f has degree one, we call (f,f) a normal map of degree one with
respect to the tangent bundle.

We define also a bordism relation as follows. Consider two normal maps
of degree one with respect to the tangent bundles (f,,f;) : TM ® R* — &
covering f; : M; — X. A normal bordism is a normal map of degree one
(F,F) : TW & R® — 7 covering F : W — X such that W is a disjoint
union W [[0:1W and we have the following data for + = 0,1. We require
a diffeomorphisms w; : M; — ;W with F ou; = f;. Moreover, we require



66 CHAPTER 3. NORMAL MAPS AND THE SURGERY PROBLEM

bundle isomorphisms v; : & & RO~ 71 covering the identity on X such that
following diagram commutes

Fi®id b_a;41
TM; EBR@BIL — &ED Rb—ai+l
T”ie)"‘esidg'il l”i
TWlow @R —sr nlo:w
Flo;,w

Here Tu; : TM; — TW is given by the differential and n; : R — TW is the
bundle monomorphism given by an inward normal field of TW|s,w. Denote
by N.T(X) the set of bordism classes of normal maps of degree one with respect
to the tangent bundle.

Lemma 3.52 Let X be a connected n-dimensional finite Poincaré complez.
There is a natural bijection

Na(X) 2 NT(X).

Proof : We define a map ¢, (k) : Np(X, k) = NZ(X) as follows. Consider a
normal k-map f : v(M) — £ covering the map f : M — X of degree one for
some closed oriented n-dimensional manifold M with an embedding M — R*tk.
Since X is compact, we can find a bundle n together with an isomorphism
u:n®E = Re. There is an explicit isomorphism v : v(M)®TM =R+, We
get from f, u and v an isomorphism of bundles covering the identity on M

f'neR*r ~ fpeTMev(M) = ffroTMe ff¢=TM R

The inverse of this isomorphism is the same as a bundle map g : TM & R* —
n@® R * covering f. Define the image under ¢, (k) of the class [f, f] to be the
class [, f]. One easily checks that this is well-defined and that the ¢, (k)-s fit
together to a map ¢, : N,,(X) — NI (X). By the analogous construction one
gets an inverse. ]

Remark 3.53 Let X be a finite Poincaré complex of dimension n. Then there
exists a closed manifold M, which is homotopy equivalent to X, only if there
exists a normal map of degree one with target X. Namely, suppose f : M — X
is a homotopy equivalence with a closed manifold as source. Choose a homotopy
inverse f~! : X — M. Put £ = (f~1)*TM. Then we can cover f by a bundle
map f : TM — & Thus we get a normal map (f, f) of degree one with M as
source and X as target. In order to solve Problem 3.1 we have to address the
following problem.

Problem 3.54 Suppose we have some normal map (f, f) from a closed man-
ifold M to a finite Poincaré complex X. Can we change M and f leaving X
fized to get a normal map (g, g) such that g is a homotopy equivalence?
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3.4 The surgery step

In this section we explain the surgery step. We begin with a motivation.

3.4.1 Motivation for the surgery step

We first consider the CW-complex version of Problem 3.54.

Let f : X — Y be a map of CW-complexes. We want to find a procedure
which changes X and f leaving Y fixed to map f' : X' — Y which is a homotopy
equivalence. Of course this procedure should have the potential to carry over to
the case, where X is a manifold and the resulting source X' is also a manifold.
The Whitehead Theorem [65, Theorem V.3.1 and Theorem V.3.5 on page 230]
says that f is a homotopy equivalence if and only if it is k-connected for all
k > 0. Recall that k-connected means that 7;(f,z) : m;(X,z) — 7;(Y, f(z)) is
bijective for j < k and surjective for j = k for all base points z in X. Hence
we would expect from the procedure to get 7 (f) to be closer and closer to be
trivial for all k. It is reasonable to try to work out an inductive procedure,
where f is already k-connected and we would like to make it (k + 1)-connected.
Recall that there is a long exact homotopy sequence of amap f: X - Y

e 7Tl+1(X) - 7Tl+1(Y) 4 7Tl+1(f) — 7T1(X) - 7Tl(Y) ...,

where m41(f) = my1(cyl(f), X) consists of homotopy classes of commutative
squares with j the inclusion

st L X

i |

Dl+1 s Y
Q

The map f is k-connected, if and only if m;(f) = 0 for I < k. Suppose that f is
k-connected. In order to achieve that f is (k + 1)-connected, we must arrange
that 741 (f) = 0 without changing m;(f) for | < k. Consider an element w in
mr+1(f) given by square as above. Define X' to be the pushout

(LI NN e

L

D*! —— X'
q

Then the universal property of the pushout gives a map f': X' - Y. We will
say that f'is obtained from f by attaching a cell.

One easily checks that m;(f') = m(f) for | < k and that there is a natural
map Tg+1(f) = mr+1(f') which is surjective and whose kernel contains w €
mi(f). Recall that in general m;(f) is an abelian group for [ > 3 and a group
for | = 2 but carries no group structure for { = 0,1. Moreover m;(X) acts on



68 CHAPTER 3. NORMAL MAPS AND THE SURGERY PROBLEM

m(f). Hence m(f) is a Zm(X)-module for I > 3. For I > 3 the kernel of
the epimorphism g1 (f) = mg4+1(f’) is the Zm(X)-submodule generated by
w [65, Section V.1]. We see that we can achieve by applying this construction
that m41(Y") becomes zero. Suppose that X and Y are finite CW-complexes.
One can achieve 7g11(f) = 0 in a finite number of steps by the following result.

Lemma 3.55 Let f : X =Y be a map of finite CW -complexes. Suppose that
f is (k — 1)-connected for some integer k > 0.

1. Suppose that k > 2 and 71 (f) : m(X) — m(Y) is bijective. Then my(f)
is a finitely generated Zm1(X)-module;

2. One can make f k-connected by attaching finitely many cells.

Proof : (1) Notice that both X and Y are connected. We will identify 7 :=
m(X) = m(Y). The map f lifts to m-map f : X — Y between the universal
coverings. The obvious map 7 (f) — 7 (f) is bijective and compatible with
the w-operations which are given by the m-actions on the universal covering and
the operation of the fundamental group on the homotopy groups. The Hurewicz
homomorphism induces an isomorphism of Zr-modules m(f) 5 H k(f) since
X and Y are simply-connected [65, Corollary IV.7.10 on page 181]. In particular
we see that 7 (f) is indeed an abelian group what is true in general only for
k > 3. Since f and hence f is (k — 1)-connected the Zw-chain complex C*(f)
which is defined to be the mapping cone D, := cone,(C. (f~)) of the Zn-chain
map C.(f) : Co(X) = C.(Y) is (k — 1)-connected. Thus C,(f) yields an exact
sequence of finitely generated free Zm-modules

0 = ker(cy) — Dy 25 Dy_y 225 4 Dy — 0.

Hence ker(cy) is a finitely generated free projective Zm-modules which is stably
free, i.e. after adding a finitely generated free Zm-module it becomes free. Since
H(f) is a quotient of ker(cy), it is finitely generated. Hence m(f) is finitely
generated free as Zm-module.

(2) We begin with k = 0. Attaching zero cells means taking the disjoint union
of X with finitely many points. Obviously one can achieve in this way that
wo(f) : mo(X) — mo(Y) is surjective.

Next we treat the case k = 1. Since X is by assumption a finite CW-
complex, mo(X) is finite. If two path components of X are mapped to the same
path component in Y, one can attach a 1-cell in the obvious manner to connect
these components. Thus we can achieve that mo(f) is bijective. Since Y is finite,
m1(Y) is finitely generated. By attaching 1-cells trivially to X which is the same
as taking the one-point union of X with S!, we can achieve that 71 (f) is an
epimorphism.

Next we consider k = 2. Since both X and Y are finite, 71 (f) : m(X) —
m1(Y) is an epimorphism of a finitely generated group onto a finitely presented
group. One easily checks that the kernel of such a group homomorphism is
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always finitely generated. For any element in a finite set of generators we can
attach 2-cells to kill these elements. The resulting map induces an isomorphism
on 71 (X). Now we can apply assertion (1). The cases k > 3 follow directly from
assertion (1). This finishes the proof of Lemma 3.55. u

Actually one can achieve in the world of CW-complexes the desired homo-
topy equivalence f' : X' — Y directly by the following construction. Namely
consider the projection pr : c¢yl(f) — Y of the mapping cylinder of f to Y.
Obviously the mapping cylinder is in general no manifold even if f : X — Y is
a smooth map of closed manifolds. Neither there is a chance that the space X'
obtained from X by attaching a cell is a manifold even if X is a closed manifold
and f smooth. But this single step of attaching a cell can be modified so that
it applies to manifolds as source such that the resulting map has a manifold as
source. This will be explained next.

Suppose that M is a compact manifold of dimension n and Y is a CW-
complex. Suppose that f : M — Y is a k-connected map. Consider an element
w € 7py1(f) represented by a diagram

L Ny ¥/

i I

l)k+1 —-—é——) Y

We cannot attach a single cell to M without distroying the manifold structure.
But one can glue two manifolds together along a common boundary such that
the result is a manifold. Suppose that the map ¢ : S¥ — M extends to an
embedding 7 : S¥ x D"* — M. Let int(im(g)) be the interior of the image of
g. Then M ~— int(im(g)) is a manifold with boundary im(g(S* x S*~%~1). We
can get rid of the boundary by attaching D*+! x S”~%~1 along im(q|gx x gn—k-1.
Call the result
M' = D" x S U@l e gnons (M — int(im(g))) .

Choose a map @ : D**! x D" % — X which extends Q and g. The restriction
of f to M — int(im(q)) extends to a map f' : M' — Y using Q|pr+1xgn—*-
Notice that the inclusion M — int(im(g)) = M is (n — k — 1)-connected since
Sk x §n~k=1 5 DF x D"F is (n — k — 1)-connected. So the passage from M
to M — int(im(g)) will not effect ;(f) for j < n — k — 1. The passage from
M — int(im(q)) to M’ has the same effect as we have described in the case of
CW-complexes. All in all we see that m(f) = m(f) for | < k and that there
is an epimorphism 71 (f) = mr+1(f') whose kernel contains w, provided that
2(k + 1) < n. The condition 2(k + 1) < n can be viewed as a consequence of
Poincaré duality. Roughly speaking, if we change something in a manifold in
dimension I, Poincaré duality forces also a change in dimension (n — ). This
phenomenon will cause surgery obstructions to appear.

It is important to notice that f : M — X and f' : M’ — X are bordant.
The relevant bordism is given by W = D**+! x D"~k Uz M x [0,1], where we
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think of g as an embedding S* x D"** — M x {1}. In other words, W is
obtained from M x [0,1] by attaching a handle D**! x Dn=*=1 to M x {1}.
Then M appears in W as M x {0} and M’ as other part of the boundary of W.
Define F': W — X by f x idp,1) and Q. Then F restricted to M and M’ is f
and f'.

But before we come to surgery obstructions, we must figure out, whether
we arrange that ¢ is an embedding and extends to an embedding . If 2k < n,
we can change g up to homotopy such that it becomes an embedding. In the
case 2k = n we can change q up to homotopy to an immersion and the surgery
obstruction will actually be the obstruction to change it up to homotopy into an
embedding. Let us assume that ¢ is an embedding. Then the existence of the
extension @ is equivalent to the triviality of the normal bundle of the embedding
g:S* - M.

A priori there is no reason why this normal bundle should be trivial. At
this point the bundle data attached to a normal map become useful. So far we
have only considered them since it was a necessary condition to be able to solve
Problem 3.1 although in Problem 3.1 no bundle maps appear. But now it will
pay off that we have this bundle data available. Namely, if we want to kill an
element w € w41 (f) represented by a diagram

(LS

i s

Dk+1 5 s N

then ¢*TM @& R® is isomorphic to ¢* f*¢ = j*@Q*£ and hence is trivial since Q*§
is a bundle over the contractible space D*¥+! x D"~*, Since v(S*, M) ® T'S* is
isomorphic to ¢*T M, the bundle v(S*, M) @ R® is trivial some a > 0. Suppose
2k < n — 1. Then the natural map BO(n — k) - BO(n — k + a) is (k + 1)-
connected. Hence v(S*, M) itself is trivial. So we are able to carry out one
step. But we have to ensure that we can repeat this process. So we must
arrange that the bundle data are also available for the resulting map f': M' —
X. Therefore we must be more careful with the choice of embedding (resp.
immersion) which is homotopy equivalent to g. The given bundle data should
tell us which embedding we should choose. For this we need some information
about embeddings and immersions which we will give next.

3.4.2 Immersions and embeddings

Given two vector bundles £ : E —- M and n : F — N, we have so far only
considered bundle maps (f, f) : & = 1 which are fiberwise isomorphisms. We
need to consider now more generally bundle monomorphisms, i.e. we only will
require that the map is fiberwise injective. Consider two bundle monomorphism
(fos fo), (f1, f1) : € = n. Let £ x [0,1] be the vector bundle £ xid : E x [0,1] =
M x[0,1]. A homotopy of bundle monomorphisms (h, h) from (£, fo) to (fo, fo)
is a bundle monomorphism (h, h) : £ x [0, 1] — 7 whose restriction to X x {j} is
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(Tj, f;) for j = 0,1. Denote by mo(Mono(¢,n)) be the set of homotopy classes
of bundle monomorphisms.

An immersion f : M — N is a map whose differential Tf : TM — TN is
a bundle monomorphism. An immersion is locally an embedding but it is not
isotopic to an embedding in general. A regular homotopy h : M x [0,1] - N
from an immersion fo : M — N to an immersion f; : M — N is a homotopy h
such that hg = fo, hy = f1 and hy : M — N is an immersion for each ¢ € [0, 1].
Denote by mo(Imm (M, N)) the set of regular homotopy classes of immersions
from M to N. The next result is due to Whitney [66], [67].

Theorem 3.56 Let M and N be closed manifolds of dimensions m and n.
Then any map f : M — N is arbitrarily closed to an immersion provided that
2m < n and arbitrarily closed to an embedding provided that 2m < n.

For a proof of the following result we refer to Haefliger-Poenaru [28], Hirsch
[30] and Smale [58].

Theorem 3.57 (Immersions and bundle monomorphisms) Let M be a
m-dimensional and N be a n-dimensional closed manifold.

1. Suppose that 1 < m < n. Then taking the differential of an immersion
yields a bijection

T : mo(Imm(M, N)) = mo(Mono(T'M,TN));

2. Suppose that 1 < m < n and that M has a handlebody decomposition
consisting of q-handles for ¢ < n — 2. Then taking the differential of an
immersion yields a bijection

T : mo(Imm(M, N)) 2, colimy_y oo mo(Mono(T'M ® R*, TN & R*)),

where the colimit is given by stabilization.

Example 3.58 Theorem 3.57 (1) has the following remarkable consequence.
We claim that mo(Imm(S?, R?)) consist of one element. We have to show that
mo(Mono(T'S?, TR?)) consists of one element. Consider bundle monomorphisms
(fi fi) : TS* = TR® for i = 0,1. Since T}, f;(T>S?) C Tf,(»)R® is an oriented
2-dimensional subspace of the oriented Euclidean vector space Tf(z)]R3, there is
precisely one vector v;(z) € Tfl.(z)]R3 whose norm is one and for which the orien-
tation on Ty fi(T5:S?) @ Ru(z) = T, ()R® induced by the one of T,5? and v(z)
and the standard one on Tf‘.(z)]R:" agree. Hence we can find a orientation pre-
serving bundle isomorphism (g;, f;) : TS?®R — T'R3? covering f; and extending
f.. Since £; is homotopic to the constant map ¢ with value 0, we can find a ho-
motopy of bundle maps which are fiberwise orientation preserving isomorphisms
from (g;, fi) to (€i,c) for ¢ = 0,1. It suffices to show that (o,c) and (¢;,c) are
strongly fiber homotopic as bundle maps (which are fiberwise isomorphisms) be-
cause then we get by restriction a homotopy of bundle monomorphism between
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(fo, fo) and (f,, f1)- Now (o,c) and (¢1,c) differ by an orientation preserving
bundle automorphism covering the identity (,id) : $% x ToR® — S? x ToR3.
This is the same a map @ : S — GL(3,R)*, where we identify ToR®> = R® and
GL(3,R)* is the Lie group of orientation preserving linear automorphism of R®.
The inclusion SO(3) — GL(3,R)* is a homotopy equivalence by the polar de-
composition. Since m3(SO(3)) is known to be zero, there is a strong homotopy
of bundle maps which are fiberwise isomorphisms and cover the identity from
(@,id) to (id,id). This proves that mo(Imm(S?, R?)) consists of precisely one
element.

Let fo : S2 — R® be the standard embedding. Let f, : S? — R® be its
composition with the involution i : R* — {0} — R® — {0} which sends = to 7.
By the argument above f; and fi are regular homotopic. Notice that 7 is the
identity on im(fy). Its differential at a point z € im(fo) sends the normal vector
v pointing to the origin in R® to —v. Therefore a regular homotopy from f to
f> will turn the inside of the standard sphere fp : S = R? to the outside.

3.4.3 The surgery step

Now we can carry out the surgery step.

Theorem 3.59 (The surgery step) Consider a normal map (f,f) : TM &
Re — ¢ covering f : M — X and an element w € mpy1(f) for k < n —2 for
n =dim(M). Let Tj®n : T(S* x D F)® R — T(D**! x D"*) be the bundle
map covering the inclusion j which is given by the differential T'j of j and the
inward normal field of the boundary of D*¥*1 x D"~%. Then

1. We can find a commutative diagram of vector bundles
T(S* x D k) @R+t  —T 5 TM R

TjGBn@idMa+b—1l 1?

T(Dk+1 x Dn—k) fer ]Ra—l—b—l — 5 @ &b
Q

covering a commutative diagram
Skxprk L M

i I

Dk+l X Dn—k sy X
Q

such that the restriction of the last diagram to D¥! x {0} represents w
and q : S* x D% — M is an immersion;

2. The regular homotopy class of the immersion q appearing in assertion (1)
s uniquely determined by the properties above and depends only on w and

(£, )
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3. Suppose that the regular homotopy class of the immersion q appearing in
(1) contains an embedding. Then one can arrange q in assertion (1) to be
an embedding. If 2k < n, one can always find an embedding in the regular
homotopy class of q;

4. Supose that the map q appearing in assertion (1) is an embedding.

Let W be the manifold obtained from M x [0,1] by attaching a handle
DL x D"k byq: Sk x Dk - M =M x {1}. Let F: W — X be
the map induced by M x [0,1] 25 M L X and Q : DF x D¥1 & X.
After possibly stabilizing f the bundle maps f and Q induce a bundle map
F:TW Rt - ¢ R covering F: W — X. Thus we get a normal
map (F,F) : TW @ R*t — ¢ ® R® which extends (f @ (f x idgs), f) :
TM @R+ » £ R. The normal map (F,f): TM @R - o R
obtained by restricting of (F,F) to OW — M x {0} =: M" is a normal map
of degree one which is normally bordant to (f, f) and has as underlying
manifold M' = M — int(q(S* x D"~*)) U, DF x §n—k-1.

Proof : (1) Choose a commutative diagram of smooth maps

sk

7| |7

Dk+l —_— X
QI
representing w. Of course it can be extended to a diagram

Skxprk L M

| I
DMl x Dk X
Q
Since D*+1 x D™=*+1 ig contractible, we can find a bundle map Q : TD*+! x

Dk g R! — £ covering ). There is precisely one bundle map g covering g
such that the following diagram commutes

T(S* x D" ") @R* —1— TM&R®
TjEBnGBidMl l;
T(Dk+1 X Dn—k+1) @Ra—l T) §
Q
Suppose that £k < n — 2. From Theorem 3.57 (2) we get an immersion g :
Sk x D** — M, such that (Tqo,q0) : T(S¥ x D"™*) — TM defines in

colime_, 00 Mo (Mono(T'S* x D"* @ R, TM & R®)) the same element as (7, q)-
Now after possibly stabilization f and thus enlarging a to a + b we can achieve
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the desired diagram by a cofibration argument.

(2) The stable homotopy class of T'g is uniquely determined by the commuta-
tivity of the diagram of vector bundles

T(Sk % Dn_k) @M Tqd(gxidgats) TM@M
Tj®n®idﬂ;;a+b—1J( l?
T(D*! x D" %) @ RaFo—! —— €

Q

since D¥*! x D™** is contractible and hence (Q, Q) is unique up to fiber ho-
motopy. Now apply Theorem 3.57 (2).

(3) By a cofibration argument we can use a regular homotopy from ¢ to an
embedding gp to homotop all the diagrams to diagrams for go. If 2k < n, we
can find an embedding go which is arbitrary close to ¢ by Theorem 3.56 and
hence regular homotopic to g since the condition being an immersion is an open
condition.

(4) We leave it to the reader to check that the construction of (F, F) makes
sense. n

Definition 3.60 Consider a normal map (f,f) : M — N and an element
w € mpy1(f) for k <n —2 for n = dim(M). We call the normal map (Tl,f’) :
TM' @Rt - ¢ R appearing in Theorem 3.59 (4) the result of surgery on
(f,f) and w if it exists. Sometimes we call the step from (f, f) to (f,f) a
surgery step.

We conclude from Lemma, 3.55, from the discussion of the effect of surgery
after Lemma 3.55 and from Theorem 3.59

Theorem 3.61 Let X be a connected finite n-dimensional Poincaré complez.
Let f : TM @& R — £ be a normal map of degree one covering f : M — X.
Then we can carry out a finite sequence of surgery steps to obtain a normal map
of degree one g : TN @R — ¢ ®RP covering g : N — X such that (f, f) and
(g, 9) are normally bordant and g is k-connected, where n = 2k or n =2k + 1.

