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Lecture 3

In my last lecture, I showed that step 1 in the program to replace a homotopy equivalence
f : N —> M between closed manifolds with a homeomorphism can be accomplished when
M satisfies a certain geometric condition (*). In particular, this can be done when M is a
non-positively curved Riemannian manifold.

This lecture is about step 3 of the program; i.e., analyzing /i-cobordisms with base
M. Because of the s-cobordism theorem, this is equivalent to calculating Wh{^\M) when
dim(M) > 5. The discussion will focus on the following vanishing result.

Vanishing Theorem. (Farrell and Jones) Let M be a closed non-positively curved Rie-
mannian manifold. Then

WhfaM) = 0.

Remark. The special cases of this theorem where M is the m-torus Tm was proven by
Bass-Heller-Swan (1964) and for arbitrary flat Riemannian manifolds M by Farrell-Hsiang
(1978).

We need to develop a few more geometric ideas before discussing the proof of the Van-
ishing Theorem. Throughout this lecture M will denote a closed (connected) non-positively
curved Riemannian manifold and M is its universal cover. And we keep the geometric
notation from our last lecture; in particular

r - 7ri(M).
M is the geodesic ray compactification of M.

M(oo) = M-M.

av is the geodesic with av(0) — v.

We call a pair of vectors u, v 6 SM asymptotic if the two rays

{au(t) | t > 0 } a n d {av(t) \t>0}

are asymptotic.

Figure 1
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For each pair v G SM and x G M, there is a unique asymptotic vector
(SXM = unit sphere in TXM.)

Figure 2
Furthermore the function SM x M —> SM defined by (x,v) —> v(x) is continuous, C1 in a;,
and its differential (in x) depends continuously on v. The (weakly) stable foliation of SM
has for its leaves the asymptoty classes of vectors. Note that under the bundle projection
SM —> M each leaf of this foliation maps diffeomorphically onto M. Since an isometry of
M sends asymptotic vectors to asymptotic vectors, this foliation induces a foliation of SM
called its (weakly) stable foliation. Restriction of the bundle projection SM —>• M to any
leaf L of this foliation is a covering space projection

And the geodesic flow gl : SM -> SM preserves the leaves of the (weakly) stable foliation.

Figure 3
The total space SN of the unit sphere bundle of a Riemannian manifold N has a natural

Riemannian metric defined as follows. Let v(t) be a smooth curve in SN representing a
tangent vector rj to SN at v(0); i.e., v(t) is a unit length vector field along a smooth curve
j(t) in N. Then

+ \u 12



where u is the covariant derivative of v(t) at t = 0.
We next describe the asymptotic transfer of a path 7 : [0,1] —> M to a path wy in 5 M

where v G S7^M. The asymptotic transfer sits on top of 7 in the sense that the composite
path p o (^7) is 7; where

p : SM -> M

denotes the bundle projection. Let L be the leaf of the (weakly) stable foliation of SM
containing v. Recall that

p\L : L -> M

is a covering space. Then vj is defined to be the unique lift of 7 starting at v.
The following are some of the properties of the asymptotic transfer.

1. If 7 is a null homotopic loop, then so is vj.

2. If 7 is a constant loop, so is wy.

3. If 7 is a Cx-curve, so is vy.

Furthermore, if —a2 is any lower bound for the sectional curvatures of M, then

for each te [0,1].
Let W be a smooth /i-cobordism with base M equipped with a smooth deformation

retraction ht of W m + 1 onto Mm . In particular h0 = idjy, and r = hi is a retraction of W
onto M. Let W2m be the total space of the pullback of p : SM -> M via r; i.e.,

>V = {(2/, v)eWxSM\ r(y) = p(v)}.

Then W is an /i-cobordism with base SM and the asymptotic transfer can be used to equip
W with a useful C1 deformation retraction kt of W onto SM defined as follows. First
associate to ht a family of paths {7^ | y G W} in M called the tracks of ht. These are given
by the equation

Note that each track j y is a smooth null homotopic loop in M based at r(x). Hence, for
each vector v G Sr(y)M) the asymptotic transfer vjy of j y to SM is a C1 null homotopic
loop based at v. Now kt is defined by the formula

kt(y,v) =

where t G [0,1], y G M and v G S^M. It is important to note that the tracks of kt are

) I v G SM}]

namely, they are all the asymptotic transfers of the tracks of ht. Furthermore given a
self-diffeomorphism / : SM -» SM homotopic to idsM> we can change kt to a new C1

deformation retraction of W onto SM whose tracks are

{/ o (vjp{v)) I v G SM}.

