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1 Survey on the problem of finding a positive
scalar curvature metric on a closed mani-
fold

The basic question that we want to address in the first three lectures is the
following.

1.1. Question. Which manifolds admit a Riemannian metric of positive
scalar curvature?

We will consider this question for smooth, compact manifolds without
boundary, and will assume that all manifolds mentioned in these lectures are
of this type unless otherwise indicated. The above is just one of the many
question that one might ask relating the geometry and topology of mani-
folds. Here the 'geometry' of a manifold M is determined by a Riemannian
metric on M and its curvature. There are various 'flavors' of curvature (sec-
tional, Ricci, scalar, curvature operator,e.t.c, see [Be]), of which the scalar
curvature is the simplest in the sense that the scalar curvature is just real
valued function s: M —> R (the other flavors of curvature are described as
'tensors' on M). One might ask finer questions concerning the scalar curva-
ture; for example: Given a manifold M, which smooth functions on M can
be realized as the scalar curvature functions of Riemannian metrics on Ml
However, thanks to results of Kazdan-Warner [KW1], [KW2] (see also [Fu]),
it turns out that this question essentially boils down to answering question
1.1. Unlike most other curvature problems, we know quite a bit about the
answer to Question 1.1 as we shall see.

1.1 Scalar curvature

We begin by recalling the definition of the scalar curvature function. Usually,
the scalar curvature is defined in terms of the 'curvature tensor', which is
the right thing to do if your goal is to do calculations. However, for our
purposes the following geometric/conceptual definition seems more adequate.
Let M be a manifold of dimension n equipped with a Riemannian metric g.
Then the scalar curvature s(p) G R at a point pG M i s determined by the
volume growth of geodesic balls around p. More precisely, let Br(p,M) be
the geodesic ball of radius r > 0 around the point p (consisting of all points
x G M whose distance from p is < r), and let us write vol J3r(p, M) for the
volume of this ball. Then s(p) is determined by the power series expansion
(see [Be, 0.60])

vo\Br(p,M) = _ s(p) 2 ( ,
vol£ r(0,R") 6(n + 2) { ' }



In particular, s(p) > 0 means that geodesic balls around p of sufficiently
small radius have smaller volume than the ball of the same radius in W1.

1.2. Examples of manifolds with s > 0. The round sphere (the ge-
ometer's slang for the sphere with its standard metric) has positive scalar
curvature (provided of course n > 2, where n is the dimension of the sphere).
Since curvature is local it follows that any manifold that has the round sphere
as its universal covering, like the real projective space, or more generally any
lens space, has positive scalar curvature.

The complex projective space CPn or the quaternionic projective space
HPn also inherit a Riemannian metric from the round metric on the sphere
whose quotients they are (these are referred to as the Fubini-Study metric
in the geometric literature). It can be shown that their scalar curvature is
positive as well.

1.2 Constructions of positive scalar curvature metrics

In order to answer question 1.1, we have to do two things:

• construct positive scalar curvature metrics on some manifolds, and

• show that other manifolds do not admit such metrics.

We will begin with the 'constructive' part. The following observation allows
us to construct a lot of new manifolds with positive scalar curvature metrics
from a given manifold with positive scalar curvature metric.

1.3. Observation. Let g be a positive scalar curvature metric on a manifold
M. Then the following manifolds admit metrics of positive scalar curvature:

1. The product M x N with any manifold N.

2. The total space of any fiber bundle E —» N with fiber M, provided the
transition functions are isometries of (M, g).

To prove the first claim, pick any metric h (not necessarily with positive
scalar curvature) on N. Then g and h combine to determine a Riemannian
metric g x h (called the product metric) on M x N. The scalar curvature of
g x h can be expressed in terms of the scalar curvature of g and h via the
formula

s((x, y); gx h) = s(x; g) + s(y; h) for (x, y) G M x N.

Here we write s{x\g) for the scalar curvature at x G M with respect to the
metric g\ the meaning of s(y; h) and s((x, y); g x h) is analogous. Assuming
no further information about the metric /&, of course this quantity could



be positive or negative, and that doesn't seem to bode well for our goal of
producing a positive scalar curvature metric on M x N. Here is the trick:
shrink M! Phrased more mathematically: replace g by tg where t is a positive
real number, and let t approach 0. We see that

s((x, y)\ tgxh) = s(x; tg) + s(y; h) = -s(x; g) + s(y; h).