Recall that we want to address Problem 3.54. The strategy we have de-
veloped so far is to do surgery to change our normal map into a homotopy
equivalence. Theorem 3.61 gives us some hope to carry out this program suc-
cessfully, at least we can get a highly connected map. So we can give the final
version of the surgery problem.

Problem 3.62 (Surgery problem) Suppose we have some normal map (f, f)
from a closed manifold M to a finite Poincaré complex X. Can we change M
and f leaving X fized by finitely many surgery steps to get a normal map (g, g)
from a closed manifold N to X such that g is a homotopy equivalence?
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Remark 3.63 Suppose that X appearing in Problem 3.62 is orientable and of
dimension n = 4k. Notice that the surgery step does not change the normal
bordism class. In particular the manifolds M and N are oriented bordant.
Hence Lemma 3.18 implies that M and N have the same signature. This implies
that sign(M) — sign(X) is an invariant of the normal bordism class and is not
changed by a surgery step, where for non-connected M we mean by sign(M)
the sum of the signatures of the components of M. Since the signature is also
an oriented homotopy invariant, we see an obstruction to solve the Surgery
Problem 3.62, namely sign(M) — sign(X) must be zero. We will see that this
is the only obtruction if X is a simply connected orientable 4k-dimensional
Poincaré complex for k£ > 2. If X is not simply connected, the vanishing of
sign(M) — sign(X) will not be sufficient, more complicated surgery obstructions
will occur.

3.5 Miscellaneous
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Chapter 4

The algebraic surgery
obstruction

Introduction

In this chapter we want to give the solution to the surgery Problem 3.62, whether
we can change a normal map (f, f) from a closed manifold M to a finite Poincaré
complex X by finitely many surgery steps to get a normal map (f’, f') from a
closed manifold N to X such that f' is a homotopy equivalence. We have
already seen in Theorem 3.61 that we can make f k-connected if n = 2k or
n = 2k + 1. So it remains to achieve that f is (k + 1)-connected because then f
is a homotopy equivalence by Poincaré duality. Of course we want to do further
surgery on elements in my4+1(f) to make f (k + 1)-connected. It will turn out
that this is not possible in general. We will encounter an obstruction, the so
called surgery obstruction. It takes values in the so called L-groups which are
defined in terms of forms and formations.

Let us start with the case n = 2k for £ > 3. Then the problem will be that
we cannot do surgery on each element w in 741 (f). The main obstacle is that
an immersion f : S¥ — M associated to w may not be regularly homotopic
to an embedding. This assumption appears in Theorem 3.59 (3). If we put
f in general position, we may encounter double points. We have to figure out
whether we can get rid of these double points. The main tool will be the Whitney
trick which allows to get rid of two of the double points under certain algebraic
conditions. In Section 4.1 we introduce intersection numbers and selfintersection
numbers for immersions S¥ — M and show that the selfintersection number of
f is trivial if and only f is regularly homotopic to an embedding provided that
k > 3 (see Theorem 4.8).

We will explain in Section 4.2 that the intersection pairing A and the self-
intersection numbers u(f) for pointed immersions f : S¥ — M are linked to
one another. They together define the structure of a non-degenerate (—1)*-
quadratic form on the surgery kernel K| k(]Tf ). We will show that we are able

7
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to kill the surgery kernel K k(M ) by finitely many surgery steps if and only if
this non-degenerate (—1)*)-quadratic form is isomorphic to a standard (—1)*-
hyperbolic form H_,yx (R?) for some b after adding a standard (—1)*-hyperbolic
form H(_y)x(R?) for some a (see Theorem 4.27). This leads in a natural way to
the definition of the even-dimensional L-groups in Section 4.3 and of the surgery
obstruction in even dimensions in Section 4.4.

In the odd-dimensional case n = 2k + 1 the embedding question has always
a positive answer because of 2k < n. Hence one can always do surgery on an
element in k41 (f). But it is not clear that one can find appropriate elements
so that after doing surgery on them the surgery kernel is trivial. The problem
is that surgery on such an element simultaneously affects K (M) and Kg1(M)
since these are related by Poincaré duality. We will explain the definition of
the relevant odd-dimensional L-groups in Section 4.5 and we will only sketch
the definition and the proof of the main properties of the surgery obstruction
in Section 4.6.

Our main concern is not the surgery Problem 3.62 but the question whether
two closed manifolds are diffeomorphic. We have explained the surgery program
in Remark 1.5. We will explain in Section 4.7 why this forces us to consider
also normal maps whose underlying map (f,0f) : (M,0M) — (X,0X) is a
map from a compact manifold with boundary to a Poincaré pair such that 9f is
already a homotopy equivalence. In this situation the aim of surgery is to change
f into a homotopy equivalence without changing 0f. The relevant modification
of the surgery obstruction will be introduced. Because of the appearance of
the Whitehead torsion in the s-cobordism Theorem 1.1 we are also forced to
take Whitehead torsion into account. So we want to achieve that f is a simple
homotopy equivalence provided that (X, 8X) is a simple pair and 9f is a simple
homotopy equivalence. This will lead to the definition of simple L-groups and
the simple surgery obstruction.

4.1 Intersection and selfintersection pairings

4.1.1 Intersections of immersions

We are facing the problem to decide whether we can change an immersion
f : S¥ — M within its regular homotopy class to an embedding, where M is
a closed manifold of dimension n = 2k. This problem occurs when we want to
carry out a surgery step in the middle dimension (see Theorem 3.59). We first
deal with the necessary algebraic obstructions and then address the question
whether their vanishing is also sufficient.

We fix base points s € S* and b € M and assume that M is connected
and k£ > 2. We will consider pointed immersions (f,w), i.e. an immersion
f : S¥ — M together with a path w from b to f(s). A pointed regular homotopy
from (fo,wo) to (fi,w:) is a regular homotopy A : S¥ x [0,1] — M from ho = fo
to hy = fi such that wo*h(s,?) and w; are homotopic paths relative end points.
Here h(s,?) is the path from fo(s) to fi(s) given by restricting h to {s} x [0, 1].
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Denote by I (M) the set of pointed homotopy classes of pointed immersions
from S* to M. We need the paths to define the structure of an abelian group
on I (M). The sum of [(fo,wp)] and [(f1,w1)] is given by the connected sum
along the path wg * w; from fo(s) to fi(s). The zero element is given by the
composition of the standard embedding S* — RF*+! ¢ RF+! x R¥~! = R” with
some embedding R® C M and any path w from b to the image of s. The inverse
of the class of (f,w) is the class of (f o a,w) for any base point preserving
diffeomorphism a : S¥ — S* of degree —1.

The fundamental group = = m; (M, b) operates on Iy (M) by composing the
path w with a loop at b. Thus I (M) inherits the structure of a Z7-module.

Next we want to define the intersection pairing

A: (M) x I (M) = Zr. (4.1)

For this purpose we will have to fix an orientation of T,M at b. Consider
ap = [(fo,wo)] and ey = [(f1,w1)] in Ix(M). Choose representatives (fo,wo)
and (f1,wy). We can arrange without changing the pointed regular homotopy
class that D = im(fo) Nim(f;) is finite, for any y € D both the preimage
fo'(y) and the preimage f; '(y) consists of precisely one point and for any
two points o and x; in S* with fo(zo) = fi(z1) we have Ty, fo(T%,S*) +
Ty  f1 (T, S*) = Tfy(co)M. Consider d € D. Let zo and x; in S* be the points
uniquely determined by fo(zo) = fi(z1) = d. Let u; be a path in S* from
s to z;. Then we obtain an element g(d) € 7 by the loop at b given by the
composition wi * fi(u1) * fo(ue) ™ *wy . Recall that we have fixed an orientation
of Ty M. The fiber transport along the path wg * f(ug) yields an isomorphism
TyM = T4 M which is unique up to isotopy. Hence T M inherits an orientation
from the given orientation of T, M. The standard orientation of S* determines
an orientation on T}, S* and T, S*. We have the isomorphism of oriented vector
spaces

TIofO EBI‘I:L‘Lfl : TwOSk @Tzlsk E) TdM.

Define €(d) = 1 if this isomorphisms respects the orientations and e(d) = —1
otherwise. The elements g(d) € = and e(d) € {£1} are independent of the
choices of up and u, since S* is simply connected for k > 2. Define

Nag,01) = Y _ e(d) - g(d).

deD

Lift b € M to a base point be M. Let f, S’c — M be the unique lift of f;
determined by w; and bfori = 0,1. Let Az(fo, fl) be the Z-valued intersection
number of fo and f1 This is the same as the algebraic intersection number of
the classes in the k-th homology with compact support defined by fo and f1
which obviously depends only on the homotopy classes of fo and f;. Then

Mao,01) = Y Mz(fo,lg-10f1) - g, (4.2)

gET™
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where [,-1 denotes left multiplication with g~'. This shows that A(ao, )
depends only on the pointed regular homotopy classes of (fo,wp) and (f1,w:).

In the sequel we use the w = w; (M)-twisted involution on Zm which sends
Ygen g9 t0 3 c w(g)-ag-g~" One easily checks

Lemma 4.3 For a,83,01,02 € I,(M) and uy,us € Z7 we have

A(anB) = (_l)k : A(ﬂ:a)v
Ma,up - 1 +uz - B2) = u1-Aa,B1) +us - Ao, B2).

Remark 4.4 Suppose that the normal bundle of the immersion f : S¥ — M
has a nowhere vanishing section. (In our situation it actually will be trivial.)
Suppose that f is regular homotopic to an embedding ¢g. Then the normal
bundle of g has a nowhere vanishing section . Let g’ be the embedding obtained
by moving g a little bit in the direction of this normal vector field ¢. Choose a
path wy from f(s) to b. Then for appropriate paths w, and wy we get pointed
embeddings (g, w,) and (g', wy ) such that the pointed regular homotopy classes
of (f,w), (9,wy) and (¢',wy ) agree. Since g and g’ have disjoint images, we
conclude

Hence the vanishing of A([f,w],[f,w]) is a necessary condition for finding an
embedding in the regular homotopy class of f, provided that the normal bundle
of f has a nowhere vanishing section. It is not a sufficient condition. To get a
sufficient condition we have to consider self-intersections what we will do next.

4.1.2 Selfintersections of immersions

Let o € I(M) be an element. Let (f,w) be a pointed immersion representing
a. Recall that we have fixed base points s € S¥, b € M and an orientation
of T,M. Since we can find arbitrarily close to f an immersion which is in
general position, we can assume without loss of generality that f itself is in
general position. This means that there is a finite subset D of im(f) such that
f~1(y) consists of precisely two points for y € D and of precisely one point
for y € im(f) — D and for two points zo and z; in S* with zo # z; and
f(@o) = f(z1) we have Too f (T2 S*) + Ty f(T21 S*) = Tyy(20)M. Now fix for
any d € D an ordering zo(d), z1(d) of f~1(d). Analogously to the construction
above one defines €(zo(d), z1(d)) € {£1} and g(zo(d),z1(d)) € m = m1(M,b).
Consider the element ) ;. €(zo(d), z1(d)) - g(zo(d), z1(d)) of Z7. It does not
only depend on f but also on the choice of the ordering of f~!(d) for d € D.
One easily checks that the change of ordering of f~!(d) has the following effect
for w=w (M) : 7 — {£1}

g(z1(d), zo(d))
w(g(z1(d),zo(d)))

€(z1(d), zo(d))

€(z1(d), zo(d)) - g(z1(d), zo(d))

9(zo(d), z1(d)) ™

w(g(zo(d), z1(d)));

(=1)* - w(g(zo(d), z1(d))) - €(zo(d), #1(d));
(=1)* - e(2o(d), 1(d)) - g(zo(d), z1(d))-

I
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Define an abelian group, where we use the w-twisted involution on Z7
Q-1 (Zm,w) = Zr/{u— (=1)*-T | ueZnr}. (4.5)
Define the selfintersection element

mw(e) =Y 4epe(@o(d), 21(d) - g(zo(d),21(d))] € Q1) (Z7,w). (4.6)

The passage from Zm to Q(_1yx (Z7,w) ensures that the definition is independent
of the choice of the order on f~!(d) for d € D. It remains to show that it depends
only on the pointed regular homotopy class of (f,w). Let h be a pointed regular
homotopy from (f,w) to (g,v). We can arrange that h is in general position.
In particular each immersion h; is in general position and comes with a set D;.
The collection of the D;-s yields a bordism W from the finite set Dg to the finite
set Dy. Since W is a compact one-dimensional manifold, it consists of circles
and arcs joining points in Do U D; to points in Dy U D;. Suppose that the point
e and the point €' in Dy U D; are joint by an arc. Then one easily checks that
their contributions to

p(f,w) — plg,w) == Z €(zo(do), z1(do)) - 9(zo(do), z1(do))

do€Dgo

- > e(@oldr), z1(dh)) - g(wo(dr), z1(d))

die€Dy
cancel out. This implies u(f, w) = p(g, w).

Lemma 4.7 Let p: Iy(M) = Q1)+ (Z7,w) be the map given by the selfinter-
section element (see (4.6)) and let X : I;(M) x I,(M) — Zm be the intersection
pairing (see (4.1)). Then

1. Let (1+(=1)*-T) : Q_1ye(Zw,w) = Zn be the homomorphism of abelian
groups which sends [u] to u+ (—1)*-w. Denote for a € I (M) by x(a) € Z
the Euler number of the normal bundle v(f) for any representative (f,w)
of a with respect to the orientation of v(f) given by the standard orien-

tation on S* and the orientation on f*TM given by the fized orientation
on TyM and w. Then

May, o) = (1+ (=1 - T)(u(@) + x(a) - 1;

2. We get for pr : Zm — Q-1)x (Z7,w) the canonical projection and o, €
I (M):
pla+ B) = pla) — p(B) = pr(XMa, B));

3. Fora € Ix(M) and u € Zm we get with respect to the obvious Zm-bimodule
structure on Q(_1yx(Zm,w)

pu - @) = up(e)u.
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Proof : (1) Represent a € Ix(M) by a pointed immersion (f,w) which is
in general position. Choose a section ¢ of v(f) which meets the zero section
transversally. Notice that then the Euler number satisfies

v(f)= Y e,

YyEN (o)

where N (o) is the (finite) set of zero points of o and €(y) is a sign which depends
on the local orientations. We can arrange that no zero of ¢ is the preimage of
an element in the set of double points Dy of f. Now move f a little bit in
the direction of this normal field 0. We obtain a new immersion g : S*¥ — M
with a path v from b to g(s) such that (f,w) and (g,v) are pointed regularly
homotopic.

We want to compute A(a@,a) using the representatives (f,w) and (g,v).
Notice that any point in d € Dy corresponds to two distinct points zo(d) and
z1(d) in the set D = im(f) Nim(g) and any element n € N(o) corresponds
to one point z(n) in D. Moreover any point in D occurs as z;(d) or z(n) in
a unique way. Now the contribution of d to A([(f,w)],[(g,v)]) is €(d) - g(d) +
(—=1)* - €(d) - g(d) and the contribution of n € N(o) is €(n) - 1. Now assertion
(1) follows. The elementary proof of assertions (2) and (3) is left to the reader.
This finishes the proof of Lemma 4.7. [ ]

Theorem 4.8 Let M be a compact connected manifold of dimension n = 2k.
Fiz base points s € S* and b € M and an orientation of TyM. Let (f,w) be
a pointed immersion of S* in M. Suppose that k > 3. Then (f,w) is pointed
homotopic to a pointed immersion (g,v) for which g : S* — M is an embedding,
if and only pu(f) = 0.

Proof : If f is represented by an embedding, then u(f,w) = 0 by definition.
Suppose that u(f,w) = 0. We can assume without loss of generality that f is in
general position. Since p(f) = 0, we can find d and e in the set of double points
D; of f and a numeration zo(d), z1(d) of f~1(d) and zo(e), z1(e) of f~*(e) such
that

€(zo(d), z1(d)) —€(zo(e), z1(e));
g(zo(d), z1(d)) g(zo(e), z1(e)).

Therefore we can find arcs up and u; in S* such that u(0) = zo(d), uo(1) =
zo(e), u1(0) = z1(d) and u; (1) = z;(e), the path ug and u; are disjoint from one
another, f(ue((0,1))) and f(u1((0,1))) do not meet Dy and f(up) and f(uq)
are homotopic relative endpoints. We can change uo and u; without destroying
the properties above and find a smooth map U : D? — M whose restriction
to S* is an embedding and is given on the upper hemisphere S} by uo and on
the lower hemisphere S by u; and which meets im(f) transversally. There is a
compact neighborhood K of S! such that U|k is an embedding. Since k > 3 we
can find arbitrarily close to U’ an embedding which agrees with U on K. Hence
we can assume without loss of generality that U itself is an embedding. The
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Whitney trick (see [46, Theorem 6.6 on page 71], [67]) allows to change f within
its pointed regular homotopy class to a new pointed immersion (g, v) such that
D, = Dy — {d, e}. By iterating this process we achieve Dy = §. n

Remark 4.9 The condition dim(M) > 5 which arises in high-dimensional man-
ifold theory ensures-in the proof of Theorem 4.8 that ¥ > 3 and hence we can
arrange U to be an embedding. If £ = 2, one can achieve that U is an immersion
but not necessarily an embedding. This is the technical reason why surgery in
dimension 4 is much more complicated than in dimensions > 5.

4.2 Kernels and forms

4.2.1 Symmetric forms and surgery kernels

For the rest of this section we fix a normal map of degree one (f,f) : TM @
R* — £ covering f : M — X, where M is a closed connected manifold of
dimension n and X is a connected finite Poincaré complex of dimension n.
Suppose that f induces an isomorphism on the fundamental groups. Fix a base

point b € M together with lifts b € M of b and f(b) € X of f(b). We identify
m = m(M,b) :j(X,f(b))be m1(f,b). The choice of b and f(b) determine
m-operations on M and on X and a lift f : M — X which is m-equivariant.

Definition 4.10 Let Kk(M) be the kernel of the Zm-map Hy(f) : He(M) —

Hk()z) Denote by K*(M) be the cokernel of the Zm-map H*(f) : H*(X) —
H*(M) which is the Zn-map induced by C*(f) : C*(X) = C*(M).

Lemma 4.11 1. The cap product with [M] induces isomorphisms
7N [M]: K" 5 S5 Kip(M);

2. Suppose that f is k-connected. Then there is the composition of natural
Zm-isomorphisms

hie = Tear (f) = o1 () = Hen () = Ki(M);

3. Suppose that f is k-connected and n = 2k. Then there is a natural Zm-
homomophism

iy : 7l'k(f) — Ik(M)

Proof : (1) The following diagram commutes and has isomorphisms as vertical
arrows

— n—k (7 ~
H™+(M) &2 B H(X)

m[M]lg gl?n[x] (4.12)

Hy(M) ——  Hy(X)
Hi.(f)
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(M) !

Hence the composition K (M) — Hy (M) H™ k(M) = Kn=k(M) is

bijective.

(2) The commutative square (4.12) above implies that Hy (f) : Hy (M) = Hi(X)
is split surjective. We conclude from the long exact sequence of C,(f) that the
boundary map

8 : Hiy1(f) = Hiyx (cone(C.(f))) — Hi(M)
induces an isomorphism
By1 = Her (f) = Ky (M).
Since f and hence f~is k-connected, the Hurewicz homomorphism
Tk+1 (J?) s Hk+1(f)
is bijective [65, Corollary IV.7.10 on on page 181]. The canonical map

i1 (F) = Trs (f)

is bijective. The composition of the maps above or their inverses yields a natural
isomorphism hy : mpaq (f) — Ki(M).

(3) is analogous to the proof of Theorem 3.59 (2) which was based on Theorem
3.57 provided one takes the base loops into account. Notice that an element in
g1 (f,b) is given by a commutative diagram

" R

! l

.Dk—*_1 —-Q——) X

together with a path w from b to f(s) for a fixed base point s € S*. ]

Suppose that n = 2k. The Kronecker product ( , ) : H*(M) x Hy(M) — Z~
is induced by the evaluation pairing homz,,(Cp(M ), Z7) x C’,,(M ) = Z= which
sends (¢, z) to ¢(z). It induces a pairing

(,): K*(M) x Ky(M) = Z.
Together with the isomorphism
N [M]: KR (M) S Ky (M);
of Theorem 4.11 (1) it yields the intersection pairing
s : Kp(M) x Kp(M) = Z. (4.13)
We get from Lemma 4.11(2) and (3) a Z7-homomorphism
a:Ky(M) — Ii(M). (4.14)

We leave it to the reader to check
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Lemma 4.15 The following diagram commutes, where the upper pairing is de-
fined in (4.13), the lower pairing in (4.1) and the left vertical arrows in (4.14)

Kk(M) X Kk(M) — Zm

- |

Te(M) x Iy(M)  ——— Zm

The pairing s of (4.13) is the prototype of the following algebraic object
which can be defined for any ring R with involution and € € {£1}.

Definition 4.16 An e-symmetric form (P, ¢) over an associative ring R with
unit and involution is a finitely generated projective R-module P together with a

R-map ¢ : P — P* such that the composition P B, (P*)* 2 p agrees with
€-¢. Here and elsewhere e(P) is the canonical isomorphism sending p € P to the
element in (P*)* given by P* — R, f — f(p). We call (P, ¢) non-degenerate if
¢ is an isomorphism.

We will sometimes identify P and (P*)* by e(P) and denote for an R-map

f : P — P* the composition P B, (P*)* P by f* : P — P*, and
analogously for f: P* — P.

There are obvious notions of isomorphisms and direct sums of e-symmetric
forms.

We can rewrite (P, ¢) as pairing

A:PxP—Zm, (p,q) — #(p)(q)-

Then the condition that ¢ is R-linear becomes the condition

Ap,ri-qu+72-q2,) = 11 AD,q1) + 72 A, q2);
Ary-pr+72-p2,q) = Ap1,9) -T1+ A(p2,9) -T2

The condition ¢ = € - ¢* o e(P) translates to A(q,p) = €-A(p,q).