This comment applies in particular when / = gto where g1 is the geodesic flow on SM and to
is a fixed (large) positive real number. Which is useful because of the following consequence
of Anosov's analysis of the geodesic flow.
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Key Property of vy. The following is true when M is negatively curved. Given numbers
(3 and e in (0,+00), there exists a number t0 £ (0,+oo) satisfying the following. Let 7 be
any smooth path in M whose arc length is < /3, and v be any vector in £7(0)M. Then,
for any t > to? the composite path p* o (vy) is (/?, e)-controlled in SM with respect to the
1-dimensional foliation by the orbits of the geodesic flow.

Figure 4 indicates why this property is true. In it 7 is a lift of 7 to M; u G S^M is
the vector lying over v\ uy is the lift of ̂ 7 to SM starting at u, and u(po) G M(00) is the
ideal point corresponding to the ray {au(t) \ t > 0}. Also M is identified with the (weakly)
stable leaf L of SM containing u. And the lines converging to u(oo) are the flow lines of the
geodesic flow which are inside of L; while the _L codimension-one submanifolds abuting to
1/(00) are the horospheres inside of L; i.e. the strongly stable leaves.

Figure 4
Each diffeomorphism gl, t > 0, of the geodesic flow preserves the family of horospheres

as well as the flow lines. It is (strongly) contracting on horospheres and is an isometry on
flow lines.

Remark. This Key Property of the asymptotic transfer is not true (in general) when M
is only non-positively curved. For example it doesn't hold when M is flat since asymptotic
rays are parallel in Euclidean space.

Using the above construction of a deformation retraction of W onto SM relative to gto,
we see that W is a (/?, e)-controlled /i-cobordism over SM for a fixed positive real number
(3 but arbitrarily small positive numbers e when M is negatively curved because of the Key
Property of the asymptotic transfer. Hence the Foliated Control Theorem (described by
Lowell Jones in his lectures) shows that the Whitehead torsion r(W) = 0. Since every
element x G Wh(-KiM) is the torsion r(W) of some smooth /i-cobordism with base M, the
fact that r(W) = 0 would show that WhfaM) vanishes, when M is negatively curved,
provided

=T(W).

Unfortunately this equation is not true in general. In fact the following formula calculates
T(W) in terms oir(W).



Theorem. (D.R. Anderson 1972). Let W and W be h-cobordisms with bases M and
M, respectively. And let p : W —» W be a smooth fiber bundle with p~1(M) = M and
dim M > 4. Assume that TTI(VF) acts trivially on the integral homology groups of the fiber
F of p, then

PMW)) = x(F)r(W)
where x(F) denotes the Euler characteristic of F and

p* : WhfaM) -> WhfaM)

is the homomorphism induced by p.

Applying Anderson's theorem to the /i-cobordism W constructed above, we see that

\2T(W) if m i s odd

\0T(W) — 0 if m is even

(provided Mm is orientable) since the fiber of W —> W is Srm"1.
To get around this difficulty we need a sub-bundle E of SM with fiber F satisfying

1. X(F) = 1;

2. E is invariant under gl;

3. for each path 7 in M and each vector v € E lying over 7(0), vy is a path in E.

It unfortunately is impossible to find such a sub-bundle when M is closed because every
orbit of the action of Y on M(oo) is then dense. We are thus forced to consider a certain
non-compact but complete and pinched negatively curved Riemannian manifold Nm+1 called
the enlargement of Mm. It is diffeomorphic to E x M m and contains Mm as a totally geodesic
codimension-one subspace. In fact iV is the warped product (defined by Bishop and O'Neill)

N = R xcoshW M

and 0 x M is the totally geodesic subspace identified with M.

Figure 5
The Riemannian metric 11 11 on N is determined from the Riemannian metrics 11 on M

and || on R by the properties
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1. R x x -L t x M for all x G M, t G R.

2. | H | = cosh(t)M i f t ) G T ( i x M ) .

3. \\v\\ = \v\ ifveT(Rxx).

Let q:N = RxM-^R denote projection onto the first factor. Inside of SN is an upper
hemisphere sub-bundle defined by v G S+N iff the following set of real numbers is bounded
below

(This lower bound depends on v.) That is v 0 S+N iff the geodesic av(t) -> "—oo" as
t —>- +oo. This sub-bundle satisfies the three conditions listed above; in particular its fiber
i sD m .