This is positive for t sufficiently small thanks to the positivity of s(x\g).
Of course, how small we need to choose t will depend on (x,y); however,
compactness of M and N implies that there is a t that will do for all (x,y) G
M xN.

The same trick still works in the case of the 'twisted product' E —» N. In
addition to a metric on the base N, we need to choose here a 'connection' on
this bundle; assuming that the transition functions are isometries, these data
determine a 'twisted product metric' on E (which makes E - ^ M a Rieman-
nian submersion with totally geodesic fibers; see [Be, Ch. 9]); the O'Neill
formulas express the curvature of this metric in terms of the curvatures of p,
h and the curvature of the connection (see [Be, Proposition 9.70]). Replacing
g by tg, the dominant term of the scalar curvature of E for small t is again j
times the scalar curvature of g (see [Be, Formula (9.70d)]). Hence the scalar
curvature on E is positive for sufficiently small t.

In differential topology important ways of modifying a given manifold
is surgery and attaching a handle. Of course these modifications are closely
related: if W is a manifold with boundary dW = M, and W is obtained from
W by attaching a handle Dk+1 x Dn~k via an embedding Sk x Dn~k C Mn ,
then M = dW is obtained from M by a surgery (i.e., by removing Sk x Dnk

and replacing it by DkJrl x Sn~k~l). Independently Gromov-Lawson [GL2]
and Schoen-Yau [SY] showed that if M admits a positive scalar curvature
metric, and n — k (the codimension of the surgery/handle) is greater than 2,
then M also admits such a metric. Based on their techniques, Gajer [Gajl]
proved later the following result:

Theorem 1.4. Let W be a manifold with boundary and let g be a positive
scalar curvature metric on W. Assume that W is obtained from W by at-
taching a handle of codimension > 3. Then g extends to a positive scalar
curvature metric on W.

Here we make the convention that all metrics considered on manifolds
with boundary are product metrics near the boundary.

Gromov and Lawson made the fundamental observation that this result
implies that the answer to our question 1.1 whether a manifold M admits
a positive scalar curvature metric depends only on the bordism class of M
in a suitable bordism group [GL2]. We recall that two closed n-manifolds



M, N are called bordant if there is a manifold W of dimension n + 1 whose
boundary dW is the disjoint union M ]J N.

1.5. Spin structures (see [LaM, Chap. II, §1]). Let M be an oriented Rie-
mannian manifold of dimension n, and let SO(M) - ^ M b e its oriented frame
bundle; i.e., the principal 5O(n)-bundle whose fiber over x G M consists of
all orientation preserving isometries Rn -> TXM of Rn to the tangent space
at x (the image of the standard base element in Rn then gives a 'frame' of
TXM; SO(n) acts on these isometries by precomposition). A spin structure
on M consists of a double covering of SO(M), whose restriction to each fiber
SO(M)X is a non-trivial double covering (the universal covering if n > 3). A
spin manifold is a manifold equipped with a spin structure. We note that a
spin structure implicitly involves the choice of an orientation; for each spin
structure on M there is an 'opposite' spin structure whose underlying ori-
entation is the opposite of the previous one. If M is a spin manifold (resp.
oriented manifold), we denote by — M the manifold equipped with the oppo-
site spin structure (resp. orientation).

1.6. Bordism groups. We recall that two n-manifolds M, TV are called
bordant if there is a (n + l)-manifold W whose boundary dW is the disjoint
union M\JN. If M and TV are oriented manifolds (resp. spin manifolds), the
requirement is that W is equipped with an orientation (resp. spin structure)
such that dW — M \J —N, where the orientation or spin structure on dW
is induced by that on W. To treat both - orientations and spin structures -
on the same footing, it is convenient to refer to them as G-structures, where
G — SO if we talk about orientations, and G — Spin for spin structures.
More generally, if M, N are n-manifolds with G-structures and / : M —> X,
g: N —> X are maps to a topological space X, then the pairs (M, / ) , (iV, g)
are bordant if there is a n + 1-manifold with G-structure W with dW =
M\J-N, and a map F: W -» X, which restricts to / on M C W and
to g on N C W. We write [M, / ] for the bordism class of the pair (M, / ) ,
and denote by f^(X) the set consisting of the bordism classes of such pairs.
The disjoint union of pairs gives J7^(X) the structure of an abelian group;
the neutral element is represented by the empty n-dimensional manifold; the
inverse of [M, /] is given by [—M, / ] .