Example 4.17 Let P be a finitely generated projective R-module. The stan-
dard hyperbolic e-symmetric form H¢(P) is given by the Zm-module P ® P* and
the R-isomorphism

0 1

e 0

6. (PoP) ~ /s prgplao®,

P* @ (P*)* — (P@P*)*.
If we write it as a pairing we obtain

(PoP")x (P& P") >R, ((r,9), (0, ¢)) = o) +¢- ().
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An example of a non-degenerate (—1)*-symmetric form over Z7 with the

w-twisted involution is Ky (M) with the pairing s of (4.13), provided that f is

k-connected and n = 2k. We have to show that Kk(M ) is finitely generated
projective.

Lemma 4.18 Let D, be a finite projective R-chain complex. Suppose for a fized
integer k that H;(D.) = 0 for i < r. Suppose that H"t!(homg(D,,V)) = 0
for any R-module V. Then im(d,+1) is a direct summand in D, and there are
canonical exact sequences

0—ker(d,) > D, —>D,_1—>...5Dyg—0

and
0 — im(dy4+1) — ker(d,) = H,(D.) — 0.

In particular H,.(D.,) is finitely generated projective. If H;(D.) = 0 for i > r,
we obtain an exact sequence

drts drt2 drt1 .
A DT+3 > D,-+2 > DT+1 4 1m(dr+1) — 0.

Proof : If we apply the assumption H"!(hompg(D.,V)) = 0 in the case
V = im(d,+1), we obtain an exact sequence

homz,r(d

. rt1,1d .
homgzr(Dy, it (dr41)) 0D, pomzn(Dyir,im(drs1))

2omer@rs2iD, bomg a(Dy o, im(dy41))-

Since dy41 € homz;(Dyy1,im(d,+1)) is mapped to zero under homgz (dy42,id),

we can find a R-homomorphism p : D, — im(d,+1) with pod,4+1 = dr41. Hence

im(dy+1) is a direct summand in D,. The other claims are obvious. ]
A R-module V is called stably finitely generated free if for some non-negative

integer [ the R-module V @ R! is a finitely generated free R-module.

Lemma 4.19 If f : X = Y is k-connected for n = 2k or n = 2k + 1, then
K (M) is stably finitely generated free.

Proof : We only give the proof for n = 2k. The proof for n = 2k + 1 is along
the same lines using Poincare duality for the kernels (see Lemma 4.11 (1)).
Consider the finitely generated free Z7-chain complex D, := cone(C,(f)).
Its homology Hp(D.) is by definition H,,(f). Since f is k-connected and D, is
projective, there is a R-subchain complex E, C D, such that E, is finite projec-
tive, E; = 0 for ¢ < k and the inclusion E, — D, is a homology equivalence and
hence an R-chain homotopy equivalence. Namely, take F; = D, for i > k + 2,
Ejy1 = ker(dg4+1) and E; = 0 for ¢ < k. We get from the commutative square
(4.12) a Zm-chain homotopy equivalence D"*1=* — D,. This implies for any
R-module V since homg (D, V') is chain homotopy equivalent to homg(E,, V).

H""'"(homg(D.,V)) = 0 for i < k;
H,D) = 0 fori>n+1-k;
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We conclude from Lemma 4.11.

~ Ky (M) ifp=k
Hpi(D.) = { 0 ifp#k
H**%(homp(D,,R)) = 0.
Now apply Lemma 4.18 to D,. |

Example 4.20 Consider the normal map (f, f) : TM & R* — ¢ covering the
k-connected map of degree one f : M — N of closed n-dimensional manifolds
for n = 2k. If we do surgery on the zero element in 71 (f), then the effect on
M is that M is replaced by the connected sum M’ = M(S* x S*). The effect on
Kk]T/f) is that it is replaced by Kk(ﬂ) = Ky (H) @ (Z7 & Zm). The intersection
pairing on this new kernel is the orthogonal sum of the given intersection palrmg
on K k(M ) together with the standard hyperbolic symmetric form H(~ n* (Zn).
In particular we can arrange by finitely many surgery steps on the trivial element
in mpy1(f) that K (M) is a finitely generated free Zm-module.

4.2.2 Quadratic forms and surgery kernels

We have already seen that it will not be enough to study intersections of dif-
ferent immersions, we must also deal with selfintersections of one immersion.
We have seen in Lemma 4.7 that we can enrich the intersection pairing by the
self-intersection pairing. This leads to the following algebraic analogon for an as-
sociative ring R with unit and involution and € € {£1}. For a finitely generated
projective R-module P define an involution of R-modules

T : hompg(P, P*) — hom(P, P*) f ffoe(P) (4.21)
where e(P) : P — (P*)* is the canonical isomorphism.

Definition 4.22 Let P be a finitely generated projective R-module. Define

Q(P) := ker((1—€-T):homg(P,P*) = homg(P, P*));
Q(P) := coker((1—€-T):homg(P, P*) = hompg(P, P*)).

Let
(1+¢€-T):Qc(P) = Q(P)

be the homomorphism which sends the class represented by f : P — P* to the
element f +¢€-T(f).

A e-quadratic form (P, 1)) is a finitely generated projective R-module P to-
gether with an element ¥ € Q.(P). It is called non-degenerate if the associated
e-symmetric form (P, (1+¢€-T)(¢)) is non-degenerate, i.e. (14+¢-T)(¢): P — P*
is bijective.
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There is an obvious notion of direct sum of two e-quadratic forms. An
isomorphism f : (P,¢) — (P',4') of two e-quadratic forms is an R-isomorphism

f:P Z, P’ such that the induced map
Qc(P') = Qc(P), [¢:P' = (P)]=[ffogof: P P

sends 9’ to .
We can rewrite this as follows. An e-quadratic form (P, ¢) is the same as a
triple (P, A, 1) consisting of pairing

AM:PxP—->R

satisfying

Ap,ri-qu+7r2-q2,) = r1-Apyq1) + 720 AP, g2);

Ary-pr+72-p2,9) = Mp1,9) -T1 + A(p2, Q) - T2;

Ag,p) = €-Ap,9)-
and a map
p:P—>Q(R)=R/{r—e€-T|r€R}
satisfying
p(rp) = ru(p)T;
pp+q) —plp) —pl@) = pr(Ap,9));

where pr : R — Q.(R) is the projection and (1 +¢-T) : Q.(R) — R the map
sending the class of r to r + € - 7. Namely, put

Ap,g) = ((L+e-T)(®)) (@) (9);
pp) = (@) /p)

Example 4.23 Let P be a finitely generated projective R-module. The stan-
dard hyperbolic e-quadratic form H.(P) is given by the Zn-module P & P* and
the class in Q.(P @ P*) of the R-homomorphism

01
00 id @e(P)
6:(PopP)~— 7, prgp 2D, p

®(P7)" =(Po P
The e-symmetric form associated to H(P) is H¢(P).
Example 4.24 An example of a non-degenerate (—1)*-quadratic form over Zn

with the w-twisted involution is given as follows, provided that f is k-connected
and n = 2k. Namely, take Ky (M) with the pairing s of (4.13) and the map

t: Kp(M) % I(M) 2 Q_1yr (Zm,w), (4.25)
where p : I, (M) = Q(_1)x (Z7,w) is defined in (4.6) and « is defined in (4.14).
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Remark 4.26 Suppose that 1/2 € R. Then the homomorphism

(1+e-T):Q(P) S Q(P) [¥]— [¥+e-T()]

is bijective. The inverse sends [u] to [u/2]. Hence any e-symmetric form car-
ries a unique e-quadratic structure. Hence there is no difference between the
symmetric and the quadratic setting if 2 is invertible in R.

The next result is the key step in translating the geometric question, whether
we can change a normal map by a finite sequence of surgery steps into a homo-
topy equivalence to an algebraic question about quadratic forms. It will lead in
a natural way to the definition of the surgery obstruction groups Lok (R).

Theorem 4.27 Consider the normal map (f,f) : TM & R* — £ covering the
k-connected map of degree one f : M — N of closed connected n-dimensional
manifolds for n = 2k. Suppose that k > 3 and that for the non-degenerate
(=1)*-quadratic form (Ky(M),s,t) there are integers u,v > 0 together with an
isomorphism of non-degenerate (—1)*-quadratic forms

(Ki(M),s,t) ® H_yyx(Z7") 2 H_yye(Z).

Then we can perform a finite number of surgery steps resulting in a normal map
of degree one (g, g) : TM' @R — ¢ ®R® such that g : M' — X is a homotopy
equivalence.

Proof : If we do a surgery step on the trivial element in 741 (f), we have

explained the effect on (K k(M ),t) in Example 4.20. The effect on the quadratic
form (Kk(M ),s,t) is analogous, one adds a copy of H_i)(Zm). Hence we
can assume without loss of generality that the non-degenerate quadratic form
(Ki(M),s,t) is isomorphic to H(_;yx(Zn"). Thus we can choose a Zm-basis

{b1,ba,...by,C1,Ca,...cy} for Kp(M) such that

s(bi,ci) =1 1€ {1,2,...1)};

s(bi,cj) = 0 i,7 €{1,2,...0}, i # j;
S(bi,bj) = 0 i,] € {1,2, . ..1)};
s(ei,e5) = 0 i,7 €{1,2,...0}

t(b;) =0 ie{1,2,...v}.

Notice that f is a homotopy equivalence if and only if the number v is zero.
Hence it suffices to explain how we can lower the number v to (v — 1) by a
surgery step on an element in 7x4;(f). Of course our candidate is the element
w in w41 (f) which corresponds under the isomorphism h : 741 (f) = K (M )
(see Lemma 4.11 (2)) to the element b,. By construction the composition

1 (F) 25 (M) 2 Qe (Z, w)

of the maps defined in (4.6) and in Lemma 4.11 (3) sends w to zero. Now
Theorem 3.59 and Theorem 4.8 ensure that we can perform surgery on w. Notice
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that the assumption & > 3 and the quadratic structure on the kernel become
relevant_exactly at this point. Finally it remains to check whether the effect
on Kj (M ) is the desired one, namely, that we get rid of one of the hyperbolic
summands H(Zw), or equivalently, v is lowered to v — 1.

We have explained earlier that doing surgery yields not only a new manifold
M’ but also a bordism from M to M’. Namely, take W = M x [0,1] Ugk x pn—=
DF+1 x D™= % where we attach D*+! x D"* by an embedding S* x D% —
M x {1}, and M' := 8W — M, where we identify M = M x {0}. The manifold
W comes with a map F : W — X x [0,1] whose restriction to M is the given
map f: M =M x {0} - X = X x {0} and whose restriction to M’ is a map
f': M — X x {1}. The definition of the kernels makes also sense for pair of
maps. We obtain an exact braid combining the various long exact sequences of

. Kiya( Wf\ q(W M)
NN SN N
NSNS AN

\/

The (k+1)-handle D¥+! x D"~* defines an element ¢**! in Ky (W, M ) and
the associated dual k-handle (see (1.25)) defines an element ¥F € K, k(W M').
These elements constitute a Zn-basis for Ky (W M ) Zw and K k(W M)
Zm. The Zﬁ-homomorphlsm Kk+1(W M) - Kk(M) maps ¢ to b,. The Zn-
homomorphism Ky (M) — K(W,M') sends z to s(by, ) - ¢*.  Hence we can
find elements by, b} , ..., b, and ¢}, ¢4 , ..., ¢4 in Kk+1(W W) uniquely
determined by the property that b} is mapped to b; and ¢} to ¢; under the
Zm-homomorphism K k+1(W,5ﬁ// ) = K k(ﬂ ). Moreover, these elements form
a Zm-basis for Ky1(W, ow ) and the element ¢**! is mapped to &), under the
Zn-homomorphism Kj. 1 (W,]\’Z ) = Kipa (W,E/?T/IJ/ ). Define b and ¢ for i =
1,2,...(v —1) to be the image of b} and ¢} under under the Zm-homomorphism
K1 (W,0W) = Ki(M'). Then {b} |i=1,2...(v—1D)}[[{c/ |i=1,2...(v—
1)} is a Zn-basis for K k(]\’;f’) One easily checks for the quadratic structure
(s',t') on K(M')

s,y = s(b,e) = 1 1€{L,2,...(v—-1)};
s'(bY, ") = s(bj,¢;) = 0 i,j €{1,2,...(v—1)}, i # J;
S = sbub) = 0 ij€{L,2...(v- 1))
s(cl7c]) = S(Ci,Cj) =0 ,J € {1,2,...(’[1—1)};
t'(b) = t(b;) =0 1€{L,2,...(v—-1)}.
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This finishes the proof of Theorem 4.27. |

4.3 Even dimensional L-groups

Next we define in even dimensions the abelian group, where our surgery ob-
struction will take values in.

Definition 4.28 Let R be an associative ring with unit and involution. For an
even integer n = 2k define the abelian group L,(R) called the n-th quadratic
L-group of R by to be the abelian group of equivalence classes [(F, )] of non-
degenerate (—1)*-quadratic forms (F,1)) whose underlying R-module F is a
finitely generated free R-module with respect to the following equivalence re-
lation. We call (F,v¢) and (F',¢') equivalent if and only if there exists integers
u,u’ > 0 and an isomorphism of non-degenerate e-quadratic forms

(F,¢) ® H.(R)* = (F',4') @ H.(R)" .

Addition is given by the sum of two e-quadratic forms. The zero element is
represented by [H.(R)"] for any integer u > 0. The inverse of [F,1] is given by

A morphism u : R — S of rings with involution induces homomorphism
uy : Ly (R) = Li(S) for k = 0,2 by induction. One easily checks (uov), = u,ov,
and (idg). = idg,(g) for £ =0,2.

Before we come to the surgery obstruction, we will present a criterion for an
e-quadratic form (P,v) to represent zero in L;_.(R) which we will later need
at several places. Let (P,1) be a e-quadratic form. A subLagrangian L C P is
a R-submodule such that the inclusion ¢ : L — P is split injective, the image
of ¥ under the map Q,(2) : @.(P) = Qn(L) is zero and L is contained in his
annihilator L+ which is by definition the kernel of

P (1+e-T)(3) P* i) L*.
A subLagrangian L C P is called Lagrangian if L = L*. Equivalenty, a La-
grangian L C P is a R-submodule L with inclusion ¢ : L — P such that the
sequence

0 L4 po0FeD®), pe
is exact.
Lemma 4.29 Let (P, 1) be an e-quadratic form. Let L C P be a subLagrangian.
Then L is a direct summand in L+ and v induces the structure of a non-

degenerate e-quadratic form (L/L*, /). Moreover, the inclusion i : L — P
extends to an isomorphism of e-quadratic forms

H (L) ® (LY/L, gt 9) = (P).
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In particular a non-degenerate e-quadratic form (P, 1) is isomorphic to H.(Q)
if and only if it contains a Lagrangian L C P which is isomorphic as R-module
to Q. The analogous statement holds for e-symmetric forms.

Proof : Choose an R-homomorphism s : L* — P such that i*o(1+¢-T)(¢0)os
is the identity on L*. Our first attempt is the obvious split injection 7 @ s :
L ® L* — P. The problem is that it is not necessarily compatible with the
e-quadratic structure. To be compatible with the e-quadratic structure it is
necessary to be compatible with the e-symmetric symmetric structure, i.e. the
following diagram must commute

Lol 2, p

( 2 (1) )l lill-l—e-T(T/))

L*®L '*+* P*

The diagram above commutes if and only if s* o (¢p + € - ¥*) o s = 0. Notice
that s is not unique, we can replace s by s’ = s + i ov for any R-map v :
L* — L. For this new section s’ the diagram above commutes if and only if
s*o(p+e-T(P)os+v*+e-v=0. This suggests to take v = —es* otpos. Now
one easily checks that

g=i1®(s—¢€-ios*opos): LHL* > P

is split injective and compatible with the e-quadratic structures and hence in-
duces a morphism g : H (L) — (P, 1) of e-quadratic forms.

Let im(g)* be the annihilator of im(g). Denote by j : im(g) — P the
inclusion. We obtain an isomorphism of e-quadratic forms

9®j: H(L)® (im(g)",j" oo j) = (P,4).

The inclusion L' — im(g)* induces an isomorphism h : L+ /L — im(g)*. Let
YL /1 be the e-quadratic structure on L*/L for which h becomes an isomor-
phism of e-quadratic forms. This finishes the proof in the quadratic case. The
proof in the symmetric case is analogous. |

Finally we state the computation of the even-dimensional L-groups of the
integers. Consider an element (P, ¢) in Lo(Z). By tensoring over Z with R and
only taking the symmetric structure into account we obtain a non-degenerate
symmetric R-bilinear pairing A : R®z P x R®z P — R. It turns out that its
signature is always divisible by eight.

Theorem 4.30 The signature defines an isomorphism

1 o 1
3 sign : Lo(Z) = Z, [P, ¢] — 3 -sign(R ®z P, A).
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Consider a non-degenerate quadratic form (P,v) over the field F» of two
elements. Write (P,) as a triple (P, ¢, 1) as explained above. Choose any
symplectic basis {by,ba,...ban,} for P, where symplectic means that A(z;, ;)
is 1if 1 — j = m and 0 otherwise. Define the Arf invariant of (P,¢) by

ACf(P) i= Y p(bi) - plbiem) € Z/2. (4.31)

=1
The Arf invariant defines an isomorphism
Arf : Ly(F2) = Z./2.
The change of rings homomorphism Z — F, induces an isomorphism

Ly(Z) S Lo(Fy).

Theorem 4.32 The Arf invariant defines an isomorphism
Arf: Ly(Z) S 7)2,  [(P,¢)] — Arf(F, ®z (P, ).

For more information about forms over the integers and the Arf invariant
we refer for instance to [9], [49].

4.4 The surgery obstruction in even dimensions

Consider a normal map of degree one (f, f) : TM®R®* — £ covering f : M — X,
where M is a closed oriented manifold of dimension n and X is a connected finite
Poincaré complex of dimension n for even n = 2k. To these data we want to
assign an element o(f, f) € L,(Z7,w) such that the following holds

Theorem 4.33 (Surgery obstruction theorem in even dimensions) We
get under the conditions above:

1. Suppose k > 3. Then o(f, f) = 0 in L,(Zn,w) if and only if we can do
a finite number of surgery steps to obtain a normal map (f',f) : TM' &
R** — ¢ @ RY which covers a homotopy equivalence f': M' — X ;

2. The surgery obstruction o(f, f) depends only on the normal bordism class

of (£, ).

We first explain the definition of the surgery obstruction o(f, f). By finitely
many surgery steps we can achieve that f is k-connected (see Theorem 3.61).
By a finite number of surgery steps in the middle dimension we can achieve that
the surgery kernel K (M) is a finitely generated free Zm-module (see Example

4.20). We have already explained in Example 4.24 that K (M) carries the
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structure (K] k(M ), t,s) of a non-degenerate (=1)*-quadratic form. We want to
define the surgery obstruction of (f, f)

o(f.f) = [K(M)t,s] € Lo(Zm,w). (4.34)

We have to show that this is independent of the surgery steps we have
performed to make f k-connected and Ky(M) finitely generated free. Notice
that surgery does not change the normal bordism class. Hence it suffices to show
that o(f, f) and o(f', f') define the same element in L,(Zm,w)if f: M — X
and f' : M' - X are k-connected and normally bordant and their kernels
Ky (M) and Ky (M') are finitely generated free Zm-modules. Notice that this
also will prove Theorem 4.33 (2).

Consider a normal bordism (F, F) : TW ®R* — 5 covering amap F : W —
X % [0,1] such that OW is M~ UM', F(M~) C X x {0}, F(M') C X x {1},
the restriction of F to M~ is f and the restriction of F to M' is f’. By surgery
on the interior of W we can change W and F leaving W and F|aw fixed such
that F' is k-connected. The proof of Theorem 3.61 carries directly over. By a
handle subtraction argument (see [64, Theorem 1.4 on page 14, page 50]) we can
achieve that K k(W, oW ) = 0. This handle subtraction leaves M fixed but may
change M'. But the change on the surgery kernel of M’ is adding a standard
e-hyperbolic form which does not change the class in the L-group. Moreover, f,
f' and F remain k-connected. So we can assume without loss of generality that
K;(W,0W) =0fori < kand K;(0W)) = 0fori < k—1. We know already that
K k(fﬁ/f/ ) is stably finitely generated free by Lemma 4.18. A similar argument
shows that Ky, (W, oW ) and K k(W) are stably finitely generated free.

We obtain an exact sequence of Zmr-modules

0= Kpar (W, W) 2% K 0W) 22 k(W) — 0. (4.35)

where OW and 7 : 51\/1//',:) W come from the pullback construction applied to
the universal covering W — W and the inclusion ¢ : OW — W. o
The strategy of the proof is to show that the image of Ox+1 : K41 (W, 0W) —
Ky (5171// ) is a Lagrangian for the non-degenerate e-quadratic form Kj, (éﬁ// ). Be-
fore we do this we explain how the claim follows then. Notice that OW =
M~ ][ M'. Since F, f and f’ are k-connected and k > 2, we get identifications

7 =m(X) =mM) =m (M) =m(W) and OW is the disjoint union of the
universal coverings M and M'. Hence we get in Ly_ (Zm,w)

[(K(@W),t",s")] = [(Kp(M),~t,—s)]+ [(Kx(M),s',t)]
= _[(Kk(M)7t7s)] + [(Kk(Ml)asljt’)]'

If we can construct the Lagrangian above for (K} (ngV ),t",s"), we conclude

[(Kk(gl\/l//),t", §")] = 01in L;_(R) from Lemma 4.29. This implies the desired
equation in Ly_(Zm, w)

[(Kk(M)a -, _5)] = [(Kk(Ml)v 517 t’)]-
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It remains to show that im(0x+,) is a Lagrangian.