Now an arbitrary element x G Wh(T) can be realized as the Whitehead torsion r(W) of
a compactly supported /i-cobordism with base N. And the associated /i-cobordism W with
base S^N is (/?, e)-controlled for a fixed positive number /3 but arbitrarily small positive e.
Hence the Foliated Control Theorem (in one of its more sophisticated forms) together with
Anderson's Theorem shows that

x = T(W) = T(W) = 0

proving that Wh^iM) = 0 when M is negatively curved.
To prove the general case of the Vanishing Theorem, where M is allowed to have some

zero sectional curvature, we must replace the asymptotic transfer with a new focal transfer.
It associates to each path 7 : [0,1] -> M, each vector v G *S7(0)M, and every (large) positive
number d G R (called the focal length of the transfer) a path

The focal transfer satisfies properties 1-3 of the asymptotic transfer. And it satisfies the
following analogue of the Key Property of vj.

Key Property of ̂ (7, d). Given M as well as numbers /?, e G (0, +00), there exists a pos-
itive number t0 (̂ 0 > P) satisfying the following statement for every smooth path 7 in M
whose arc length is < (3 and every vector v G 57(0)M. The composite path

is (/?, e)-controlled in SM with respect to the foliation given by the orbits of the geodesic
flow provided d > to-

Remark. The focal transfer ^(7, d) focuses when flowed a distance equal to its focal length
d. When flowed farther, it gets out of focus.

To construct ^(7, d) pick a lift 7 of 7 to M and let u G S^)M be the unique vector
which maps to v via dp where

p : M -> M

denotes the covering projection. Figure 6 illustrates the construction of the path ^(7, d) in
SM.



Figure 6
If w denotes the vector 1/(7, d)(t) G S^^M, then w is the unique vector such that the

geodesic ray
{aw(s) I s > 0}

contains the point au(d). Note we must have that

d > diam{7(£) | t e [0,1]}

for w to be necessarily defined. Since this construction is equivariant with respect to F, we
can (and do) define the focal transfer ^(7, d) by the equation

^(7, d) = dp o ̂ (7, d).

The only problem with the focal transfer is that the bundle S+N —> N does not satisfy
property 3 (on page 5) with respect to it. But it does except near d(S+N) and so the
construction is slightly modified near d(S^N). When this is done, then the argument given
above proving the Vanishing Theorem in the special case where M is negatively curved
works in general after the asymptotic transfer is replaced with the focal transfer. In fact
a simplification can be made in the earlier argument by using N equal to the Riemannian
product

R x M

instead of the warped product
R xcosh(t) M.

We end this lecture by discussing a generalization of the Vanishing Theorem to the case
where M is complete but not necessarily compact. Needed for this purpose is an extra
geometric condition on M; namely, that M is A-regular.

Definition. A Riemannian manifold N is A-regular if there exists a sequence of positive
real numbers Ao,Ai, A^, • • • with |£)n(if)| < An. Here K is the curvature tensor and D is
covariant differentiation.

Remark 1. Every closed Riemannian manifold iV is A-regular. This is a consequence of an
elementary continuity argument.
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Remark 2. Every locally symmetric space is ^4-regular since DK = 0 is one of the defini-
tions of a locally symmetric space.

Addendum. (Farrell and Jones 1998) Let N be any complete Riemannian manifold which
is both non-positively curved and A-regular. Then Wh(iriN) = 0.

Corollary 1. Wh(T) = 0 for every discrete torsion-free subgroup F of GLn(R).

Reason. Note that F = TTI (N) where N is the double coset space

T\GLn(R)/On

which is a complete non-positively curved locally symmetric space and hence A-regular by
Remark 2.

Corollary 2. Let N be any complete and pinched negatively curved Riemannian manifold,
then

WhfaN) = 0.
Reason. Shi and Abresch show that the given Riemannian metric can be deformed to an
A-regular one while keeping it negatively curved and complete.

The proof of the Addendum follows the same pattern as the proof of the Vanishing
Theorem except that it uses the more difficult Foliated Control Theorem which Lowell Jones
will discuss in his last lecture.

Let me also mention that Jones' former Ph.D. student B. Hu showed how to adapt the
proof of the Vanishing Theorem to the language of Alexandroff PL-geometry thus obtaining
the following result.

Theorem. (Hu 1993) Let K be a non-positively curved finite complex, then Wh(iriK) = 0.

Remark. Hu's result does not obviously include the Vanishing Theorem since Davis, Okun
and Zheng have shown that no rank > 2, irreducible, closed, non-positively curved locally
symmetric space is also a non-positively curved PL-manifold.
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