The following result was proved by Gromov-Lawson for simply connected
manifolds [GL2]; a proof in the general case can be found in [RSI]. In the
statement of this result the following subgroup of Q^(X) plays a crucial role:

N admits a metric with 1
positive scalar curvature J '

Theorem 1.7. Let M be a manifold of dimension n > 5 with fundamental
group 7T. Let u: M -* BIT be the classifying map of the universal covering
M —» M. Assume that



(a) M admits a Spin-structure, or that

(b) M admits a SO-structure and M does not admit a Spin-structure,

and let [M, u] G Q^(BTT) be the element represented by the pair (M, u)7 where
G — Spin in case (a) and G = SO in case (b). Then M admits a positive
scalar curvature metric if and only if [M.u] is in £^3+(JBTT).

1.8. Remark. There are closed manifolds of dimension n > 5 which don't
satisfy the assumptions of the above theorem; for example non-orientable
manifolds, or manifolds without a spin structure whose universal cover admits
a spin structure, like the real projective space RPn for n = 1 mod 4. There is
a more general version of this theorem that applies to all closed manifolds of
dimension n > 5, the proof of which is no harder than the proof of Theorem
1.7; it is just more technical to define the relevant bordism groups, which are
spin (resp. oriented) bordism groups of BIT with 'twisted coefficients' if M
admits a spin structure (if M does not admit a spin structure) (see [RSI],
[St4]).

Outline of the proof of Theorem 1.7. At first glance the statement of the the-
orem might appear to be tautological. Of course, the existence of a positive
scalar curvature metric on M implies that [M,u] is in Q^+(BTT) by defini-
tion of that subgroup, but the converse statement is not obvious: [M, u] G
Q^+(BTT) means that (M, u) is bordant to a pair (JV,/), where N admits a
positive scalar curvature metric, and the claim is that M itself admits such
a metric. To prove this, we would like to argue that W is obtained from
TV x [0,1] by attaching handles of codimension > 3; then Theorem 1.4 would
imply that the positive scalar curvature metric on iV x [0,1] extends to a
positive scalar curvature metric on all of W. In particular, its restriction to
M C dW gives a positive scalar curvature metric on M (we recall that all
metrics considered on manifolds with boundary are required to be product
metrics near the boundary). While this is does not hold for every bordism
W between M and JV, it turns out that the conditions of the theorem are
carefully chosen in such a way that W can always be modified by surgeries
in the interior so that the above holds. •

A striking application of the 'Bordism Theorem' 1.7 is the following result.

Theorem 1.9 (Gromov-Lawson [GL2]). Every simply connected closed
non-spin manifold of dimension n > 5 admits a positive scalar curvature
metric.

Proof. The cartesian product of manifolds gives Q% = ©^Lo ^n the struc-
ture of a graded ring. C.T.C. Wall constructed explicitly manifolds which
are multiplicative generators for Qf°. These manifolds are either projective



spaces or total spaces of fiber bundles with projective spaces as fibers whose
transition functions are isometries of the Fubini-Study metric (cf. 1.2) on
projective space. By Observation 1.3.2 then all of these manifolds admit
positive scalar curvature metrics. Since these manifolds multiplicatively gen-
erate Qf° it follows from Observation 1.3.1 that the subgroup ^ ° ' + is equal
to Cl^° for n > 0. Hence Theorem 1.7 implies the corollary. •

1.3 Obstructions to positive scalar curvature metrics

The discussion of the preceding subsection, notably Corollary 1.9 might leave
the impression that most manifolds admit metrics of positive scalar curva-
ture. This is not so; in fact, currently, there are three known methods to
show that some manifolds do not admits such metrics. These methods are -
in chronological order - the following:

Index obstructions. This method, pioneered by Lichnerowicz in the early
sixties [Li] and developed since then by many mathematicians is based
on the 'Bochner-Lichnerowicz-Weitzenbock formula' (see 1.15) which
provides a relationship between positive scalar curvature and the 'Dirac
operator' (see 1.14) defined by Atiyah-Singer on any Riemannian man-
ifold equipped with a spin-structure. This method - described below
- is the most powerful of the three methods available. Its limitations
come from the fact that it requires a spin structure (this can actu-
ally be weakened to requiring a spin-structure on the universal cover,
see [St4]).