Thi{ is }\a/ther easy for the symmetric structure. We first show for any z,y €
K11 (W,0W) that s(0y1(x),0k+1(y)) = 0. The following diagram commutes
and has isomorphisms as vertical arrows.

Kk(l)

0 —— Kpn(W,0w) 2 ky@w) 229 kW) —— o0

?n[w,aW]T . ?n[BW]T ?n[W,BW]I

0 —— K@) KO,

Kk(BW) ———————) K’““(W 8W) —_— 0
We have for z,y € K;H.l(W,gITV)

S(8k+1 ($)7 8k+1 (y))

(?N[OW]) ™ 0 k11 (), Okra (y))
(K*(@) o (2N [W,0W]) ™ (), k1 (1)
(8% o K (@) o (7N [W,0W]) " (), )
0o (?n[W,0W]) " (z),y)

Il

(
(
(
(

Now suppose for z € Ky(M) that s(z, Ok (y)) = 0 for all y € Ky (W,0W).
We must show x € im(y1). This is equivalent to (?N[W,dW])~! o K;(1)(z) =
0. Since KP(W, oW ) = 0 for p < k and finitely generated projective for p = k+1,
the canonical map

KMYW,0W) S homz(Kyyr (W,0W), Z1), aw (a,?)

is bijective by an elementary chain complex argument or by the universal coeffi-
cient spectral sequence. Hence the claim follows from the following calculation
for y € K+1(M)

(2N [W,0W]) " o Ki(i)(x),9) (8" o (7N [oW]) " (2), )
(2N [oW]) ™ (), Okr1 ()

0.

Il

Thus we have shown that im(0x+1) is a Lagrangian for the non-degenerate e-
symmetric form [Kj d), s)]- It remains to show that it is also a Lagrangian for
the non-degenerate e-quadratic form [K}(9), s)]. In other words, we must show
that ¢ vanishes on im(8k+1) We sketch the idea of the proof.

Consider z € Kk+1(W 6W) We can find a smooth map (g,9g) : (S,05) —
(W, BW) such that S is obtained from S**! by removing a finite number of open
embedded disjoint discs D¥*! and the image of the fundamental class [S,85)]
under the map oililomology induced by (g,08g) is z. Moreover we can assume

that dg : S — OW is an immersion and g is in general position. We have to
show that (dg) is zero, where p(dg) the sum of the self intersection numbers of
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(09)|c : C = W for C € mo (0S). Since g is in general position, the set of double
points consists of circles which do not concern us and arcs whose end points are
on OW. Now one shows for each arc that the contributions of its two end points
to the self intersection number p(dg) cancel out. This proves p(Ok+1(z)) = 0.
This finishes the proof that the surgery obstruction is well-defined and depends
only on the normal bordism class. Thus we have proven Theorem 4.33 (2).
Assertion (1) of Theorem 4.33 is a direct consequence of Theorem 4.27. This
finishes the proof of Theorem 4.33. |

Now we can give a rather complete answer to Problem 3.1 and Problem 3.62
for even-dimensions and in the simply connected case.

Theorem 4.36 1. Let (f, f) be normal map from a closed manifold M to
a simply connected finite Poincaré complex X of dimension n = 4k > 5.
Then we can change M and f leaving X fized by finitely many surgery
steps to get a normal map (g, g) from a closed manifold N to X such that
g is a homotopy equivalence if and only if sign(M) = sign(X);

2. Let (f, f) be normal map from a closed manifold M to a simply connected
finite Poincaré complex X of dimension n = 4k + 2 > 5. Then we can
change M and f leaving X fized by finitely many surgery steps to get
a normal map (g,9) from a closed manifold N to X such that g is a
homotopy equivalence if and only if the Arf invariant taking values in Z /2
vanishes;

3. Let X be a simply connected finite Poincaré compler of dimension n =
4k > 5. Then X is homotopy equivalent to a closed manifold if and only if
the Spivak normal fibration has a reduction to a vector bundle ¢ : E — X,
i.e. the set of normal invariants T,(X) is non-empty, such that

(L) X)) = sign(X);

4. Let X be a simply-connected finite connected Poincaré complex of dimen-
stonn =4k +2 > 5. Then X is homotopy equivalent to a closed manifold
if and only if the Spivak normal fibration has a reduction to a vector bun-
dle £ : E — X, i.e. the set of normal invariants T,(X) is non-empty
such that the Arf invariant of the associated surgery problem, which takes
values in Z /2, vanishes.

Proof : (1) Because of Theorem 4.33 and Theorem 4.30 we have to show for
a 2k-connected normal map of degree one f : M — X from a closed simply
connected oriented manifold M of dimension n = 4k to a simply connected
Poincaré complex X of dimension n = 4k that for the non-degenerate symmetric
bilinear form R ®z (K2, (M), A) induced by the intersection pairing we get

sign (R ®z (Kar (M), A)) = sign(M) — sign(X).
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This follows from elementary considerations about signatures and from the com-
mutative diagram with exact rows

0 —— Kop(M) —— Hop(M) 22U,

?n[M]T ?ﬂ[M]T m[x]T

0 e KH(M) e H(M) e H(X) —— 0

Hy(X) —— 0

(2) follows from Theorem 3.49, Theorem 4.33 and Theorem 4.32.

(3) follows from (1) and the Hirzebruch signature formula which implies for a
surgery problem (f, f) : v(M) — £ covering f : M — X which is obtained from
a reduction ¢ of the Spivak normal fibration of X

sign(M) = (L(TM),[M])) = (Lw(M) 8 R*)™,[M]) = (L&, [X)).
(4) follows from Theorem 3.49 and (2). [ |

4.5 Formations and odd dimensional L-groups

In this subsection we explain the algebraic objects which describe the surgery
obstruction and will be the typical elements in the surgery obstruction group
in odd dimensions. Throughout this section R will be an associative ring with
unit and involution and € € {£1}.

Definition 4.37 An e-quadratic formation (P, v; F,G) consists of a non-degenerate
e-quadratic form (P,v) together with two Lagrangians F' and G.

An isomorphism f : (P,¢; F,G) — (P',¢'; F,' ,G") of e-quadratic formations
is an isomorphism f : (P,%) — (P’, ") of non-degenerate e-quadratic forms such
that f(F) = F' and f(G) = G’ holds.

Definition 4.38 The trivial e-quadratic formation associated to a finitely gen-
erated projective R-module P is the formation (H.(P); P, P*). A formation
(P,%; F,G) is called trivial if it isomorphic to the trivial e-quadratic formation
associated to some finitely generated projective R-module. Two formations are
stably isomorphic if they become isomorphic after taking the direct sum of trivial
formations.

Remark 4.39 We conclude from Lemma 4.29 that any formation is isomorphic
to a formation of the type (H(P); P, F) for some Lagrangian F' C P& P*. Any
automorphism f : H.(P) = H,(P) of the standard hyperbolic e-quadratic form
H.(P) for some finitely generated projective R-module P defines a formation
by (Hc(P); P, f(P)).

Consider a formation (P, ; F, G) such that P, F' and G are finitely generated
free and suppose that R has the property that R™ and R™ are R-isomorphic if
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and only if n = m. Then (P,¢; F,G) is stably isomorphic to (H.(Q); @, f(Q))
for some finitely generated free R-module @ by the following argument. Because
of Lemma, 4.29 we can choose isomorphisms of non-degenerate e-quadratic forms
f:H.(F)S (P,4)and g : H(G) = (P,4) such that f(F) = F and ¢(G) = G.
Since F = R® and G = R’ by assumption and R =2 FQF*=P=GdG* =
R?® we conclude a = b. Hence we can choose an R-isomorphism u : F — G.
Then we obtain an isomorphism of non-degenerate e-quadratic forms by the
composition
vi H(F) 24 5.(6) & (Py) L5 H(F)

and an isomorphism of e-quadratic formations
f: (HA(F); Fyo(F)) 5 (P43 F,G).

Recall that K7 (R) is defined in terms of automorphisms of finitely generated
free R-modules. Hence it is plausible that the odd-dimensional L-groups will
be defined in terms of formations which is essentially the same as in terms of
automorphisms of the standard hyperbolic form over a finitely generated free
R-module.

Definition 4.40 Let (P,v) be a (not necessarily non-degenerate) (—e)-quadratic
form. Define its boundary 8(P, 1)) to be the e-quadratic formation (H.(P); P,T'y),
where I'y is the Lagrangian given by the image of the R-homomorphism

Po>PaP, zw-(z,(1-€¢T)W)(x)).

One easily checks that I'y, appearing in Definition 4.40 is indeed a La-
grangian. Two Lagrangians F,G of a non-degenerate e-quadratic form (P, 1)
are called complementary if FNG = {0} and F+ G = P.

Lemma 4.41 Let (P,¢; F,G) be an e-quadratic formation. Then:

1. (P,y; F, Q) is trivial if and only F and G are complementary to one an-
other;

2. (P,4; F,G) is isomorphic to a boundary if and only if there is a Lagrangian
L C P such that L is a complement of both F' and G;

3. There is an e-quadratic formation (P',%'; F',G') such that (P,¢; F,G) &
(P',¥'; F',G") is a boundary;

4. An (—e¢)-quadratic form (Q, p) is non-degenerate if and only if its boundary
1s trivial.

Proof : (1) The inclusions of F' and G in P induce an R-isomorphism f :
F&®G— P. Let

(‘2 Z):FEBG—)(FGBG)*zF*EBG*
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be f* o1 o f for some representative ¢y : P — P* of ¢y € Q.(P) and let
Y € Q(F @& G) be the associated class. Then f is an isomorphism of non-
degenerate e-quadratic forms (F&G,¢') — (P,v) and F and G are Lagrangians
in (F @ G,v'). This implies that the isomorphism 9’ + € - T (') is given by

a b veT( @ b _ a+e-a* b+ec _ 0 e
c d)T€ cd) T\ cter dtedr) T~ \f O
Hence (b+€-c*) : G — F* is an isomorphism. Define an R-isomorphism

1 0 -
u.(o (b+e- ¢! ) FoF™ = P

One easily checks that u defines an isomorphism of formations
u: (H(F);F,F") = (F®© G,¥/;F,G).

(2) One easily checks that for an (—e)-quadratic form (P, ¢) the Lagrangian
P* in its boundary 0(P,v) := (H.(P); P,T'y) is complementary to both P and
T'y. Conversely, suppose that (P,1; F, G) is an e-quadratic formation such that
there exists a Lagrangian L C P which is complementary to both ' and G. By
the argument appearing in the proof of assertion (1) we find an isomorphism of
e-quadratic formations

f:(HA(F); F,F*) 5 (Py; F, L)

which is the identity on F. The preimage G' := f~1(G) is a Lagrangian in
H (F) which is complementary to F*. Write the inclusion of G’ into F' @ F*
as (a,b) : G’ - F @ F*. Consider the (—e)-quadratic form (F, "), where ¢’ €
Q_(F) is represented by boa* : F' — F*. One easily checks that its boundary is
precisely (H(F); F,G') and f induces an isomorphism of e-quadratic formations

A(F,Y') = (H(F);F,G") = (Py; F,G).

(3) Because of Lemma 4.29 we can find Lagrangians F' and G’ such that F and
F' are complementary and G and G’ are complementary. Put (P',¢'; F',G') =
(P,—v¢,F',G"). Then M = {(p,p) | p € P} C P @ P is a Lagrangian in the
direct sum

(P, F,G) & (P, ¢ F',G") = (Po Py & (-y),Fo F,GoG)

which is complementary to both F & F' and G & G'. Hence the direct sum is
isomorphic to a boundary by assertion (2).

(4) The Lagrangian I'y in the boundary 8(Q, ) := H.(P); P,T'y) is comple-
mentary to P if and only if (1 —¢-T)(u) : P — P* is an isomorphism. This

finishes the proof of Lemma 4.41. | | [ ]
Now we can define the odd-dimensional surgery groups.
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Definition 4.42 Let R be an associative ring with unit and involution. For an
odd integer n = 2k + 1 define the abelian group L, (R) called the n-th quadratic
L-group of R to be the abelian group of equivalence classes [(P,v; F,G)] of
(—1)*-quadratic formations (P,v; F,G) such that P, F and G are finitely gen-
erated free with respect to the following equivalence relation. We call (P,y; F, Q)
and (P',¢'; F',G") equivalent if and only if there exists (—e¢)-quadratic forms
(Q, ) and (Q', ') for finitely generated free R-modules Q and Q' and finitely
generated free R-modules S and S’ together with an isomorphism of e-quadratic
formations

(P,; F,G) @ 0(Q, 1) ® (He(S); S,5)
= (PL¢F,GNodQ 1) ® (H(S'); S, (S")").

Addition is given by the sum of two e-quadratic forms. The zero element is
represented by 0(Q, p) ® (H(S); S, S*) for any (—e)-quadratic forms (Q, p) for
finitely generated free R-modules Q and any finitely generated free R-modules
S. The inverse of [(P,v; F,G)] is represented by (P,—; F',G') for any choice
of Lagrangians F' and G' in H.(P) such that F' and F' are complementary and
G and G' are complementary.

A morphism u : R — S of rings with involution induces homomorphisms
Uy : Ly (R) = Lg(S) for k = 1,3 by induction. One easily checks (uov). = u,ov,
and (idR)* = ide(R) for k = 1,3.

The odd-dimensional L-groups of the ring of integers vanish.

Theorem 4.43 We have Log41(Z) = 0.

4.6 The surgery obstruction in odd dimensions

Consider a normal map of degree one (f, f) : TM ®R* — £ covering f : M — X,
where M is a closed oriented manifold of dimension n and X is a connected finite
Poincaré complex of dimension n for odd n = 2k + 1. To these data we want to
assign an element o(f, f) € L,(Zn,w) such that the following holds

Theorem 4.44 (Surgery obstruction theorem in odd dimensions) We get
under the conditions above:

1. Suppose k > 2. Then o(f,f) = 0 in L,(Zn,w) if and only if we can do
a finite number of surgery steps to obtain a normal map (f',f') : TM' &
R 5 ¢ ® R covering a homotopy equivalence f' : M' — X ;

2. The surgery obstruction o(f, f) depends only on the normal bordism class

of (£, f)-

We can arrange by finitely many surgery steps that f is k-connected (see
Theorem 3.61). Consider a normal bordism (F,F) : TW & R® — 7 covering a
map F : W — X of degree one from the given normal map (f, f) : TM®R* — ¢
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covering f : M — X to a new k-connected normal map (f', f') : T M’ ORY — ¢
covering f' : M' — X. We finally want to arrange that f' is a homotopy
equivalence. By applying Theorem 3.61 to the interior of W without changing
OW we can arrange that W is (k + 1)-connected. The kernels fit into exact
sequences

Ki41(3)

0= Kppr (M) K (W) 2029 g a7, 37 22 K (311 = 0,

where j : M' — W and ¢/ : W — (W, M’) are the inclusions. Hence f' is
a homotopy equivalence if and only if Ky41(7') : Kiqa (W) — Kk+1(W M ’) is
bijective. Therefore we must arrange that Ky41(i') : Kpp1 (W) = Kgy1(W, M)
is bijective.

We can associate to the normal bordism (F, F) : TW®R® — 7 from the given
k-connected normal map of degree one (f, f) to another k-connected normal
map of degree one (f', f') a (—1)*-quadratic formation (H—yy+ (F); F,G) as
follows. The underlying non-degenerate (—1)*-quadratic form is H (1) (F) for
F = Kk+1(W,MV ). The first Lagrangian is F. The second Lagrangian G is
given by the image of the map

(K1 (&), 0 (20 [W,0W]) ™ 0 K1 (3) : Kipr (W)
~ F&F* = K1 (W, M") @ Kia (W, M),

where i : W — (W, M) is the inclusion, (? N [W,0W]) : K¥1(W,M") S
K k+1(W M ) is the Poincaré isomorphism and u is the canonical map

u:Kk+1(W,M')E)Kk+1(’Wv,M’)*, a {a,?)

which is bijective by an elementary chain complex argument or by the universal
coeflicient spectral sequence.

What is the relation between this formation and the problem whether f
is a homotopy equivalence. Suppose that f' is a homotopy equivalence. Then
Kis1(i) : K1 (W) = Kpp (W, M) is an isomorphism. Define a (—1)**!-

quadratic form (H,v) by H = Ky41(W) and

Ky41(3) (enw,ew])~! E

¥ H = Ky (W) Ky (W, M) KM (W, M)

4 Ky (W, M) Ll

One easily checks that the isomorphism Kjq (1,~') : K k+1(W) = Kpt1 (W, M "
induces an isomorphism of (—1)*-quadratic formations

K (W)* = H*.

8(H, %) = (H(_y)-(F),F,G).

Hence we see that f' is a homotopy equivalence only if (H(_y)(F); F,G) is
isomorphic to a boundary.
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One decisive step is to prove that the class of this e-quadratic formation
formation (H(_1)x(F);,F,G) in Lag41(Z7,w) is independent of the choice of
the (k + 1)-connected nullbordism. We will not give the proof of this fact. This
fact enables us to define the surgery obstruction of (£, f)

o(f.f) = [H(F);F,G)] € La(Zm,w), (4.45)

where (H,(r); F,G) is the e-quadratic formation associated to any normal bor-
dism of degree one (F,F) from a normal map (fo, fo) to some normal map
(f', ") such that (fo, fo) and (f', f') are k-connected, F is (k + 1)-connected
and (fo, fo) is obtained from the original normal map of degree one (f, f) by
surgery below the middle dimension. From the discussion above it is clear that
the vanishing of o(f, f) is a necessary condition for the existence of a normal
map (f', f') which is normally bordant to f and whose underlying map is a
homotopy equivalence. We omit the proof that for £ > 2 this condition is also
sufficient. This finishes the outline of the proof of Theorem 4.44.

More details can be found in [64, chapter 8]. The reason why we have been
very brief in the even-dimensional case is that the proofs are more complicated
but not as illuminating as in the even-dimensional case and that a reader who is
interested in details should directly read the approach using Poincaré complexes
of Ranicki (see [51], [51], [52]). This approach is more conceptual and treats the
even-dimensional and odd-dimensional case simultaneously.

Now we can give a rather complete answer to Problem 3.1 and Problem 3.62
for odd dimensions in the simply connected case.

Theorem 4.46 1. Suppose we have some normal map (f, f) from a closed
manifold M to a simply connected finite Poincaré complex X of odd di-
mension n = 2k + 1 > 5. Then we can always change M and f leaving
X fized by finitely many surgery steps to get a normal map (g,g) from a
closed manifold N to X such that g is a homotopy equivalence;

2. Let X be a simply-connected finite connected Poincaré complex of odd
dimension n = 2k +1 > 5. Then X is homotopy equivalent to a closed
manifold if and only if the Spivak normal fibration has a reduction to a
vector bundle ¢ : E — X, i.e. the set of normal invariants T,(X) is
non-empty.

Proof : (1) follows from Theorem 4.44 and Theorem 4.43.

(2) follows from assertion 1 together with Theorem 3.49. [ |

4.7 Variations of the surgery obstruction and
the L-groups

So far we have dealt with Problem 3.1 when a topological space is homotopy
equivalent to a closed manifold. This question has motivated and led us to the
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notions of a finite Poincaré complex, of its Spivak normal fibration, of a normal
map of degree one, of L-groups and of the surgery obstruction. This problem
is certainly interesting but not our ultimative goal. We have already mentioned
in Remark 1.5 our main goal which is to decide whether two closed manifolds
are diffeomorphic and we have discussed the so called surgery program which is
a strategy to attack it. The surgery program will lead to the surgery sequence
in the next chapter (see Theorem 5.12). The surgery program suggests that
we have to consider the following variations of the surgery obstruction and the
L-groups which will play a role when establishing the surgery sequence.

Consider the third step (3) in the surgery program which we have explained
in Remark 1.5. There are a cobordism (W;M,N) and a map (F, f,id) :
(W;M,N) = (Nx[0,1]; N x {0}, N x{1}) for f a homotopy equivalence is given
and we want to change F into a homotopy equivalence without changing W on
the boundary. Thus we have to deal also with surgery problems (g, g) where the
underlying map g : V — X is a pair of maps (g,9g) : (V,0V) = (X,0X) from
a compact oriented manifold V' with boundary dV to a pair of finite Poincaré
complexes (X,0X) such that Jf is already a homotopy equivalence. This will
be done in Section 4.7.1. If this procedure is successful we obtain a h-cobordism
W from M to N. We would like to know whether W is relative M diffeomor-
phic to M x [0, 1]. This would imply that M and N are diffeomorphic. Because
of the s-Cobordism Theorem 1.1 this comes down to the problem to control
the Whitehead torsion of the h-cobordism. The Whitehead torsion of the h-
cobordism is trivial if and only if the Whitehead torsion of 7(F’) and of 7(f) in
Wh(m (X)) agree (see Theorem 2.1). We may modify the first step (1) of the
surgery program appearing in Remark 1.5 by requiring that f is a simple homo-
topy equivalence. The existence of a simple homotopy equivalence f : M — N
is a necessary condition for M and N to be diffeomorphic. This means that we
must modify our surgery obstruction so that its vanishing means that we get
a simple homotopy equivalence F : W — X x [0,1]. This will be outlined in
Section 4.7.2.

4.7.1 Surgery obstructions for manifolds with boundary

We want to extend the notion of a normal map from closed manifolds to
manifolds with boundary. The underlying map f is a map of pairs (f,9f) :
(M,0M) — (X,0X), where M is a compact oriented manifold with bound-
ary OM and (X,0X) is a finite Poincaré pair, the degree of f is one and
Of : OM — 90X is required to be a homotopy equivalence. The bundle data
are unchanged, they consist of a vector bundle £ over X and a bundle map
f:TM@®R* = £. Next we explain what a nullbordism in this setting means.
A manifold triad (W; 8, W, 0; W) of dimension n consists of a compact mani-
fold W of dimension n whose boundary decomposes as OW = oW U0, W for two
compact submanifolds W and ;W with boundary such that oW NoW =
O(0oW) = 0(01W). A Poincaré triad (X;00,X,01X) of dimension n consists of
a finite Poincaré pair (X, 0X) of dimension n together with (n — 1)-dimensional
finite subcomplexes 9y X and &, X such that X = Gy X U 9; X, the intersec-
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tion §oX N 91 X is (n — 2)-dimensional, 8X is equipped with the structure of
a Poincaré complex induced by Poincaré pair structure on (X,9X) and both
(00X,00X N01X) and (01 X, X N6, X) are equipped with the structure of a
Poincaré pair induced by the given structure of a Poincaré complex on 0X. We
use the convention that the fundamental class of [X,0X] is send to [0.X] under

the boundary homomorphism H,(X,0X) LN Hp,_1(0X) and [0X] is sent to
([60X, 80X N1 X], —[01 X, 00X N 01 X]) under the composite

Hn_l(é)X) — Hn_l(aoX U 61X, 80X n 81X)
= Hn_l(a()X, 00X ﬂc')lX) @ Hn~1(61X, JX N 61X)

A manifold triad (W; 8, W, 0, W) together with an orientation for W is a Poincaré
triad. We allow that 8,X or 8; X or both are empty.

A normal nullbordism (F,F) : TW @ R® — n for a normal map of de-
gree one (f, f) with underlying map (f,0f) : (M,0M) — (X,0X) consists
of the following data. Put n = dim(M). We have a compact oriented (n + 1)-
dimensional manifold triad (W; oW, 8, W), a finite (n+1)-dimensional Poincaré
triad (Y;00Y,8Y), a map (F;00F, 01 F) : (W;0W,0W) — (Y;0,Y,0:Y), an
orientation preserving diffeomorphism (u, du) : (M,0M) — (8,W, 8(0W)) and
an orientation preserving homeomorphism (v,dv) : (X,0X) — (3Y,8Y N
0:Y). We require that F' has degree one, 01 F is a homotopy equivalence and
OoF ou = vo f. Moreover, we have a bundle map F : TW ® R® — n covering F
and a bundle map 7 : £ ®R® — 7 covering v such that F, Tu and T fit together.

We call two such normal maps (f, f) and (f7, f') normally bordant if the
disjoint union of them after changing the orientation for M appearing in (£, f)
possesses a normal nullbordism.

The definition and the main properties of the surgery obstruction carry over
from normal maps for closed manifolds to normal maps for compact manifolds
with boundary. The main reason is that we require f : M — 0X to be a
homotopy equivalence so that the surgery kernels “do not feel the boundary”.
All arguments such as making a map highly connected by surgery steps and
intersection pairings and selfintersection can be carried out in the interior of M
without affecting the boundary. Thus we get

Theorem 4.47 (Surgery obstruction theorem for manifolds with bound-
ary) Let (f,f) be a normal map of degree one with underlying map (f,0f) :
(M,0M) — (X,0X) such that Of is a homotopy equivalence. Putn = dim(M).
Then:

1. We can associate to it its surgery obstruction

o(f,f) € Ln(Zm,w). (4.48)

2. The surgery obstruction depends only on the normal bordism class of

(£, £
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3. Supposen > 5. Then o(f, f) =0 in L,(Zn,w) if and only if we can do a
finite number of surgery steps on the interior of M leaving the boundary
fized to obtain a normal map (f',f) : TM' & RY — &' which covers
a homotopy equivalence of pairs (f',0f') : (M',0M') — (X,0X) with
OM' = OM and Of' = Of.

4.7.2 Surgery obstructions and Whitehead torsion

Next we want to modify the L-groups and the surgery obstruction so that the
surgery obstruction is the obstruction to achieve a simple homotopy equivalence.

We begin with the L-groups. It is clear that this requires to take equivalence
classes of basis into account. Suppose that we have specified a subgroup U C
K (R) such that U is closed under the involution on Kj(R) coming from the
involution of R and contains the image of the change of ring homomorphism

Two basis B and B’ for the same finitely generated free R-module V' are
called U -equivalent if the change of basis matrix defines an element in K;(R)
which belongs to U. Notice that the U-equivalence class of a basis B is un-
changed if we permute the order of elements of B. We call an R-module V
U-based if V is finitely generated free and we have chosen a U-equivalence class
of basis.

Let V be a stably finitely generated free R-module. A stable basis for V
is a basis B for V @ R* for some integer u > 0. Denote for any integer v the
direct sum of the basis B and the standard basis S* for R* by B[] S® which is
a basis for V @ R¥T4. Let C be a basis for V & R?. We call the stable basis B
and C stably U -equivalent if and only if there is an integer w > u, v such that
BI[S* % and C ][] S¥~" are U-equivalent basis. We call a R-module V stably
U-based if V is stably finitely generated free and we have specified a stable
U-equivalence class of stable basis for V.

Let V and W be stably U-based R-modules. Let f : V & R® S wWe R
be a R-isomorphism. Choose a non-negative integer c¢ together with basis for
V @ R*t¢ and W @ R*¢ which represent the given stable U-equivalence classes

of basis for V and W. Let A be the matrix of f @idg- : V@ R+ = W o Rbte.
It defines an element [A] in K;(R). Define the U-torsion

(f) € EKi(R)/U (4.49)

by the class represented by [A]. One easily checks that 7(f) is independent of
the choices of ¢ and the basis and depends only on f and the stable U-basis for
V and W. Moreover, one easily checks

(gof) = V(9 +7Y(F);
(19) = o
TU(idv) = 0
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for R-isomorphisms f : Vj = Vi, g : W1 = Vo and v : V3 =N V4 and an
R-homomorphism u : Vy — Vj of stably U-based R-modules V;. Let C, be a
contractible stably U-based finite R-chain complex, i.e. a contractible R-chain
complex C, of stably U-based R-modules which satisfies C; = 0 for |¢] > N for
some integer N. The definition of Whitehead torsion in (2.7) carries over to the
definition of the U-torsion

Y(C.,) = [4 €Ki(R)/U. (4.50)

Analogously we can associate to a R-chain homotopy equivalence f : C, — D.
of stably U-based finite R-chain complexes its U-torsion (cf (2.8))

U(f.) = r(cones(f.) € Ki(R)/U. (4.51)

Theorem 2.9 carries over to U-torsion in the obvious way.

We will consider U-based e-quadratic forms (P, 1)), i.e. e-quadratic forms
whose underlying R-module P is a U-based finitely generated free R-module
such that U-torsion of the isomorphism (1 +¢-T)(¥) : P =2, P* is zero in
K;(R)/U. An isomorphism f : (P,¢) — (P',9¢') of U-based e-quadratic forms
is U-simple if the U-torsion of f : P — P’ vanishes in K;(R)/U. Notice that the
e-quadratic form H(R) inherits a basis from the standard basis of R. The sum
of two stably U-based e-quadratic forms is again a stably U-based e-quadratic
form. It is worthwhile to mention the following simple version of Lemma 4.29.

Lemma 4.52 Let (P,v) be a U-based e-quadratic form. Let L C P be a La-
grangian such that L is U-based and the U-torsion of the following 2-dimensional
U -based finite R-chain complex

0 L4 p oD, rv g
vanishes in K1(R)/U. Then the inclusion i : L — P extends to a U-simple
isomorphism of e-quadratic forms

HA(L) = (Py).
Next we give the simple version of the even-dimensional L-groups.

Definition 4.53 Let R be an associative ring with unit and involution. For
€ € {£1} define LY__(R) to be the abelian group of equivalence classes [(F, )]
of U-based non-degenerate e-quadratic forms (F, 1) with respect to the follow-
ing equivalence relation. We call (F,1) and (F',v¢') equivalent if and only if
there exists integers u,u’ > 0 and a U-simple isomorphism of non-degenerate
e-quadratic forms

(F,) @ H.(R)* = (F',¢') ® H(R)" .

Addition is given by the sum of two e-quadratic forms. The zero element is
represented by [H.(R)"] for any integer u > 0. The inverse of [F, ] is given by
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For an even integer n define the abelian group LY(R) called the n-th U-
decorated quadratic L-group of R by

U N LY(R) ifn=0 mod 4;
Ln(R) = { LY(R) ifn=2 modd4.

A U-based e-quadratic formation (P, y; F, G) consists of an e-quadratic for-
mation (P,v; F,G) such that (P,+) is a U-based non-degenerate e-quadratic
form, the Lagrangians F' and G are U-based R-modules and the U-torsion of
the following two contractible U-based finite R-chain complexes

i*o(1+e-T)(¢) F*

0sF5pP =0

and
0o G p iDL

vanish in K;(R)/U, where ¢ : F — P and j : G — P denote the inclusions.
An isomorphism f : (P,¢; F,G) = (P',¢'; F',G") of U-based e-quadratic for-
mations is U-simple if underlying the U-torsion of the induced R-isomorphisms
PZ P,F 3 F and G = @' vanishes in K;(R)/U. Notice that the trivial
e-quadratic formation (H.(R"); R*,(R“)*) inherits a U-basis from the stan-
dard basis on R*. Given a U-based (—¢)-quadratic form (Q,%), its boundary
Q, ) is a U-based e-quadratic formation. Obviously the sum of two U-based
e-quadratic formations is again a U-based e-quadratic formation. Next we give
the simple version of the odd-dimensional L-groups.

Definition 4.54 Let R be an associative ring with unit and involution. For e €
{1} define La_.(R) to be the abelian group of equivalence classes [(P,vy; F,G)]
of U-based e-quadratic formations (P,v; F,G) with respect to the following equiv-
alence relation. We call two U-based e-quadratic formations (P,¢; F,G) and
(P',¢'; F',G") equivalent if and only if there exists U-based (—¢)-quadratic forms
(Q, 1) and (Q', 1) and non-negative integers u and u' together with a U-simple
isomorphism of e-quadratic formations

(P,y; F,G) ® 8(Q, 1) ® (H(R"); R*, (R*)")
~ (P ¢ F,G)®dQ, ) ® (H(R¥); R*,(R¥)*).

Addition is given by the sum of two e-quadratic forms. The zero element is rep-
resented by 0(Q, u) ® (H(R™); R*, (R“)*) for any U-based (—€)-quadratic form
(@, 1) and non-negative integer u. The inverse of [(P,v; F,G)] is represented by
(P, —; F',G") for any choice of stably U-based Lagrangians F' and G' in H.(P)
such that F and F' are complementary and G and G' are complementary and
the U-torsion of the the obvious isomorphism F & F' S PadFeF 5P
vanishes in K, (R)/U.

For an odd integer n define the abelian group LY(R) called the n-th U-
decorated quadratic L-group of R
{ LY(R) ifn=1 mod 4

U —
Ln(R) == LY(R) ifn=3 mod4.
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Notation 4.55 If R = Z= with the w-twisted involution and U C K,(Zm) is
the abelian group of elements of the shape (L£g) for g € 7, then we write

L (Zm,w) = LY(Zm, w);
LMZm,w) = L.(Zn,w);

where L, (R) is the L-group introduced in Definitions 4.28 and 4.42 and LY (R)
is the L-group introduced in Definitions 4.58 and 4.54. The L-groups L5 (Zm,w)
are called simple quadratic L-groups.

Let (f,f) be a normal map of degree one with underlying map (f,df) :
(M,0M) — (X,0X) such that (X,0X) is a simple finite Poincaré complex and
df is a simple homotopy equivalence. Next we want to explain how the definition
of the surgery obstruction of (4.48) can be modified to the simple setting. Notice
that the difference between the L-groups L!(Zm,w) and the simple L-groups
L!(Zw,w) is the additional structure of a U-basis. The definition of the simple
surgery obstruction

o(f,f) € Ly(Zmw). (4.56)

is the same as the one in (4.48) except that we must explain how the various
surgery kernels inherit a U-basis.

The elementary proof of the following lemma is left to the reader. Notice
that for any stably U-based R-module V and element z € K;(R)/U we can find
another stable U-basis C for V such that the U-torsion 7Y (id : (V, B) — (V,C)
is . This is not true in the unstable setting. For instance, there exists a ring
R with an element z € K;(R)/U for U the image of K1(Z) — Ki(R) such that
x cannot be represented by a unit in R, in other words z is not the U-torsion
of any R-automorphism of R.

Lemma 4.57 Let C, be a contractible finite stably free R-chain complex and r
be an integer. Suppose that each chain module C; with i # r comes with a stable
U-basis. Then C, inherits a preferred stable U-basis which is uniquely defined
by the property that the U-torsion of C. vanishes in K;(R)/U.

Now Lemma 4.18 has the following version in the simple homotopy setting.

Lemma 4.58 Let D, be a stably U-based finite R-chain complex. Suppose for a
fized integer k that H;(D,) = 0 fori # r. Suppose that H™!(homg(D.,V)) =0
for any R-module V. Then H,.(D.,) is stably finitely generated free and inherits
a peferred stable U -basis.

Proof : combine Lemma 4.57 and Lemma 4.18. n
Now we can prove the following version of Lemma 4.19

Lemma 4.59 If f : X = Y is k-connected for n = 2k or n = 2k + 1, then
K (M) is stably finitely generated free and inherits a preferred stable U-basis.
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Proof : The proof is the same as the one of the proof of Lemma 4.19 except
that we apply Lemma 4.58 instead of Lemma 4.18. |

In the proof that the surgery obstruction is well-defined, one has to show
that the U-equivalence classes of basis on the surgery kernels appearing in the
short exact sequence (4.35) are compatible with the short exact sequence in the
sense of Lemma 4.57. This follows from the following lemma whose elementary
proof is left to the reader.

Lemma 4.60 Let 0 — C, 1—*) D, RLI E, — 0 be a U-based exact sequence
of U-based finite R-chain complezes. Here U-based exact means that for each
p > 0 the U-torsion of the 2-dimensional U-based finite R-chain complex 0 —

C, = D, 2y E, — 0 vanishes in K,(R)/U. Let v be a fized integer.
Suppose that H;(C.) = H;i(E.) = 0 for i # r and H™"!(homg(C,,V)) =
H™+(hompg(C.,V)) = 0 holds for any R-module V. Equip H,(C.) and H,(E.)
with the U -equivalence class of stable basis defined in Lemma 4.58.

Then H;(D,) = 0 for i # r and H™'(homg(D.,V)) = 0 holds for any
R-module V. We obtain a short exact sequence

0 - H.(C) 2% g (p,) 2% g (B, > o.
The U -equivalence class of stable basis on H.(D,) obtained from Lemma 4.58
applied to this exact sequence and the U-equivalence class of stable basis on
H,.(D,) obtained from Lemma 4.58 applied to D, agree.

Next we can give the simple version of the surgery obstruction theorem.
Notice that simple normal bordism class means that in the definition of normal
nullbordisms the pairs (Y,0Y), (0Y,8Y N &1Y) and (0:Y,0Y N &Y) are
required to be simple finite Poincaré pairs and the map & F : )M — &,Y is
required to be a simple homotopy equivalence.

Theorem 4.61 (Simple surgery obstruction theorem for manifolds with
boundary) Let (f,f) be a normal map of degree one with underlying map
(f,0f) : (M,0M) — (X,0X) such that (X,0X) is a simple finite Poincaré
complezx Of is a simple homotopy equivalence. Put n = dim(M). Then:

1. The simple surgery obstruction depends only on the simple normal bordism

class of (f, f);

2. Suppose n > 5. Then o(f, f) = 0 in L (Zw,w) if and only if we can do a
finite number of surgery steps on the interior of M leaving the boundary
fized to obtain a normal map (f',f') : TM' & RY — &' which covers a
simple homotopy equivalence of pairs (f',0f") : (M',0M') = (X,0X)
with OM' = OM and 0f' = Of.

4.8 Miscellaneous

A guide for the calculation of the L-groups for finite groups is presented by
Hambleton and Taylor [14], where further references are given.
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Chapter 5

The surgery exact sequence

Introduction

In this section we introduce the exact surgery sequence (see Theorem 5.12). It
is the realization of the surgery program which we have explained in Remark
1.5. The surgery exact sequence is the main theoretical tool in solving the
classification problem of manifolds of dimensions greater or equal to five.

5.1 The structure set

Definition 5.1 Let X be a closed oriented manifold of dimension n. We call
two orientation preserving simple homotopy equivalences f; : M; — X from
closed oriented manifolds M; of dimension n to X for i = 0,1 equivalent if
there exists an orientation preserving diffeomorphism g : Mo — M; such that
f1 o g is homotopic to fo. The simple structure set S3(X) of X is the set
of equivalence classes of orientation preserving simple homotopy equivalences
M — X from closed oriented manifolds of dimension n to X. This set has a
preferred base point, namely the class of the identity id : X — X.

The simple structure set S7(X) is the basic object in the study of manifolds
which are diffeomorphic to X. Notice that a simple homotopy equivalence
f : M — X is homotopic to a diffeomorphism if and only if it represents the
base point in S3(X). A manifold M is oriented diffeomorphic to IV if and only
if for some orientation preserving simple homotopy equivalence f : M — N
the class of [f] agrees with the preferred base point. Some care is necessary
since it may be possible that a given orientation preserving simple homotopy
equivalence f : M — N is not homotopic to a diffeomorphism although M and
N are diffeomorphic. Hence it does not suffice to compute S2(IV), one also has to
understand the operation of the group of homotopy classes of simple orientation
preserving selfequivalences of N on S3(NN). This can be rather complicated in

111
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general. But it will be no problem in the case N = S™, because any orientation
preserving selfhomotopy equivalence S™ — S™ is homotopic to the identity.

There is also a version of the structure set which does not take Whitehead
torsion into account.

Definition 5.2 Let X be a closed oriented manifold of dimension n. We call
two orientation preserving homotopy equivalences f; : M; — X from closed
oriented manifolds M; of dimension n to X for i = 0,1 equivalent if there
is a manifold triad (W;0,W,0. W) with oW N W = 0 and an orientation
preserving homotopy equivalence of triads (F;00F,00F) : (W;00W,00W) —
(X x [0,1]; X x {0}, X x {1}) together with orientation preserving diffeomor-
phisms go : Mo — 8oW and g1 : M{ — OoW satisfying 0;Fog; = f; fori =0, 1.
(Here M| is obtained from M, by reversing the orientation.) The structure set
SM(X) of X is the set of equivalence classes of orientation preserving homotopy
equivalences M — X from a closed oriented manifold M of dimension n to X.
This set has a preferred base point, namely the class of the identity id : X — X.

Remark 5.3 If we would require in Definition 5.2 the homotopy equivalences
F, fo and fi to be simple homotopy equivalences, we would get the simple struc-
ture set S5 (X) of Definition 5.1, provided that n > 5. We have to show that the
two equivalence relations are the same. This follows from the s-cobordism The-
orem 1.1. Namely, W appearing in Definition 5.2 is a h-cobordism and is even a
s-cobordims if we require F', fo and f; to be simple homotopy equivalences (see
Theorem 2.1). Hence there is a diffeomorphism & : W x [0,1] — W inducing
the obvious identification W x {0} — oW and some orientation preserving
diffeomorphism ¢1 : (GgW)~ = (oW x {1})™ — O1W. Then ¢ : My — M,
given by g; 1o ¢y 0gp is an orientation preserving diffeomorphism such that f; 0
is homotopic to fy. The other implication is obvious.

Remark 5.4 As long as we are dealing with smooth manifolds, there is in
general no canonical group structure on the structure set.

5.2 Realizability of surgery obstructions

In this section we explain that any element in the L-groups can be realized as
the surgery obstruction of a normal map (f, f) : TM & R* — £ covering a map
f:(M,0M) — (Y,0Y) if we allow M to have non-empty boundary 0M.

Theorem 5.5 Supposen > 5. Consider a connected compact oriented manifold

X possibly with boundary 0X. Let © be its fundamental group and let w : 7 —

{1} be its orientation homomorphism. Consider an element x € L, (Zm,w).
Then we can find a normal map of degree one

(F,/): TM@R* - TX x[0,1] & R*
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covering a map of triads
f=(f;00f,01f): (M;80M,0,M) - (X x[0,1], X x {0}UdX x[0,1], X x {1})
with the following properties:

1. dfo is a diffeomorphism and f|a,n is given by T(9fo) ® idga+1;

2. O1f is a homotopy equivalence;

3. The surgery obstruction o(f, f) in L,(Zm,w) (see Theorem 4.48) is the
gien element x.

The analogous statement holds for x € L3 (Zm,w) if we require O1f to be
a simple homotopy equivalence and we consider the simple surgery obstruction
(see (4.56)).

Proof : We give at least the idea of the proof in the case n = 2k, more details
can be found in [64, Theorem 5.3 on page 53, Theorem 6.5 on page 66].

Recall that the element z € L,(Z,w) is represented by a non-degenerate
(—1)*-quadratic form (P, %) with P a finitely generated free Zn-module. We fix
such a representative and write it as a triple (P, u, A) as explained in Subsection
4.2.2. Let {b1,b,,...b.} be a Zz-basis for P.

Choose r disjoint embeddings j; : D**~1 — X — 8X into the interior of X
for i = 1,2,...r. Let F° : §¥~1 x D¥ — D?!~! be the standard embedding.
Define embeddings F? : S¥~! x D¥* — X by the composition of the standard
embedding F° and j; for i = 1,2,...7. Let f° : S*¥~1 — X be the restriction
of F; to §¥~1 x {0} c S*¥~1 x DF. Fix base points b € X — X and s € S*~!
and paths w; from b to f2(s) for i = 1,2,...r. Thus each f? is a pointed
immersion. Next we construct regular homotopies n; : S*~1 — X from f? to a
new embedding f} which are modelled upon (P, s, A). These regular homotopies
define associated immersions n} : S¥7! x [0,1] = X x [0,1], (z,t) = (0:(x),?).
Since these immersions 7} are embeddings on the boundary, we can define their
intersection and selfintersection number as in (4.1) and (4.6).