Minimal hypersurface method. Schoen and Yau proved in 1980 [SY]
that if M is a Riemannian manifold of dimension n with positive scalar
curvature then any stable minimal hypersurface N C M (i.e., N is a lo-
cal minimum of the area functional) admits a positive scalar curvature
metric (the induced metric might not have positive scalar curvature,
but a conformal change produces a positive scalar curvature metric on
N). This can lead to interesting restrictions if N represents a non-
trivial element in i?n_i(M;Z): As Thomas Schick will explain in his
second lecture, there is a 5-dimensional manifold for which the index
obstruction is zero, but for which the minimal hypersurface method
can be used to show that it cannot admit a positive scalar curvature
metric. A limitation of this method is that it doesn't give restrictions
if ifn-i(M; Z) = H\M] Z) 2* H o m ^ M ) , Z) is trivial, for example if
the fundamental group TTI(M) is finite. Moreover, even if this group
is non-trivial, there might only be a stable minimal hypersurface with
singularities representing a given homology class for n > 8. It has been
claimed [Y] that the technical difficulties associated with the possible
singularities can be overcome to prove non-existence of positive scalar



curvature metrics for manifolds of arbitrary dimension; however, the
author is not aware of a published account of this.

Seiberg-Witten invariants. This is a diffeomorphism invariant of 4-dimen-
sional manifolds, which vanishes if the manifold admits a positive scalar
curvature metric. For example, the manifold

X2(d) = {[̂ o : *i : z2 : z3] G CP3 | z* + • • • + zd
3 = 0}

is simply connected of real dimension 4; its Seiberg-Witten invariant
is non-zero for d > 3 [Ta2] (the restriction d > 3 guarantees b% >
1, where fc>~ is the number of positive eigenvalues of the intersection
form, which is a necessary restriction for the definition of the Seiberg-
Witten invariant. A 'fancier' version of the invariant is defined for
fr+ = i? but that doesn't seem to lead to obstructions for positive
scalar curvature metrics as the example X2(d) = CP2 shows). We
note that X2(d) is non-spin for d odd, which shows that Theorem 1.9
does not hold in dimension n = 4. We also observe that the non-
existence of a positive scalar curvature metric on X2(d) for d odd cannot
be proved by the other methods (the minimal hypersurface method
doesn't apply, since X2(d) is simply connected and there are no index
obstructions coming from the Dirac operator since X2(d) doesn't admit
a spin structure). The obvious limitation of this method is that it
applies only to 4-dimensional manifolds.

Now we explain the 'Index obstruction' method in more detail. The first
result in this direction is the following.

Theorem 1.10 (Lichnerowicz, [Li]). Let M be a spin manifold of dimen-
sion n — Ak which admits a positive scalar curvature metric. Then the
A-genus A(M) vanishes.

1.11. Definition of the A-genus. (see [LaM, Chap. Ill, §11]) To define
the A-genus A(M) of a manifold M, we first recall the definition of the
'characteristic class' A(E) G i?*(X; Q) associated to any vector bundle E —>
X. It is characterized by the following properties:

(naturality) for any map / : X1 -> X we have A(f*E) = f*(A(E))

(exponential property) A(E 0 F) = A(E) • A(F).

(normalization) If L -» X is a complex line bundle with Euler class (which
equals the first Chern class) x G if2(X;Q), then



If M is a oriented manifold of dimension n — 4&, its A-genus is defined as

where TM is the tangent bundle of M, and ( , [M]) is the evaluation on
the fundamental class [M] G Hn(M;Z).

Example 1.12. A(X2(d)) = ^d~2)^2) (see [LaM, Ch. IV, Formula 4.4]),
which shows by Lichnerowicz' Theorem 1.10 that X2(d) does not admit a
positive scalar curvature metric for d > 4 even (d even guarantees that X2(d)
has a spin structure).

1.13. The complex spinor bundle, (see [LaM, Chap. II, §§3-4]). Let
M be a Riemannian manifold of dimension n — 2k equipped with a spin
structure Spin(M) -> SO(M) (cf. 1.5). We recall that Spin(M) -> SO(M)
is a principal 5pm(n)-bundle, where Spin(n) is the connected Lie group
obtained as the non-trivial double covering of SO(n) (the universal covering
for n > 3). The Spinor bundle S —» M is the vector bundle associated
to a certain representation A of Spin(n) called the spinor representation.
To construct A, the group Spin(n) is identified with a subgroup of units
of the Clifford algebra C£ni and then A is a certain C^-module considered
as a representation of Spin(n) C C£*. We recall that the Clifford algebra
C£n = C£\ © C£~ is the Z/2-graded R-algebra with unit generated by all
vectors v G W1 C C£~ subject to the relations v-v = — M2 * 1. The subgroup
Pin(n) of Cl* generated by all unit vectors v G W1 C C£n is a double
covering group of the orthogonal group O(n) (the double covering map is
given by sending v to the reflection at the hyperplane perpendicular to v).
The identity component of Pin(n) can then be identified with Spin(n).