We want to achieve that the intersection number of 7; and n; for i < j is
A(bs, bj) and the selfintersection number p(n;) is p(b;) for i = 1,2,...7. Notice
that these numbers are additive under stacking regular homotopies together.
Hence it suffices to explain how to introduce a single intersection with value
+g between 7; and 7 for ¢ < j or a selfintersection for n; with value +g for
i€ {1,2,...,r} without introducing other intersections or selfintersections. We
explain the construction for introducing an intersection between n; and nj; for
1 < j, the construction for a selfintersection is analogous. This construction will
only change 7;, the other regular homotopies n; for j # ¢ will be unchanged.

Join f?(s) and f](-)(s) by a path v such that v is an embedding, does not meet
any of the f2-s and the the composition w; *xv*w; represents the given element
g € m. Now there is an obvious regular homotopy from f? to another embedding
along the path v inside a small tubular neighborhood N(v) of v which leaves
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f? fixed outside a small neighborhood U (s) of s and moves f?|y(s) within this
small neighborhood N (v) along v very close to f3(s). Now use a disc D*¥ which
meets f? transversally at the origin to move f further, thus introducing the
desired intersection with value +g. Inside the disc the move looks like pushing
the upper hemisphere of the boundary down to the lower hemisphere of the
boundary, thus having no intersection with the origin at any point of time with
one exception. One has to check that there is enough room to realize both
possible signs.

Since f} is regularly homotopic to f? which is obtained from the trivial
embeddings F?, we can extend f} to an embedding F} : S¥~1 x D¥ —» X —9X.
Now attach for each i € {1,2...,7} a handle (F}) = D¥ x D* to X x [0,1] by
F} x {1} : Sk~ x D* — X x {1}. Let M be the resulting manifold. We obtain a
manifold triad (M;8,M,8; M) if we put oM = X x 0UIX x[0,1] and Hh M =
OM —int(9pX). There is an extension of the identity id : X x [0,1] = X x [0, 1]
to amap f : M — X x [0,1] which induces a map of triads (f;0f,01f)
such that Ogf is a diffeomorphism. This map is covered by a bundle map
f:TM ®R* - TX ®R* which is given on dyM by the differential of &y f.
These claims follow from the fact that f} is regularly homotopic to f? and the
f2 were trivial embeddings so that we can regard this construction as surgery

on the identity map X — X. The kernel K(M) = Ky(M,X x [0,1]) has
a preferred basis corresponding to the cores D* x {0} C D* x DF of the new
handles (F}). These cores can be completed to immersed spheres S; by adjoining
the images of the 7 in X x [0,1] and finally the obvious discs D* in X x {0}
whose boundaries are given by f°(S¥~!). Then the intersection of S; with S;
is the same as the intersection of n; with 7} and the selfintersection of S; is
the selfintersection of 7} with itself. Hence by construction A(S;,S;) = A(b;, b;)
for i < 7 and the selfintersection number p(S}) is p(b;) for ¢ = 1,2,...r. This
implies A(S;,S;) = A(b;, b;) for ¢,5 € {1,2,...,r} (see Subsection 4.2.2). The
isomorphism P — P* associated to the given non-degenerate (—1)*-quadratic
form can be identified with Kk(M) - Kk(M, 51\]\/4) if we use for Kk(ﬁ, 6/1\]\/4)
the basis given by the cocores of the handles (F}'). Hence K (51\]\/4 ) = 0 and we
conclude that 9 f is a homotopy equivalence. By definition and construction
o(f, f) in L,(Zw,w) is the class of the non-degenerated (—1)*-quadratic form
(P, s, A). This finishes the outline of the proof of Theorem 5.5. ]

Remark 5.6 It is not true that for any closed oriented manifold N of dimension
n with fundamental group = and orientation homomorphism w : 7 — {1} and
any element ¢ € L,(Zw,w) there is a normal map (f,f) : TM @ R* — ¢
covering a map of closed oriented manifolds f : M — N of degree one such that
o(f, f) = z. Notice that in Theorem 5.5 the target manifold X x [0, 1] is not
closed. The same remark holds for L} (Zm,w).
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5.3 The surgery exact sequence

Now we can establish one of the main tools in the classification of manifolds,
the surgery exact sequence. For this purpose we have to extend the Definition
3.51 of a normal map for closed manifolds to manifolds with boundary. Let
(X,0X) be a compact oriented manifold of dimension n with boundary 0.X. We
consider normal maps of degree one (£, f) : TM ® R* — ¢ with underlying map
(f,0f) : (M,0M) — (X,0X) for which 8f : M — 90X is a diffeomorphism. A
normal nullbordism for (f, f) consists of a bundle map

(F,F): TWa&R -1
with underlying map of manifold triads of degree one
(F;00F,00F) : (W;0,W,00W) = (X x[0,1]; X x {0},0X x[0,1]U X x {1})
together with a diffeomorphism
g: (M, 0M) — (GoW,06W NOLW)

covered by a bundle map § : TM & Re**! — TW @ R**® and a bundle
isomorphism

(io,d0) : ED R —
covering the inclusion 49 : X — X x[0,1], =+~ (z,0) such that the composition
(F,F)o(g,g) agrees with (ig,40) o (f ®idgs+1, f) and & F : O, W — 0X x [0,1]U
X x {1} is a diffeomorphism. Notice that here the target of the bordism is
X % [0,1]}, we have allowed in Theorem 4.47 (2) a more general notion of normal
bordism, where the target manifold also could vary.

Definition 5.7 Let (X,0X) be a compact oriented manifold of dimension n
with boundary 0X. Define the set of normal maps to (X,9X)

No(X,0X)

to be the set of normal bordism classes of normal maps of degree one (f, f) :
TM & R* — £ with underlying map (f,0f) : (M,0M) — (X,0X) for which
Of : M — 0X is a diffeomorphism.

Notice that this definition uses tangential bundle data. One could also use
normal bundle data (see Lemma 3.52).

Let X be a closed oriented connected manifold of dimension n > 5. Denote
by = its fundamental group and by w : m — {£1} its orientation homomorphism.
Let Mpt1(X % [0,1], X x {0,1}) and N, (X) be the set of normal maps of degree
one as introduced in Definition 5.5. Let 82 (X) be the structure set of Definition
5.1. Denote by L (Z) the simple surgery obstruction group (see Notation 4.55).
Denote by

0 : Npp1(X x[0,1], X x {0,1}) — L3 ,(Z7,w); (5.8)
o: No(X) — L (Zr,w) (5.9)
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the maps which assign to the normal bordism class of a normal map of degree
one its simple surgery obstruction (see (4.56)). This is well-defined by Theorem
4.61 (1). Let

n:Sp(X) = Na(X) (5.10)

be the map which sends the class [f] € S2(X) represented by a simple homotopy
equivalence f : M — X to the normal bordism class of the following normal
map of degree one. Choose a homotopy inverse f ! : X — M and a homotopy
h:idpy ~ f~lo f. Put £ = (f~1)*TM. Up to isotopy of bundle maps there is
precisely one bundle map (k,h) : TM x [0,1] = TM covering h : M x [0,1] —
M whose restriction to TM x {0} is the identity map TM x {0} — TM.
The restriction of h to X x {1} induces a bundle map f : TM — £ covering
f: M — X. Put 9([f]) := [(f, f)]. One easily checks that the normal bordism
class of (f, f) depends only on [f] € N3(X) and hence that 7 is well-defined.
Next we define an action of the abelian group L, ;(Z 7, w) on the structure set
Sn(X)

pr Lo (Zmw) x S3X) - SX). (5.11)

Fix ¢ € L}, (Zm,w) and [f] € N3(X) represented by a simple homotopy
equivalence f : M — X. By Theorem 5.5 we can find a normal map (F,F)
covering a map of triads (F;00F, 0 F) : (W;06W,0W) — (M x [0,1], M x
{0}, M x {1}) such that §p F is a diffeomorphism and 8, F is a simple homotopy
equivalence and o(F,F) = u. Then define p(z,[f]) by the class [f o & F :
0 W — X]. We have to show that this is independent of the choice of (F, F).
Let (F',F') be a second choice. We can glue W' and W~ together along the
diffeomorphism (8o F)~! 0 o F"' : ;W' — 8;W and obtain a normal bordisms
from (Flo,w,0:F) to (F'|s,w+,01F'). The simple obstruction of this normal
bordism is
o(F',F'Y)—o(F,F) = 22—z = 0.

Because of Theorem 4.61 (2) we can perform surgery relative boundary on this
normal bordism to arrange that the reference map from it to X x [0,1] is a
simple homotopy equivalence. In view of Remark 5.3 this shows that f o & F
and f o 01 F' define the same element in S;(X). One easily checks that this
defines a group action since the surgery obstruction is additive under stacking
normal bordism together. The next result is the main result of this chapter and
follows from the definitions and Theorem 4.61 (2)

Theorem 5.12 (The surgery exact sequence) Under the conditions and in
the notation above the so called surgery sequence

N1 (X % [0,1], X x {0,1}) S L5, (Zm,w) 2 S5(X) B Np(X) 5 LE(Zr, w)

is exact for n > 5 in the following sense. An element z € Np(X) lies in the
image of n if and only if o(z) = 0. Two elements y1,y2 € S3(X) have the
same image under 1) if and only if there exists an element x € L, | (Z7,w) with
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p(z,y1) = y2. For two elements z1,x2 in L3, (Z7) we have p(z1,[id : X —
X)) = p(za,[id : X — X)) if and only if there is u € Npy1(X x[0,1], X x {0,1})
with o(u) = z1 — Z2.

There is an analogous surgery exact sequence

NP (X x[0,1], X x {0,1}) & L2 (Z7,w) & SHX) B No(X) S LE(Z7,w)

where S*(X) is the structure set of Definition 5.2 and L (Zn,w) := L, (Zm,w)
have been introduced in Definitions 4.28 and 4.42.

Remark 5.13 The surgery sequence of Theorem 5.12 can be extended to in-
finity to the left.

5.4 Miscellaneous

One can also develop surgery theory in the PL-category or in the topological
category [36]. This requires to carry over the notions of vector bundles and
tangent bundles to these categories. There are analogues of the sets of normal
invariants NF*(X) and N TOP(X) and the structure sets SF2(X), SPL3(X)
SFOPh(X) and STOPs(X). There are analogues PL and TOP of the group
O Theorem 3.46 and Theorem 3.49 (see also Remark 3.50) carry over to the
PL-category and the topological category.

Theorem 5.14 Let X be a connected finite n-dimensional Poincaré complex.
Suppose that NFE(X) is non-empty. Then there is a canonical group structure
on the set [X,G/PL)] of homotopy classes of maps from X to G/PL and a
transitive free operation of this group on NFL(X). The analogue statement
holds for TOP instead of PL.

There are analogoues of the surgery exact sequence (see Theorem 5.12) for
the PL-category and the topological category.

Theorem 5.15 (The surgery exact sequence) There is a surgery sequence

NEPL(Xx[0,1], Xx{0,1}) & L%, (Zm,w) & P15 (X) B NP (X) & L3 (Z7, w)

which is exact for n > 5 in the sense of Theorem 5.12. There is an analogous
surgery exact sequence

NEPL (X x[0,1], Xx{0,1}) & L%, (Zm,w) > SPLA(X) L NPY(X) S L (Zw, w)
The analogue sequences ezists in the topological category.

Notice that the surgery obstruction groups are the same in the smooth cat-
egory, PL-category and in the topological category. Only the set of normal
invariants and the structure sets are different. The set of normal invariants in
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the smooth category, PL-category or topological category do not depend on
the decoration h and s, whereas the structure sets and the surgery obstruc-
tion groups depend on the decoration h and s. In particular the structure set
depends on both the choice of category and choice of decoration.

As in the smooth setting the surgery sequence above can be extended to
infinity to the left.

Some interesting constructions can be carried out in the topological cate-
gory which do not have smooth counterparts. An algebraic surgery sequence
is constructed in [53, §14, §18] and identified with the geometric surgery se-
quence above in the topological category. Given a finite Poincaré complex X
of dimension > 5, a single obstruction, the so called total surgery obstruction,
is constructed in [53, §17]. It vanishes if and only if X is homotopy equivalent
to a closed topological manifold. It combines the two stages of the obstruction
we have seen before, namely, the problem whether the Spivak normal fibration
has a reduction to a TOP-bundle and whether the surgery obstruction of the
associated normal map is trivial.



Chapter 6

Homotopy spheres

Introduction

Recall that S™ is the standard sphere S™ = {z € R"*! | ||z|| = 1}. We will equip
it with the structure of a smooth manifold for which the canonical inclusion
8™ — R*! is an embedding of smooth manifolds. We use the orientation
on S™ which is compatible with the isomorphism T, 5™ @& v(S™, R") 5T »R™
where we use on v,(S™,R*) the orientation coming from the normal vector
field pointing to the origin and on T,R™ the standard orientation. This agrees
with the convention that S = D"+! inherits its orientation from D™*+1. A
homotopy n-sphere ¥ is a closed oriented n-dimensional smooth manifold which
is homotopy equivalent S™. The Poincaré Conjecture says that any homotopy
n-sphere X is oriented homeomorphic to S™ and is known to be true for all
dimensions except n = 3. In this chapter we want to solve the problem how
many oriented diffeomorphism classes of homotopy n-spheres exist for given n.
For n # 3 this is the same as determining how many different oriented smooth
structures exist on S™. This is a beautiful and illuminating example. It shows
how the general surgery methods which we have developed so far apply to a
concrete problem. It illustrates what kind of input from homotopy theory and
algebra is needed for the final solution.

The following theorem summarizes what we will prove in this chapter. Here
©" denotes the abelian group of oriented h-cobordism classes of oriented ho-
motopy n-spheres, bP™+!1 C ©™ is the subgroup of those homotopy n-spheres
which bound a stably parallizable compact manifold, J,, : 7,(SO) — 7§ denotes
the J-homomorphism and B,, is the n-th Bernoulli number. These notions and
the proof of the next result will be presented in this chapter (see Theorem 6.39,
Corollary 6.43, Theorem 6.44, Theorem 6.46 and Theorem 6.56.

Theorem 6.1 (Classification of homotopy spheres) 1. Letk > 2 be an
integer. Then bP** is a finite cyclic group of order
3— (=1

— 22k=2 . (22k=1 _1) . numerator(By /(4k));

119
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2. Let k > 1 be an integer. Then bP***+2 is trivial or isomorphic to Z./2. We
have

0 4k + 2 € {6,14,30,62}.
3 Ifn =4k + 2 for k > 2 , then there is an ezact sequence

0 — O™ — coker(J,) > Z/2.

If n =4k for k > 2 orn = 4k + 2 with 4k + 2 # 2! — 2, then

0" = coker(J,);

4. Letn > 5 be odd. Then there is an eract sequence
0 — bP™ — @™ — coker(J,) — 0.
If n # 2! — 3, the sequence splits.

The following table taken from [35, pages 504 and 512] gives the orders
of the finite groups ", bP™*! and ©"/bP"*! as far as they are known in
low dimensions. The values in dimension 1 and 2 come from obvious adhoc
computations. The computation of ©* requires some additional analysis which
we will not present here. Notice that ©* = 1 does not mean that any homotopy
4-sphere is diffeomorphic to S* (see Lemma 6.2).

n 1{2(3(4|5{6| 7 |8|9|10| 11 |12}13 14| 15
or 1(1(?2(1|1}]1]28[2{8|6 ({992 1| 3 | 2 |16256
bprl 11|72 (1)1(1)28|1(2|1}992|1|1]| 1] 8128
er/pPrtt i1 1(2(4{6 | 1 [1]2]2 2

The basic paper about homotopy spheres is the one of Kervaire and Milnor
[35] which contains a systematic study and can be viewed as the beginning of
surgery theory. Nearly all the results presented here are taken from this paper.
Another survey article about homotopy spheres has been written by Lance [13]
and Levine [38].

6.1 The group 6f homotopy spheres

Define the n-th group of homotopy spheres ©™ as follows. Elements are oriented
h-cobordism classes [X] of oriented homotopy n-spheres ¥, where ¥ and ¥’ are
called oriented h-cobordant if there is an oriented h-cobordism (W, oW, 0, W)
together with orientation preserving diffecomorphisms f : ¥ — oW and f' :
()~ — 6.W. The addition is given by the connected sum. The zero element
is represented by S™. The inverse of [¥] is given by [X 7], where ¥~ is obtained
from ¥ by reversing the orientation.
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Obviously ©™ becomes an abelian semi-group by the connected sum. It
remains to check that [¥7] is an inverse of [X]. It is easy to see that for a
homotopy n-sphere ¥ that there is an h-cobordism W from the connected sum
T#%~ to S™. Add to ¥ x [0,1] a handle D! x D™ by an orientation reversing
embedding S° x D™ x {0,1} — ¥ x {0,1} which meets both components of
¥ x {0,1}. Delete the interior of a trivially embedded disk D™ C ¥ x (0,1).
The result is the desired h-cobordism W.

The fundamental group 7 of a homotopy n-sphere is trivial for n > 2. This
implies that the orientation homomorphism w is always trivial and Wh(r) =
{0}. Hence it does not matter whether we work with simple homotopy equiva-
lences or homotopy equivalence since S3(S™) = S?(S™) for n > 5 and LE (Zr) =
LMZw) = Ln(Z) holds. Therefore we will omitt the decoration h or s for the
remainder of this chapter.

Lemma 6.2 Let © be the set of oriented diffeomorphism classes [Z] of oriented
homotopy n-spheres .. The forgetful map

f:67m 50"
is bijective for n # 3,4.

Proof : This follows from the s-cobordism Theorem 1.1 for n > 5 and by
obvious adhoc computations for n < 2. ]

Lemma 6.3 There is a natural bijection

> —=n

a:5(S") =6 [f: M- S"]— [M].
If n # 3, there is an obvious bijection

{smooth oriented structures on S™}/oriented diffeomorphic N

Proof : For any homotopy n-sphere ¥ there is up to homotopy precisely one
map f : ¥ — S™ of degree one. For n # 3 the Poincaré Conjecture is true which
says that any homotopy n-sphere is homeomorphic to S™. |

In dimension 3 there is no difference between the topological and smooth cat-
egory. Any closed topological 3-manifold M carries a unique smooth structure.
Hence any manifold which is homeomorphic to S is automatically diffeomor-
phic to S3. The Poincaré Conjecture is at the time of writting open in dimension
3. It is not known whether any closed 3-manifold which is homotopy equivalent
to S3 is homeomorphic to S°.

Definition 6.4 A manifold M is called stably parallizable if TM ®R® is trivial
for some a > 0.

Definition 6.5 Let bP™*! C O™ be the subset of elements [Z] for which X
is oriented diffeomorphic to the boundary OM of a stably parallizable compact
manifold M.
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Lemma 6.6 The subset bP™™! C O" is a subgroup of O™. It is the preimage
under the composition
n (foa)_l ny 7 n
O ——— S§,(8™) = Np(S™)
of the base point [id : TS™ — TS"]| in N,(S™), where f is the bijection of
Lemma 6.2 and « is the bijection of Lemma 6.3.

Proof : Suppose that ¥ bounds W and ¥/ bounds W' for stably parallizable
manifolds W and W'. Then the boundary connected sum WHW' is stably
parallizable and has Y%’ as boundary. This shows that bP"*! C @™+ is a
subgroup.

Consider an element [f : & — S™] in n~!([id : TS™ — T'S™]). Then there is
a normal bordism from a normal map (f, f) : TE®R® — £ covering f : ¥ — S™
to the normal map id : T'S™ — T'S™. This normal bordism is given by a bun-
dle map (F,F) : TW @ R**® — 5 covering a map of triads (F;0oF,0,F) :
(W;00W,00W) — (S™ x [0,1]; S™ x {0}, S™ x {1}), and bundle isomorphisms
(@,u) : TSR 5 TW @ R® covering an orientation preserving diffeomor-
phismu : ¥ — W, (v/,u') : TS"®R**H! — TWOR® covering an orientation
preserving diffeomorphism u' : (S™)~ — AW, (T,v) : EOREH — 7 covering the
obvious map v : S™ — S™ x {0} and (v',v') : TS™ & R3***! — 5 covering the
obvious map v’ : S™ = S™ x {1} such that (F, F) o (7,u) = (7,v) o (f & idgs+1)
and (F,F)o (u/,u') = (v',v') holds. Then D! U, W is a manifold whose
boundary is oriented diffeomorphic to 3 by v and for which the bundle data
above yield a stable isomorphism TW @ Re+® — RrHitett  Hence [X] lies in
bpmtL,

Conversely, consider [X] such there exists a stably parallizable manifold W
together with an orientation preserving diffeomorphism u : ¥ — 0W. We can
assume without loss of generality that W is connected. Choose an orientation
preserving homotopy equivalence f : ¥ — S™. We can extend §F := fou~!:
OW — S™ to a smooth map F : W = D™*!. Since f has degree one, the map
(F,0F) : (W,0W) — (D™*+1,5") has degree one. Let y € D™*!—S5" be aregular
value. Then the degree of F' is the finite sum >, p-1(,) €(z), where e(z) = 1,
if T,F : T,W — T,D" preserves the induced orientations and e(z) = —1
otherwise. If two points z; and z» in F~!(y) satisfy e(z1) # €(x2), one can
change F up to homotopy relative W such that F~(y) contains two points less
than before. Thus one can arrange that F~1(y) consists of precisely one point =
and that T, F : T,W — T, D™*! is orientation preserving. Then one can change
F up to homotopy in a small neigborhood of z such that there is an embedded
disk D"t ¢ W — @W such that F induces a diffeomorphism DJ*! — F(Dgt!)
and no point outside Dy *! is mapped to F(D3**). Define V = W —int(Dyt).
Then F induces a map also denoted by F : V — D"*+! — F(Dg). If we identify
D™t — F(Dp*Y) with 8™ x [0,1] by an orientation preserving diffeomorphism,
we obtain a map of triads (F; 00 F,0,F) : (V;8,V,0,V) — (S™*! x [0,1], S™ x
{0}, 5™ x {1}) together with diffeomorphisms u : ¥ — GV, v : S™ — S™ x {0},
u' 1 8™ = §V,v' : S® = S™ x {1} such that 0, F is an orientation preserving
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diffeomorphism and Fou = vo f and Fou’ = v'. Now one covers everything with
appropriate bundle data to obtain a normal bordism from (f, f) : TS ®R* — ¢
to id : TS™ — TS™ This shows noa™! o f71([X]) = [id : TS™ - TS"].
n

6.2 The surgery sequence for homotopy spheres

In this section we examine the surgery sequence (see Theorem 5.12) in the case of
the sphere. In contrast to the general case we will obtain a long exact sequence
of abelian groups. We have to introduce the following bordism groups.

Definition 6.7 A stable framing of a closed oriented manifold M of dimension
n is a strong bundle isomorphism u : TM & R* = R4 for some a > 0
which is compatible with the given orientation. (Recall that strong means that
f covers the identity.) An almost stable framing of a closed oriented manifold
M of dimension n is a choice of a point x € M together with a strong bundle
isomorphism @ : TM|p_ (o3 © R =N R for some a > 0 which is compatible
with the given orientation on M — {z}.

Of course any stably framed manifold is in particular an almost stably framed
manifold. A homotopy n-sphere X is an almost stably framed manifold since for
any point z € % the complement ¥ — {z} is contractible and hence TX|s_ (4}
is trivial. We will later show the non-trivial fact that any homotopy n-sphere
is stably parallizable, i.e. admits a stable framing. The standard sphere S™
inherits its standard stable framing from its embedding to R**.

A stably framed nullbordism for a stably framed manifold (M, %) is a com-

o

pact manifold W with a stable framing U : TW @ Ret® = Rrtlt+a+d and a
bundle isomorphism (7,v) : TM @ ReF14+0 =5 TW @ R+ coming from the
differentia of an orientation preserving diffeomorphism v : M — W such that
U o = u® idgs+1. Now define the notion of a stably framed bordism from a,
stably framed manifold (M,%) to another a stably framed manifold (M’ u") to
be a stably framed nullbordism for the disjoint union of (M ~,%™)) and (M', /),
where M~ is obtained from M by reversing the orientation and u™ is the com-
position

—idg @idgatn—1

u :TM @&a E) Ra+n — R@ Ra-!—n—l SN B@ Ra+n—1 — Re+n’_

Consider two almost stably framed manifolds (M, z, % : TM|p— 53 @ R =N
R*+™) and (M',2', @ : TM'|yp_(oy ® RY. =5 R¥*"). An almost stably
framed bordism from the first to the second consists of the following data.
There is a compact oriented (n + 1)-dimensional manifold triad (W; 8,W, 0; W)
with oW N W = 0 together with an embedding j : ([0,1]; {0}, {1}) —
(W;00W, 0, W) such that j is transversal at the boundary. We also need a
strong bundle isomorphism U : TWyy_jm(j) ® R® = R4 for some b > a,a’.
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Furthermore we require the existence of a bundle isomorphism (v,v) : TM @

R*! = TW @ R® coming from the differential an orientation preserving dif-
feomorphism v : M~ — JoW with v(z) = j(0) and of a bundle isomorphism

=%}

(W) : TM o R*! = TW & R® coming from the differential of an orienta-
tion preserving diffeomorphism v’ : M' — 0,W with v'(z") = j(1) such that
UoT=u" ®idgs-at1 and U o v’ = v’ @ idgs+1-o- holds.

Definition 6.8 Let QfF be the abelian group of stably framed bordism classes
of stably framed closed oriented manifolds of dimension n. This becomes an
abelian group by the disjoint union. The zero element is represented by S™ with
its standard stable framing. The inverse of the class of (M, u) is represented by
the class of (M~ ,u® (—idg))-

Let Q3™ be the abelian group of almost stably framed bordism classes of al-
most stably framed closed oriented manifolds of dimension n. This becomes an
abelian group by the connected sum at the preferred base points. The zero ele-
ment is represented by S™ with the base point s = (1,0, ...,0) with its standard
stable framing restricted to S™ — {s}. The inverse of the class of (M,z,u) is
represented by the class of (M ™, z,u @ (—idg)).

Lemma 6.9 There are canonical bijections of pointed sets

B : N, (S™) = Qf‘llm;

v N1 (87 % [0,1],87 x {0,1}) 25 Npypr (S™HY).

Proof : Consider an element r € N, (S™) represented by a normal map (f, f) :
TM & R* — £ covering a map of degree one f : M — S™. Since f has degree
one, one can change (£, f) by a homotopy such that f~*(s) consists of one point
z € M for a fixed point s € S™. Since S™ — {s} is contractible, {5~ _¢,) admits a
trivilization which is unique up to isotopy. It induces together with f an almost
stable framing on (M, z). The class of (M, z) with this stable framing in Q2™
is defined to be the image of r under 3.

The inverse 37! of 3 is defined as follows. Let 7 € Q2™ be represented by
the almost framed manifold (M, z,@). Let ¢ : M — S™ be the collaps map
for a small embedded disk D™ C M with origin z. By construction ¢ induces
a diffeomorphism clipe(pny : int(D™) — S™ — {s} and maps M — int(D") to
{s} for fixed s € S™. The almost stable framing @ yields a bundle map ¢ :
TM|p—iz3y ®R® = R covering ¢|pr—g5) : M — {z} = S™ — {c(z)}. Since D"
is contractible, we obtain a bundle map unique up to isotopy ¢” : TD™ @ R* —
R4 covering ¢|p» : D™ — S™. The composition of the inverse of the restriction
of ¢ to int(D™) — {z} and of the restriction of ¢’ to int(D™) — {z} yields a strong
bundle automorphism of the trivial bundle R**% over S™—{s, ¢(z)}. Let & be the
bundle obtained by glueing the trivial bundle R**™ over S™ — {s} and the trivial
bundle R**™ over S™ — {c(z)} together using this bundle automorphism over
S™ —{s,c(z)}. Then ¢’ and ¢” fit together to a bundle map ¢ : TM @ R*F2 — ¢
covering c. Define the image of r under 87! to be the class of (,c).




6.2. THE SURGERY SEQUENCE FOR HOMOTOPY SPHERES 125

Consider 7 € Np41(S™ % [0,1],S™ x {0,1}) represented by a normal map
(f,f) : TM & R® — £ covering (f,0f) : (M,0M) — (S™ x [0,1],S™ x {0,1}).
Recall that Of is a diffeomorphism. Hence one can form the closed manifold N =
MUps.0m— 87 x10,13 D™ x{0,1}. The map f and the identity on D™ x {0,1}
induce a map of degree one g : N — S§™ x [0,1]Ugnx (0,1} D™ ' x {0, 1} = S"+1,
Define the bundle 7 over S™ x [0,1] Ugn x{0,13 D™ x {0,1} = S™*! by glueing
€ and T(D™*! x {0,1}) ® R%~! together over S™ x {0, 1} by the strong bundle
isomorphism

(ﬂsn—l ><{0,1})_1
_—

€lsn-1x{0,1} TMlon ® R =T(OM) & R*L

I, 7(s™1 x {0,1}) ® R+L = T(D™*! x {0,1}) @ R°.

Then f and id : T(D™*! x {0,1}) ® R — T(D™*! x {0,1}) ® R fit together
yielding a bundle map g : TN @ R* — 7 covering g. Define the image of r under
v by the class of (g, g). We leave it to the reader to construct the inverse of v
which is similar to the construction in Lemma 6.6 but now two embedded discs
instead of one embedded disc are removed. ]

Next we want to construct a long exact sequence of abelian groups

o S @) S er Lo S (Z) ..

The map
o QA — Ly (Z)

is given by the composition

Q2 2 Ny (5™ D Loy (2),

where f is the bijection of Lemma 6.9 and o : M,(S™) — L,(Z) is given by
the surgery obstruction and has already appeared in the surgery sequence (see
Theorem 5.12). The map

0:Lp1(Z)— O"

is the composition of the inverse of the bijection a o f : $,(S") = ©" coming
from Lemma 6.2 and Lemma 6.3 and the map 8 : L,y1(Z) = N,(S™) of the
surgery sequence (see Theorem 5.12). The map

n:@" — Q3m (6.10)

sends the class of a homotopy sphere ¥ to the class of (X, z,%), where z is any
point in ¥ and the stable framing of T'%|5_(,} comes from the fact that ¥ — {z}
is contractible. This map 7 corresponds to the map 7 appearing in the surgery
exact sequence (see Theorem 5.12) under the identification ao f : S,,(S™) Z on
coming from Lemma 6.2 and Lemma 6.3.

We leave it to the reader to check that all these maps are homomorphisms
of abelian groups. The surgery sequence (see Theorem 5.12) implies
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Theorem 6.11 The long sequence of abelian groups which extends infinitely to
the left

o S @ Ser ot 5,2 S Lo S 1y (2)
s exact.

Recall that we have shown in Theorem 4.30, Theorem 4.32 and Theorem 4.43
that there are isomorphisms

% -sign : Lo(Z) ENyA

and

Arf : Ly(Z) S 7./2
and that Ly;11(Z) = 0 for i € Z. Consider a normal map (f, f) : TM ®@R® — ¢
covering a map of degree one (f,df) : (M,0M) — (X,0X) of oriented compact
4i-dimensional manifolds such that X is simply connected and 8f a homotopy
equivalence. Then the isomorphism % -sign : Lo(Z) =, Z sends a(f, f) to
% - sign(M Usy X ™). Hence Theorem 6.11 and Lemma 6.6 imply

Corollary 6.12 There are for i > 2 and j > 3 short exact sequences of abelian
groups
4 7, oalm 5 0 43
0505 0}" — Z S5 bP*" =0
and . At o .
0— 042 2 agim, 25 7/2 5 bPH7% 5 0
and ‘ _
0—bP¥ - %71 5 08, 0.
Here the map
sign
g
sends [M] to the signature sign(M) of M and Arf : Q3™ — Z/2 sends [M] to

the Arf invariant of the normal map B~ 1([M]) € N,(S™) for B the bijection
appearing in Lemma 6.9.

oalm 7

6.3 The J-homomorphism and stably and almost
stably framed bordism

By Theorem 6.11 we have reduced the computation of ©™ to computations
about Q2™ and certain maps to Z and Z/2 given by the signature and the
Arf invariant. This reduction is essentially due to the surgery machinery. The
rest of the computation will essentially be homotopy theory. First we try to
understand Qff geometrically. There is an obvious forgetful map

f:of - qalm, (6.13)
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Define the group homomorphism
g:Qam 7. 1(S0) (6.14)

as follows. Given r € Q%™ choose a representative (M,z,u : TM|p_(z3 @
R2 — R**¢). Let D™ C M be an embedded disk with origin z. Since D"
is contractible, we obtain a strong bundle isomorphism unique up to isotopy

v:TM|p~ ® R% = R**T™. The composition of the inverse of the restriction
of @ to S® 1 = AD™ and of the restriction of ¥ to S*~! is an orientation
preserving bundle automorphism of the trivial bundle Re+" over S»~1. This is
the same as a map S™~ ! — SO(n + a). It composition with the canonical map
SO(n +a) — SO represents an element in m,_1(SO) which is defined to be the
image of r under 8 : Q3™ — 7, ;(SO). Let

J:m(SO) — Qf (6.15)

be the group homomorphism which assigns to the element r € 7,(SO) repre-
sented by a map u : S™ — SO(n + a) the class of S™ with the stable framing

TS" o R* =, Rt which is induced by the standard trivialization
TS"® R T(aDn-H) @ V(@Dn+1,Dn+1) o TDn+1|3Dn+l ~ R+l

and the strong bundle automorphism of the trivial bundle R*+” over S™ given
by @. One easily checks

Lemma 6.16 The following sequence is a long exact sequence of abelian groups

250y L air Lgam 20 50y Laln L

Next we want to interpret the exact sequence appearing in Lemma 6.16
homotopy theoretically. We begin with the homomorphism J. Notice that
there is a natural bijection

7 colimyoyoo M (RE = {x}) S Qf (6.17)
which is defined as follows. Consider an element
z=[(Mi: M =R pr: M — {x},7:v0G) > R)] € QR - {x})

There is a canonical strong isomorphism u' : TM @ v(i) — R**. From u
and u' we get an isomorphism v : TM ® R* — R*** covering the projection
M — {x}. Define 7'(z) by the class of (M,v). The Thom space Th(R"**) is
Sntk Hence the Pontrjagin-Thom construction (see Theorem 3.26) induces an
isomorphism

P colimy_yoo U (RE = {x}) = colimp_seo mnik(S*). (6.18)
Notice that the stable n-th homotopy group of a space X is defined by
73(X) = colimp oo ik (SF A X) (6.19)
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The stable n-stem is defined by
78 =73 (S%) = colimg—sco Tntr(S¥). (6.20)

Thus the isomorphism 7' of (6.17) and the isomorphism P of (6.18) yield an
isomorphism

T Q5 g3 (6.21)

Next we explain the so called Hopf construction which defines for spaces X,
Y and Z a map

H:[XxY,Z] - [XxY,2Z] (6.22)

as follows. Recall that the join X Y is defined by X x Y x [0,1]/ ~, where ~ is
given by (z,y,0) ~ (z’,v,0) and (z,y,1) ~ (z,y’,1), and that the (unreduced)
suspension X7 is defined by Z x [0,1]/ ~, where ~ is given by (z,0) ~ (2’,0)
and (z,1) ~ (2,1). Given f: X XY — Z, let H(f): X *Y — ¥£Z be the map
induced by f xid : Y x [0,1] = Z x [0,1]. Consider the following composition

[S™, SO(K)] — [S™, aut(S*~1)] — [S™ x §k¥~1, §+-1]

T[S % 8571 ngk ) =[Sk, gE],

Notice that 71 (SO(k)) acts trivially on 7, (SO(k)) and m; (S*) acts trivially on
T4k (S¥) for k,n > 1. Hence no base point questions arise in the next definition.

Definition 6.23 The composition above induces for n,k > 1 homomorphisms
of abelian groups

Jnk : Tn(SO(K)) = Tpik (SF).
Taking the colimit for k — oo induces the so called J-homomorphism
Jn 1 T (SO) = 7).
One easily checks

Lemma 6.24 The composition of the homomorphism J : m,(SO) — Qff of
(6.15) with the isomorphism T : QfF =N w5 of (6.21) is the J-homomorphism
I : 1 (SO) — 7 of Definition 6.23.

The homotopy groups of O are 8-periodic and given by

i mod8] 0 | 1 [2[3[4]5]6]7
7(0) ||Z/2|Z/2[0[Z|0|0]0]Z

Notice that m;(SO) = 7;(0O) for ¢ > 1 and mo(SO) = 1. The first stable stems
are given by

n[O] 1] 2] 3 [4]5] 6 7 8 9
= Zz/2[Z/2|Z/24|0|0 | Z/2|Z]240 | Z]2 | Z]2® Z.]2® Z]2
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The Bernoulli numbers B,, for n > 1 are defined by

z )"“”1 B, n
= 1——+Z - (2). (6.25)

The first values are given by

n||1l2|3|[4]5 6 7 8
B TT I I 5| 89L | 7] 3617
n)l6 130 125136166 {2730 | 6 | 510

The next result is a deep theorem due to Adams
1.3 and Theorem 1.5].

—

1, Theorem 1.1, Theorem

Theorem 6.26 1. Ifn # 3 mod 4, then the J-homomorphism J,, : w7, (SO) —
w3 18 injective;

n

2. The order of the image of the J-homomorphism Jyp—1 : Tar—1(SO) —
i1 s denominator(By,/4k), where By, is the k-th Bernoulli number.

6.4 Computation of bP"H!

In this section we want to compute the subgroups bP™*! C ©™ (see Definition
6.5).

We have introduced the bijection 8 : N,(S™) =» Q2™ in Lemma 6.9 and
the map 9 : Q%™ — m,_1(SO) in (6.14). Let

5(k) : Ty (BSO(K)) = mn-1(SO(K)) (6.27)

be the boundary map in the long exact homotopy sequence associated to the
fibration SO(k) — ESO(k) — BSO(k). It is an isomorphism since ESO(k)
is contractible. It can be described as follows. Consider z € m,(BSO(k)).
Choose a representative f : S® = BSO(k) for some k. If v, — BSO(k) is the
universal k-dimensional oriented vector bundle, f*~ is a k-dimensional oriented
vector bundle over S™. Let S™ be the lower and S} be the upper hemisphere
and S™"! = S” N ST. Since the hemispheres are contractible, we obtain an
up to isotopy unique strong bundle isomorphisms T_ : f*yg|sn =N R* and

Uy : [ | s =N R*. The composition of the inverse of the restriction of u_
to S™~! with the restriction of %, to S® ! is a bundle automorphism of the
trivial bundle R* over S™~! which is the same as map S™~! — SO(k). Define
its class in 7,_1(SO(k)) to be the image of z under §(k)~! : m,(BSO(k)) —
mn—1(SO(k)). Analogously we get an isomorphism

§:m(BSO) = ma_1(SO). (6.28)
Define a map

No(S™) = 7,(BSO) (6.29)
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by sending the class of the normal map of degree one (f,f) : TM ® R* — ¢
covering a map f : M — S™ to the the class represented by the classifying map
fe : 8™ = BSO(n + k) of . One easily checks

Lemma 6.30 The following diagram commutes

am 2, . 1(SO)

o e

No(S™) —— 7a(BSO)

The next ingredient is the Hirzebruch signature formula. It says for a closed
oriented manifold M of dimension n = 4k that its signature can be computed
in terms of the L-class L(M) by

sign(M) = (L(M), [M]). (6.31)

The L-class is a cohomology class which is obtained from inserting the Pontrja-
gin classes p;(T'M) into a certain polynomial L(x1,Z2,. .. zx). The L-polynomial
L(zy,xa,...x,) is the sum of s - zx and terms which do not involve zj, where
sk is given in terms of the Bernoulli numbers By, by
. 22k . (22k—1 _ 1) . Bk

S = (2k)' . (632)
Assume that M is almost stably parallizable. Then for some point z € M
the restriction of the tangent bundle TM to M — {z} is stably trivial and
hence has trivial Pontrjagin classes. Since the inclusion induces an isomorphism
HP(M) S HP(M — {z}) for p < n — 2, we get p;(M) =0 for i <k — 1. Hence
(6.31) implies for a closed oriented almost stably parallizable manifold M of
dimension 4k

sign(M) = si - (pr(T M), [M]). (6.33)

We omit the proof of the next lemma which is based on certain homotopy
theoretical computations (see for instance [38, Theorem 3.8 on page 76]).

Lemma 6.34 Let n = 4k. Then there is an isomorphism
¢ :mp_1(S0) =Ny

Define a map
pr : T(BSO) = Z

by sending the element x € 7, (BSO) represented by a map f : S™ — BSO(m)
to (o (f*Ym), [S™]) for ym — BSO(m) the universal bundle. Letd : m,(BSO) —
Tn—1(S0) be the isomorphism of (6.27). Put

te o= 2=CI0 L (9p 1)1 (6.35)

Then
th-d=prod L.
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Lemma 6.36 The following diagram commutes for n = 4k

sign

Qalm 8 s 7,

n
al T-k-& o -id
M1 (SO) —2— 7
where ﬂgﬂ is the homomorphism appearing in Corollary 6.12, the homomor-

phism O has been defined in in (6.14) and the isomorphism ¢ is taken from
(6.34).

Proof : Consider an almost stably parallizable manifold M of dimension n =
4k. We conclude from Lemma 6.30 and Lemma, 6.34

Sk -t
8

-¢o0([M]] “pr o8t o d([M]]

5k
8
s _
5 proyo (M. (6.37)
By definition the composition

Q2m 2y NL(S™) B ma(S0) 2 2,
sends the class of M to (px(&),[S™]) for a bundle & over S™ for which there exists

a bundle map (¢,¢) : TM & R* — £ covering a map ¢ : M — S™ of degree one.
This implies

X -proyoBH(IM))

I
|

ok (£),[S™])
= —. (pk(f),c*([M]»
= = (" (p(8)), [M]).

= 2 (pu(TM),[M]) (6.38)

Now the claim follows from (6.33), (6.37) and (6.38). |

Theorem 6.39 Let k > 2 be an integer. Then bP** is a finite cyclic group of
order

Sk - T
8

. |im (Jak—1 : Tak—1(SO) — 7"219—1)|

1 2% .(2%-1_1).B,

8 (2k)!

3—(=1)*
2

1k
3 (2 n* (2k — 1)! - denominator(By /4k)

-22k=2 . (2%k=1 _ 1) . numerator(By /(4k)).
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Proof : This follows from Theorem 6.11, Theorem 6.26 (2) and Lemma 6.36.
|

Next we treat the case n = 4k + 2 for £ > 1 Let
Arf 7, — Z)2 (6.40)

be the composition of the inverse of the Pontrjagin-Thom isomorphism 7 :
Off 2 78 of (6.21), the forgetful homomorphism f : Qff_, — Q27 , of (6.13)
and the map Arf : Q3% , — Z/2 appearing in Corollary 6.12.

Theorem 6.41 Letk > 3. Then bP***2 is a trivial group if the homomorphism
Arf @ w3, — Z/2 of (6.40) is surjective and is Z/2 if the homomorphism
Arf i3 o — Z /2 of (6.40) is trivial.

Proof : We conclude from Lemma 6.16, Lemma 6.24 and and Theorem 6.26 (1)
that the forgetful map f: QO , — Q4% is surjective. Now the claim follows
from Corollary 6.12. [ ]

The next result is due to Browder [8].