It can be shown (see [LaM, Ch. I, §4]) that the complexification C£2k®(C>
is the algebra (0(2*) of 2k x 2fc-matrices over C. Let A be C2* with the
C(2/c)-module structure given by multiplying a 2k x 2/c-matrix by a 2^-vector.

We consider A as a module over Cl^k ® C and define a Z/2-grading A =
A + © A" by letting A=t be the ±l-eigenspace of the involution given by
multiplication by the complex volume element uc = ike\ - • -e2k G C£2k ® C
Then the spinor bundle S —> M is defined by

S = Spin(M) xSpin{n)A.

The crucial feature of the spinor bundle is that there is a Clifford multipli-
cation, a vector bundle map

It is induced by the module multiplication map R n ® A c C£n® A —> A. The
Z/2-grading A — A+©A~ induces a corresponding Z/2-grading S — S+®S~
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on the vector bundle S. In particular, Clifford multiplication by a tangent
vector maps S+ to S~ and vice versa. The Levi-Civita connection on TM
induces a principal connection on the frame bundle SO(M), which lifts to a
connection on Spin(M), which in turn induces a connection on the associated
vector bundle S -> M (see [LaM, Ch. II, §4]).

1.14. The Dirac operator (see [LaM, Ch. II, §5]). The Dirac operator
D: C°°(S) —> C°°(S) is a the first order elliptic differential operator defined

i' VCi^. (1.2)

Here {e i , . . . , en} is an orthonormal basis of the tangent space TXM, Veiip G
Sx is the covariant derivative of ip in the direction of e^ and e^ is Clifford
multiplication by e;. We note that D is an odd operator in the sense that
if if) is a section of 5 + , then Dip is a section of S~ and vice verse (if ^ is a
section of £ + , then Veii/j G S+, and hence e* • Veiip G S~). In particular,
restricting D gives operators D±: Coo(Sf±) -> COO(5=F).

1.15. The Bochner-Lichnerowicz-Weitzenbock Formula (see [LaM,
Ch. II, §8]).

D2 = V V + ^ , (1.3)

where V is the connection on the spinor bundle 5, considered as a homo-
morphism V: C°°(S) -> C°°{T*M ® 5), and V*: C°°(T*M ® S) -> C°°{S)
is its adjoint (T*M is the cotangent bundle of M). All the terms in the
formula above are considered as linear maps C°°(S) —> C°°(S)] the term | s
is multiplication by | times the scalar curvature function.

Proof of Lichnerowicz' Theorem 1.10. Let ( , ) be the inner product on
each fiber of the spinor bundle S -* M, and let (0, ip) G R be the inner
product of sections 0, ^ G Croo(Sf) defined by

= / (0(

where di;o/ is the volume element determined by the Riemannian metric
on M. We observe that the Weitzenbock Formula 1.3 has the following
consequence: if I(J is in the kernel of the Dirac operator D, then

0 = (DV, VO = (V*V^ + s^,^) = ||V^||2 + (5^, ip) > {s^, V7).

Assuming that the scalar curvature function s is everywhere positive, a non-
zero ^ would force (5^ ,^ ) to be strictly positive in contradiction to the
inequality above.



Besides the Weitzenbock formula, the other main input in the proof of
Theorem 1.10 is the Atiyah-Singer Index Theorem. Specializing to the Dirac
operator on a spin manifold M of dimension n — ^k (see [LaM, Ch. Ill, Thm.
13.10]), it says

mdex(D+)=A(M)J

where index(D+) = dimker(JD
+) — dimcoker(D+). It can be shown that JD+

is the adjoint operator of D~, which allows us to identify coker(Z)+) with
ker(jD"). This shows that both, dimker(D+) and dimcoker(JD

+) vanish, and
then so does A(M). D

Lichnerowicz' result 1.10 has been refined by Hitchin [Hit] and later
Rosenberg [Ro2]. The idea is to construct a version of the Dirac opera-
tor D which commutes with the action of a C*-algebra A. In the simplest
case, the relevant algebra is the Clifford algebra, and the construction is the
following.