Theorem 6.42 The homomorphism Axf : 75, , — Z/2 of (6.40) is trivial if
2k +1#2 -1

The homomorphism Arf : 7, ., — Z /2 of (6.40) is also known to be non-trivial
for 4k + 2 € {6,14,30,62} (combine [8], [4] and [43]). Hence Theorem 6.41 and
Theorem 6.42 imply

Corollary 6.43 The group bP***+2 is trivial or isomorphic to Z /2. We have

bP4k+2 — {Z/2 4k+2¢2l—2,k21,

0 4k + 2 € {6,14,30,62}.
We conclude from Corollary 6.12 and Lemma 6.6 Theorem 6.11

Theorem 6.44 We have for k > 3

bP2k+1 =0.

Theorem 6.45 For n > 1 any homotopy n-sphere ¥ is stably parallizable.

For an almost parallizable manifold M the image of its class [M] € Q2™ under
the homomorphism 8 : Q2™ — 7, (SO(n — 1)) is exactly the obstruction to
extend the almost stable framing to a stable framing. Recall that any homotopy
n-sphere is almost stably parallizable. The map 8 is trivial for n # 0 mod 4
by Lemma 6.16, Lemma 6.24, Theorem 6.26 (1). If n = 0 mod 4, the claim
follows from Lemma 6.16, Lemma 6.24 and and Lemma, 6.36 since the signature
of a homotopy n-sphere is trivial. |
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6.5 Computation of ©"/bP"*!

In this chapter we compute ©"/bP"+1.
Theorem 6.46 1. Ifn = 4k + 2, then there is an ezact sequence
0 - @™ /bP™! — coker (J, : 1, (SO) — 75) — Z/2;
2. Ifn#2 mod4 orifn=4k+2 with 2k + 1 #2' — 1, then
Q" /bP™ = coker (J, : my(SO) — 7).
Proof : Lemma 6.16, Lemma 6.24, Theorem 6.26 (1) and Lemma 6.36 imply

ker (9: Q3™ — 1, 1(50)) = Qam n#0 mod 4;
ker (6 s Qam 7rn_1(50)) = ker (s—lgﬂ 1 0am 7, n=0 mod 4;
ker (8: Q2™ — 1, 1(SO)) = coker (Jy : T (SO) = nfr).

Now the claim follows from Corollary 6.12 and Theorem 6.42. ]

6.6 The Kervaire-Milnor braid

‘We have established in Lemma 6.16 the long exact sequence

2 so) Lair Lgam 2050y Laft L
The long exact sequence
i3 Ly (Z) - O™ - QM [ (Z) - 0™ .

is taken from Theorem 6.11. Denote by OF the abelian group of stably framed
h-cobordism classes of stably framed homotopy n-spheres. There is a long exact
sequence

i = Lp1(Z) > O - QF 5 L, (Z)—» 07 — ...

which is defined as follows. The map OF — Qff assign to the class of a framed
homotopy sphere its class in Qff. The map Qff — L, (Z) assigns to a class [M]
in QI the surgery obstruction of the normal map (¢,c) : TM & R* — R
for any map of degree one ¢ : M — S™, where € is given by the framing on
M. The map Lp41(Z) — Of assigns to € L,41(Z) the class of the framed
homotopy n-sphere (X,7 : TS & R* — R*™™), for which there is a normal
map of degree one (U,U) : TW @ R**® — R+ covering a map of triads
U : (W;86W,0W) — (5™ x [0,1]; S™ x {0},S™ x {1}) and a bundle map
(To,up) : TS @ R — TW,y @ R**® covering the orientation preserving
diffeomorphism ug : ¥ — oW such that Uo g = 7 @ idgzsr, U induces a
diffeomorphism 8;W — S™ and the surgery obstruction associated to (U,U) is
the given element « € Ly41(Z).
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Theorem 6.47 (The Kervaire-Milnor braid) The long ezact sequences above
fit together to an exact braid for n > 5

/\/\

7n(SO) Qf Ln(Z) on-t
@fr Qalm @" 1
L1 (2) on Tn_1(S0O) oy

~_ 7 >~

We have already introduced BO and BG and have defined G/O as the homotopy
fiber of this map. There is also a PL-version of BO called BPL . We can define
analogously spaces G/PL and PL/O and fibrations G/PL —+ BPL — BO and
PL/G - BPL — BG@. Since QBO ~ O, Q@BPL ~ BPL and 2BG ~ G holds,
we get fibrations O - G - G/O, PL - G — PL/G and O — PL — PL/O.
Notice that for an inclusion of topological groups H C K there is an obvious
fibration H — K — K/H and the fibrations above are in this spirit. But we
have to use the classifying spaces since for instance G is not a group and we
cannot talk about the homogeneous space G/PL. More information about these
spaces and their homotopy theoretic properties can be found for instance in [42].

Theorem 6.48 (Homotopy theoretic interpretation of the Kervaire-
Milnor braid) The long exzact homotopy sequences of these three fibrations
above yield an ezact braid :

T (0) a(G) ™ (G/PL) Tn-1(PL/O)
NN N
Tn(PL) m(G/O) n-1(PL)
N TN

mt+1(G/PL) ™ (PL/O) Tn-1(0) Tn-1(G)

which is for n > 5 isomorphic to the Kervaire-Milnor braid of Theorem 6.47

Proof : At least we explain how the two braids are related by isomorphisms.
Since O/SO is the discrete group {*1}, the inclusion induces an isomorphism

o

T (SO) = 7, (0) for n > 1.
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The Pontrjagin-Thom isomorphism 7 : Qff =N w2 of (6.21) and the canonical
isomorphism 7, (G) = 7}, yield an isomorphism

ofFf = 1.(Q).

The isomorphism 3 : MV, (S™) =N Q2m of Lemma 6.9 together with the bijection
m(G/O) 2y N,(S™) coming from the operation of Theorem 3.46 and Lemma
3.49 and the preferred base point [id : TS™ — T'S™] in N,,(S™) induce a bijection

o

o = 1,(G/0).

One can also develop surgery theory in the PL-category instead of the smooth
category. We have the surgery exact sequence in the PL-category (see Theorem
5.15.

eo. = Tny1(G/PL) = Ly (Z) = SEE(S™Y) = 7,(G/PL) — Ly(Z) — . ..

Since the Poincare Conjecture is true for n > 5 and any P L-homeomorphism
f: 8™ — 8™ can be extended to a PL-homeomorphism F' : D! — D"+l by
coning off (what is not possible in the smooth category), any homotopy n-sphere
is PL-homeomorphic to S™ for n > 5. Hence SE£(S™) = {*} for n > 5. This
is the main ingredient in the proof for n > 5, the low dimensional cases follow
from direct computations, that we obtain isomorphisms of abelian groups

Ta(G/PL) S L(Z) n>1
There is an isomorphism
0" 5 r,(PL/O) n#3

which is defined as follows. Let ¥ be a homotopy n-sphere. As explained above,
there is an orientation preserving PL-homeomorphism h : ¥ — S™. Fix a
classifying map fs» : S™ — BPL for the PL-tangent bundle of S™. We obtain
a classifying map fs : ¥ — BO of the smooth tangent bundle of ¥ together
with a homotopy h : Bio fy =~ fgn, where Bi : BO — BPL is the canonical
map. The pair (fs,h) yields a map S™ — PL/O, since PL/O is the homotopy
fiber of Bi : BO — BPL. The bijectivity of this map for n > 5 follows from
the five lemma and the comparision of the surgery exact sequence with the long
homotopy sequence associated to the fibration PL/O — G/O — G/PL. There
is an isomorphism

0r S (PL) n#3,4

which is defined as follows. As above we get a pair (fx,h). The framing yields
also a homotopy ¢ : fs ~ ¢ for ¢ the constant map. Since PL can be viewed as
the homotopy fiber of the obvious map PL/O — BO, these data yield a map
S™ — PL. |
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6.7 Miscellaneous

Remark 6.49 We have shown in Theorem 6.39 that bP** for k > 2 is a finite
cyclic group. If we go through the construction again, an explicit generator can
be constructed as follows. Recall that §* : L4;(Z) — Z is an isomorphism. Let
W be any oriented stably parallizable manifold of dimension 4k whose boundary
is a homotopy sphere and whose intersection pairing on Hog (W) has signature 8.
Then 8, W is an exotic sphere representing a generator of bP**. Such manifolds
W can be explicitly constructed by a plumbing construction (see for instance
[9, Theorem V.2.9 on page 122]).

Example 6.50 The first example of an ezotic sphere , i.e. a closed manifold
which is homeomorphic but not diffeomorphic to S™, was constructed by Milnor
[44]. See also [12]. The construction and the detection that it is an exotic sphere
is summarized below.

There is an isomorphism

ZoZ S m(S0(4))
(h,j) = wh,j):5*>S0M4) zw (y—rz"-y-27)

where we identify R* with the quaternions H by (a,b,c,d) — a + bi + ¢j + dk
and z” -y - 27 is to be understood with respect to the multiplication in H. Since
m3(S0(4)) = m4(BSO(4)), each pair (h, j) € Z&Z determines an oriented vector
bundle E(h,j) with Riemannian metric over S* unique up to orientation and
Riemannian metric preserving isomorphism. The Euler number and the first
Pontrjagin class of E(j,h) are given by

x(E(h,j)) = h+7j;
(pL(E(h, 5)),[8*) 2(h - 7)-

The Gysin sequence shows that the sphere bundle SE(h,j) is a homotopy 7-
sphere if and only if x(E(h,j)) =h+j=1.

Let k be any odd integer. Let W (k) be the disk bundle D(E((1+k)/2,(1 -
k)/2)) and X(k) be OW (k) = S(E((1 + k)/2,(1 — k)/2)). Then X(k) is a
homotopy 7-sphere. Next we recall Milnor’s argument why 3(k) cannot be
diffeomorphic to S7.

The obvious embedding i : S* — W (k) given by the zero section is a homo-
topy equivalence and i*T'W (k) is isomorphic to TS* @ E((1 + k)/2,(1 - k)/2).
Hence

(" pr (TW (K)), [S]) = 2.
Suppose that there exists a diffeomorphism X (k) — S7. Then we can form
the closed oriented smooth 8-dimensional manifold M (k) = W (k) Uy D8. Let
j : W(k) — M(k) be the inclusion. Since the inclusion j o3 : S* — M(k)
induces an isomorphism on Hy, the signature of M (k) is one. The Hirzebruch
signature Theorem says 1 = sign(M) = (L(M),[M]). Since

LM) = %-m(TM)—%‘pl(TMV
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we conclude
1= (pa(TM)= 2 (TMP, M) = e (oa(TM), [M])— (o (TM)?, [M])

T 1 ana 7 L
= (T, M) — - T ISD = (T, M) -
Since (p2(TM),[M]) is an integer, we conclude k? = 1 mod 7. Hence X(k) is

an exotic homotopy 7-sphere if k2 # 1 mod 7.

Remark 6.51 Milnor’s example 6.50 above fits into the general context as
follows. Recall that bP® = {0} and that we have an isomorphism

S—lg-“ .07 — 7,/28
which sends [X] to sign(W)/8 for any stably parallizable manifold W whose
boundary is oriented diffeomorphic to . If ¥(k) is the oriented homotopy 8-
sphere of Example 6.50, then the isomorphism above sends [Z(k)] to (1 — k?) €
7./28.

Example 6.52 Let W2"~1(d) be the subset of C**! consisting of those points
(20,21, - -,2n) which satisfy the equations 22 + 22 +...22 = 0 and ||z||? +
l|z1]]> + ... + ||zn]|* = 1. These turns out to be smooth submanifolds and
are called Brieskorn varieties (see [6]), [32]). Suppose that d and n are odd,
Then W?2"~1(d) is a homotopy (2n — 1)-sphere. It is diffeomorphic to the stan-
dard sphere S?"~! if d = +£1 mod 8 and it is an exotic sphere representing the
generator of bP?" if d = +£3 mod 8 [6, page 11]. In general one can study the in-
tersection K = f~1(0)N{z € C**! | ||z|| = €} for a polynomial f(zo,21,,---,2n)
with an isolated singularity at the origin and examine when K is a homotopy
sphere and when K is an exotic sphere [48, §8, §9].

Remark 6.53 Let ¥ be a homotopy n-sphere for n > 5. Let D — ¥ and
D7} — ¥ be two disjoint embedded discs. Then W = ¥ — (int(Dg) [ [ int(D7)) is
a simply-connected h-cobordism. By the h-cobordism Theorem 1.2 there is a dif-
feomorphism (F,id, f) : 9D§ x [0,1],0D§ x {0},0D¢ x {1}) = (W,0Dg,dD?}).
Hence ¥ is oriented diffeomorphic to D™ Ug.gn-1_,gn-1 (D™)~ for some orienta-
tion preserving diffeomorphism f : S7~! — S~ If f is isotopic to the identity,
¥ is oriented diffeomorphic to S™. Hence the existence of exotic spheres shows
the existence of selfdiffeomorphisms of $”~! which are homotopic but not iso-
topic to the identity.

The next result is due to Berger and Klingenberg. Its proof and the proof
of the following theorem can be found for instance in [20, Theorem 6.1 on page
106, Theorem 7.16 on page 126].
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Theorem 6.54 (Sphere theorem) Let M be a complete simply connected
Riemannian manifold whose sectional curvature is pinched by 1 > sec(M) > 1.
Then M is homeomorphic to the standard sphere.

Theorem 6.55 (Differentiable sphere theorem) There ezists a constant ¢
with 1 > 6 > % with the following property: if M is a complete simply connected
Riemannian manifold whose sectional curvature is pinched by 1 > sec(M) > 6.
then M is diffeomorphic to the standard sphere.

Brumfield and Frank [11] have shown
Theorem 6.56 For n # 2¥ —2 or n # 2% — 3 the sequence

0 — bP™1! — @™ — im ((6™ — coker(J,)) = 0

splits where the map ©™ — im (O™ — coker(J,)) comes from the map O™ —
coker(J,,) appearing in Theorem 6.46.

Kirby and Siebenmann [36, Theorem 5.5 in Essay V on page 251] (see also
[56]) have proven

Theorem 6.57 The space TOP/PL is an Filenberg MacLane space of type
(Z/2,3).
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Notation

Arf(P,), 93 PL, 117
BG, 62 (P,¢; G, H), 97
BPL, 134 Po*p1, 58
BO, 62 M-, 1

B, 129 Q<(P), 87
bP™HL 121 Q.(P), 87
cone(f), 34 Q(-1)+(Zm,w), 81
cone,(f«), 25 sign(X), 52
oyl(f), 34 SE, 55

eyl (f+), 25 Sv, 37
deg(f), 38 Th(E), 55
DE, 55 TOP, 117
DV, 37 V, 56

e(f), 38 Wh(G), 23
F(V), 38 Wh(n(Y)), 29
G(F), 58 XY, 38
G, 62 XAY, 55
G(k) := G(S¥1), 58 x(X), 51
GL(R), 22 u(a), 81
H¢(P), 85 y(M), 55
H.(P), 88 73, 128
Ho(X;Z%), 49 73 (X), 127
Tn, 128 on, 120
Ki(R), 22 0", 121
Kiy(M), 83 or, 133
K*(M), 83 20y, 25
Ry(R), 22 o(F,f), 94, 102, 104, 108
L(V), 37 7(f), 29
1(V),38 T (f), 105
Low(R), 91 7(f.), 26
LY(R), 107 7 (f), 106
LM(Zr,w), 108 (X, ), 56
LS (Zm,w), 108 Ly, 124
Loky1(R), 100, Na(X), 65
LY., (R), 107 Na(X, k), 65
o 6o NPL(X), 117

NIOP(X), 117
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Sh(X), 112
S3(X), 111

SPLR(X), 117
SPLs(X), 117
STobh(X), 117
STobs(xy, 117
Tn(X), 62
Na(X,8X), 115
Ta(X, k), 62
NT(X), 66
O(P,), 98
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Index

U-torsion
of a contractible finite U-stably
based chain complex, 106

acyclic

U-acyclic, 36
Alexander trick, 2
Arf invariant, 93
attaching maps, 9

based exact sequence, 26
basis
equivalent basis, 9
stable basis, 105
stably U-equivalent, 105
U-equivalent, 105
Bernoulli numbers, 129
bordism, see cobordism

boundary of a non-degenerate e-quadratic

form, 98
Brieskorn variety, 137

cell
closed, 9
open, 9
cellular
basis, 9
map, 29
pushout, 30
chain complex
contractible, 26
finite based free, 26
chain contraction, 26
characteristic map, 9

classifying map of a principal G-bundle,

38
classifying space for G, 38

cobordism, 1
diffeomorphic relative My, 1
h-cobordism, 2
over My, 1
trivial, 2
collaps map, 55
Conjecture
Poincaré conjecture, 2

degree, 38

disk bundle, 55

dual
R-module, 30
chain complex, 31

elementary collaps, 32
elementary expansion, 32
eotic sphere, 136

Euler characteristic, 51
exotic sphere, 2

fibration
orientable, 59
strong fiber homotopy equiva-
lent, 58
form
e-quadratic, 87
e-symmetric, 85
non-degenerate e-quadratic, 87
non-degenerate e-symmetric form,
85
standard hyperbolic e-quadratic
form, 88
standard hyperbolic e-symmetric
form, 85
U-based e-quadratic forms, 106
formation
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e-quadratic formation, 97
stably isomorphic e-quadratic for-
mations, 97

trivial e-quadratic formation, 97
framing

almost stable, 123

stable, 123
free

free unitary representation, 37
fundamental class, 49

groups of homotopy spheres, 120

handle, 4
boundary of the core, 4
cocore, 4
core, 4
dual, 17
transverse sphere, 4
handlebody decomposition, 4
dual, 16
homtopy n-sphere, 119
Hopf construction, 128

intersection pairing, 52
for immersions, 79
for kernels, 84
involution
of rings, 48
w-twisted involution of a group
ring, 48

J-homomorophism, 128
join, 38
fiberwise join of spherical fibra-
tions, 58

k-connected map, 67

L-group
decorated quadratic L-groups in
even dimensions, 107
decorated quadratic L-groups in
odd dimensions, 107
quadratic L-groups in even di-
mensions, 91

INDEX

quadratic L-groups in odd di-
mensions, 100
simple quadratic L-groups, 108
Lagrangian, 91
complementary, 98
subLagrangian, 91
Lemma
Associativity lemma, 5
Cancellation lemma, 6
Elimination lemma, 7
Franz’ independence lemma, 44
Homology lemma, 13
Isotopy lemma, 5
Modification lemma, 15
Normal norm lemma, 16
lens space, 37

mapping cone
of a chain map, 26
of a map of spaces, 34
mapping cylinder
of a chain map, 26
of a map of spaces, 34
module
stably finitely generated free, 86
stably U-based, 105
U-based, 105

normal bordism, 104
normal bundle, 55
normal invariant
normal k-invariant, 62
set of normal k-invariants, 62
set of normal invariants, 62
normal map, 64
with respect to the tangent bun-
dle, 65
normal map of degree one, 64
of manifolds with boundary, 103
with respect to the tangent bun-
dle, 65

orientation
of an orientable spherical (k —
1)-fibration, 59
orientation homomorphism
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of a Poincaré complex, 49
of a spherical fibration, 59

Poincaré complex

finite n-dimensional, 49

simple finite n-dimensional, 49
Poincaré pair

finite n-dimensional, 52

simple finite n-dimensional, 52
Poincaré Zn-chain homotopy equiv-

alence, 49

ring
with involution, 30

selfintersection element, 81

set of normal maps to a compact
manifold, 115

set of normal maps to a Poincaré
complex, 65

signature

of a finite oriented 4k-dimensional

Poincaré complex, 52

of a symmetric bilinear non-degenerate

pairing, 52
simple homotopy equivalence, 32
smash product, 55
spectrum, 57
sphere bundle, 55
spherical fibration, 58
Spivak normal fibration, 59
stable n-th stem, 128
stable homotopy group, 57
stable homotopy groups, 127
stably parallizable, 121
structure set, 112
simple, 111
surgery obstruction
for manifolds with boundary, 104
for manifolds with boundary and
simple homotopy equivalences,
108
in even dimensions, 94
in odd dimensions, 102
surgery problem, 74
surgery program, 3
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surgery sequence, 116
for the PL-category and topo-
logical category, 117
surgery step, 74
suspension, 26
of a pointed space, 55
of a spherical fibration, 58

Theorem

s-cobordism theorem, 1

Classification of homotopy spheres,
119

Diffeomorphism classification of
lens spaces, 43

Differentiable sphere theorem,
138

Existence and uniqueness of the
Spivak normal fibration, 60

h-cobordism theorem, 2

Homotopy classification of lens
spaces, 39

Homotopy theoretic interpreta-
tion of the Kervaire-Milnor
braid, 134

Immersions and bundle monomor-
phisms, 71

Kervaire-Milnor braid, 134

Pontrjagin Thom construction
and oriented bordism, 57

Pontrjagin-Thom construction,
56

Simple surgery obstruction the-
orem for manifolds with bound-
ary, 109

Sphere theorem, 138

Surgery exact sequence, 116

Surgery exact sequence for PL
and TOP, 117

Surgery obstruction theorem for
manifolds with boundary,
104

Surgery obstruction theorem in
even dimensions, 93

Surgery obstruction theorem in
odd dimensions, 100

The surgery step, 72
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Thom isomorphism, 59
Whitney’s approximation theo-
rem, 71
Thom class, 59
Thom isomorphism, 59
Thom space
of a spherical fibration, 58
of a vector bundle, 55
triad
manifold triad, 103
Poincarétriad, 103

U-torsion
of a stable isomorphism of sta-
bly U-based modules, 105
unit disk, 37
unit sphere, 37
universal principal G-bundle, 38

Whitehead group, 23
of a space, 29
Whitehead torsion, 29

of a chain homotopy équiva.lence,
26
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