1.16. The C4- l inear Dirac operator (see [LaM, Ch. II, §7]). Let M be
a n-dimensional spin manifold. The C£n-linear spinor bundle is the vector
bundle

This is a variation of the spinor bundle described in 1.13. We note that the
Clifford algebra C£n acts by right multiplication on 6 . This action is fiber
preserving and hence gives the space of sections C°°(&) the structure of a
Z/2-graded right C£n-modu\e. As in 1.14 we can define the Dirac operator
S): C°°(&) -» C°°(6). It commutes with the C4-action, and it is there-
fore referred to as the C£n-linear Dirac operator. The kernel of £> is then a
Z/2-graded module over C£n and so represents an element the Grothendieck
group 9Jtn of Z/2-graded C£n-modules. This element might depend on the
Riemannian metric on M; however, the class [ker£>] G 9Jln/i*97ln+i is inde-
pendent of the metric, where i*: 97tn+i —> 97ln is induced by the inclusion
i: C£n —> C£n+i. The element

a(M) d= [ker3)] G KOn{R) = mn/i*Win+1 (1.4)

is the Clifford index of 5) [LaM, Ch. III. Def. 10.4.].

The same argument as for Lichnerowicz' Theorem 1.10 leads to the fol-
lowing result due to Hitchin (with a somewhat different proof).

Theorem 1.17 (Hitchin [Hit]). Let M be a spin manifold of dimension
n. If M admits a positive scalar curvature metric, then a(M) G KOn(R) is
zero.

10



Remark 1.18. The groups i^On(R) depend only on n modulo 8, and are
given by the following table.

n mod 8
KOn(R)

0

z
1

Z/2
2

Z/2
3
0

4
Z

5
0

6
0

7
0

Moreover, if M is a spin manifold of dimension n = 0 mod 4, then A(M) =
a(M) for n = 0 mod 8, and A(M) = 2a(M) for n = 4 mod 8 (if we iden-
tify KOn(R) with Z by choosing as generator of KOn(R) the Z/2-graded
C£n-module A used in the construction of the spinor bundle in those di-
mensions, see 1.13). This shows that Hitchin's result is a generalization of
Lichnerowicz' Theorem 1.10.

In dimensions n = 1, 2 mod 8, n > 9, there are smooth manifolds E home-
omorphic, but not diffeomorphic to the n-dimensional sphere with a(S) ^
0 G KOn(R) = Z/2. This is interesting since it shows that the answer to the
question "Does a given manifold M admit a positive scalar curvature met-
ric?" might depend on quite subtle things like the differentiate structure of
M.

Hitchin's result can be generalized by 'twisting' the Dirac operator as
follows. Suppose E —>• M is a real vector bundle with connection. Then we
can define the twisted Dirac operator

®E: c°°(e ®E)—± c°°(e ® E)

by the same formula 1.2 defining the usual Dirac operator, where now V is
the product connection on & ® E (of the usual connection on & induced by
the Levi-Civita connection and the given connection on E). The Bochner-
Lichnerowicz-Weitzenbock formula 1.3 continues to hold, provided the con-
nection on E is flat. In that case, the C£n-module keriD^ gives an element

which must be zero if M admits a positive scalar curvature metric. All
flat vector bundles over M are obtained in the following way: Given an
orthogonal representation p: TT —> O(V) of a discrete group TT and a map
/ : M -> BTT, we can form the flat vector bundle E(p) = ETT xn V over
BIT — ETT/TT and pull it back via / to get a flat vector bundle f*E(p) over
M.

We can do better: all the obstructions [ker*Qf*E(p)] £ KOn(R) corre-
sponding to various orthogonal representations p of TT can be obtained as the
images of a single obstruction

under homomorphisms p*\ KOn(C*7r) —» KOn(R). Here C*TT is the group
C*-algebraof TT, and V(TT) = ETTX^C^TT is the Miscenko-Fomenko line bundle.
Let us recall the relevant definitions.

11



1.19. The group C*-algebra of a discrete group TT. We recall that
a C*-algebra is an algebra over F = R or F = C (the more usual case
considered is C; the C*-algebras considered in these lectures are all over R)
equipped with an anti-involution *: A —> A which is *-isomorphic to a closed
subalgebra of the algebra of bounded operators B(H) on a F-Hilbert space H.
Here the involution on B(H) is given by sending an operator to its adjoint,
and the subalgebra is required to be closed with respect to the norm topology
on B(H). It should be mentioned that there are more 'intrinsic' definitions
(see [WO, 1.1]), but the above suffices for our purposes.

The main example of a C*-algebra of interest to us is the (real) C*-algebra
C*TT of a discrete group TT. It is a norm completion of the real group ring
MTT — {YlgeTr r99 I r9 ^ ^} (these sums are finite sums and they are mul-
tiplied using the product in TT) equipped with the anti-involution given by
g i-> g~l for g G TT C RTF. We note that there is a one-to-one correspon-
dence between orthogonal representations of n on a real Hilbert space H and
*-homomorphisms from RTT to %$(H) (by extending p: TT —> O(H) linearly
to an algebra homomorphism p: RTT —>• 05(if)). The (maximal, real) group
C*-algebra C*ir is the completion of RTT with respect to the norm on RTT
defined by

\W\\max = SUp {||p(cr)||} for O G RTF,
P

where the sup is taken over all *-homomorphisms p from RTT to the bounded
operators on some Hilbert space.

A variant of C*TT is the reduced C*-algebra C*TT of a group TT; as C*TT, the
C*-algebra C*TT is a norm completion of RTT, but with respect to the norm
||cr|| = ||p(cr)||, where p: RTT —> 03(/2(i/)) is the regular representation O/RTT,

corresponding to the orthogonal representation of TT via translations on the
Hilbert space /2(TT) = {/: TT -> R| Z9e, l/(^)|2 < °°}-

Other C*-algebras of interest to us are the Clifford algebra C£n with anti-
involution given by v i-» — v for a generator v G T , and the tensor product
C£n ® C*TT.

1.20. A Dirac type operator commuting with an action ofC£n®C*7r.
Given a discrete group TT, the bundle V(TT) = En x^ C*TT over BIT with fiber
C*7r is called the Miscenko-Fomenko line bundle. We note that V(TT) is a flat
vector bundle, which is infinite dimensional if the group TT is infinite. The
reason that V(TT) is called a line bundle is that C*TT acts on V(TT) by right
multiplication, making the fibers 1-dimensional free modules over C*TT.

As above, we can defined the twisted Dirac operator

S / . V W : C°°(& ® /*V(TT)) -^ C°°(e ® rV(7r))

for any map / : M —> BIT from a spin manifold M to Bn. We note that
the C*-algebra C£n ® C*7r acts fiber preserving o n 5 ® /*V(TT) (via the C^n-
action on 6 , and the C*7r-action on V(TT)), thus making C°°(& ® /*V(TT)) a

12



Z/2-graded module over it. Moreover, this action commutes with JD/*V(TT)J

giving in particular ker2)/*v(7r) the structure of a Z/2-graded module over
C£n <g> C*TT.

1.21. The if-theory of C*-algebras. For a real Z/2-graded C*-algebra A
its if-theory is defined by

j<rn (A\ — / equivalence classes of finitely!
°̂  ' \ generated projective A-modulesJ

and KOn(A) = KO0(C£n ®A). It is tempting to try to define a KOn(C*7r)-
valued index for the operator 2)/*V(TT)

 a s the class of KOn(C*7r) represented by
the kernel of 2)/*V(TT)- But this module over C£n ® C*n is in general neither
finitely generated nor projective. Luckily one can always find a 'compact
perturbation' 2)LV/ x of 3)/*V(TT) whose kernel is finitely generated projective
(the difference of 2) and £)' is an operator that is compact in the sense
of Hilbert modules over the C*-algebra C£n ® C*TT; see [WO, Ch. 17]). It
turns out that the element in ifOn(C*7r) represented by the kernel of 2)' is
independent of the choice of the perturbation, and that allows one to define

a(M,f) = [kerD'^J e KOn(C*ir).

If p: n —> O(E ) is a finite dimensional orthogonal representation of
7T, the corresponding *-homomorphism p: C*TT —> R(d) (where R(d) is the
C*-algebra of d x rf-matrices with entries in R) induces a homomorphism
p*: KOn(C*7r) -+ KOn(R(d)) ^ KOn(R), under which a ( M , / ) maps to

Theorem 1.22 (Rosenberg [Ro2]). Lei M be a spin manifold of dimen-
sion n and let f: M —> £?TT 6e a map to f/ie classifying space of a discrete
group TV. If M admits a Riemannian metric with positive scalar curvature
then a ( M , / ) G KOn(C*7r) vanishes.

2 The Gromov-Lawson-Rosenberg Conjecture

In the last lecture we defined the invariant a(M,f) 6 KOn(C*7r) for any
spin manifold M of dimension n equipped with a map / : M —> STT to the
classifying space of a discrete group TT. We will refer to a(M) as the index
obstruction, since it is the KOn(C*7r)-valued index of a twisted Dirac operator
on M, and the vanishing of a(M) is a necessary condition for the existence
of a positive scalar curvature metric on M by Theorem 1.22.

2.1. The Gromov-Lawson-Rosenberg Conjecture. Let M be a spin
manifold of dimension n > 5 with fundamental group TT. Then M admits
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a metric of positive scalar curvature if and only if a(M,u) G KOn(C*7r)
vanishes, where u: M -> BTTI(M) is the classifying map for the universal
covering of M.

In this lecture we will outline the proofs of the known cases of the Gromov-
Lawson-Rosenberg Conjecture. We would like to begin by giving a reformu-
lation of the Conjecture. It can be shown that the index obstruction a(M, / )
of a pair (M, / ) consisting of a spin manifold M and a map / : M -» BIT
depends only on the bordism class of [M, / ] G Cl^ptn(B7r). In other words,
we get a well-defined homomorphism

a: Qs/in(BT,) -)• KOn(C*Tr) by [M, / ] -> a(M, / ) .

In view of the Bordism Theorem 1.7 the Gromov-Lawson-Rosenberg Conjec-
ture is equivalent to the following conjecture:

2.2. Conjecture. Q^pin^(B7r) = ker (a: Ct^piri(B7r) -+ KOn(C*7r)).

Of course, according Theorem 1.22 we have the inclusion Ql^
pm^(B7r) C

ker a, while the converse inclusion is conjectural.

2.1 The simply connected case

Theorem 2.3 (Stolz [Stl]). The Gromov-Lawson-Rosenberg Conjecture holds
for simply connected manifolds.

We want to mention that in dimensions n < 23 this was proved by Rosen-
berg [Ro3, Thm. 3.6] in a spirit similar to the proof of Theorem 1.9 by pro-
ducing explicit spin manifolds whose bordism classes are generators of ker a.
For example, the kernel of a: Q^pm -» KOn(R) is trivial in dimensions n < 8.
For n = 8, it is infinite cyclic and a generator is given by the bordism class of
the quaternionic projective plane HP2. Since this manifold admits a positive
scalar curvature metric this proves the Gromov-Lawson-Rosenberg Conjec-
ture in the simply connected case for n < 8.

The difficulty with this line of argument is that although the bordism
groups Q^pin have been computed [ABP], we do not know explicit spin man-
ifolds whose bordism classes generate the spin bordism ring (unlike the ori-
ented bordism ring, for which Wall has given explicit generators, which was
the key for the proof of Theorem 1.9). So the dilemma when trying to
prove Theorem 2.3 is to try to represent bordism classes by manifolds ad-
mitting positive scalar curvature metrics without knowing how to represent
these classes by explicit manifolds. This is not as impossible as it sounds:
according to Observation 1.3.2 if M is a Riemannian manifold with positive
scalar curvature, then the total space of any fiber bundle with fiber M whose
transition functions are isometries of M admits a positive scalar curvature
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metric. This suggests to analyze which bordism classes are represented by
such total spaces for some fixed M, e.g. M = HP2 equipped with the Fubini-
Study metric. For simplicity we will call these bundles HP2-bundles. The
answer is this:

Theorem 2.4 (Stolz [Stl]). The subgroup ofQ^pin represented by HP2 -bun-
dles is equal to the kernel of a: f̂ pm —>• KOn.

By our discussion above, this implies Theorem 2.3.

Idea of proof of Theorem 2.4- The isometry group of HP2 is the projective
symplectic group PSp(3) = Sp(3)/ ± 1 . It acts transitively on HP2 with
isotropy group H — {Sp(2) x Sp(l)) /± 1, allowing us to identify HP2 with the
homogeneous space G/H. The map of classifying spaces BH —> BG induced
by the inclusion map H —> G is then a fiber bundle with fiber HP2 = G/H.
This is the universal HP2-bundle in the sense that any HP2-bundle over
a manifold N is the pull-back N = f*BH -» N of BH -> BG via some
map / : iV —» BG. This discussion shows that the subgroup Tn C Ct^pm

represented by total spaces of HP2-bundles is the image of the following
transfer map:

tt: Qs
n
p™(BG) —> ns

n
pin [N, f] •-> [N\.

Hence the claim of the theorem is equivalent to the exactness of the following
sequence at the middle group:

r\Spin / p /o \ ^ v r\Spin Q

It is well-known that the Pontryagin-Thom construction allows us to iden-
tify the bordism group Q^pm with the n-th homotopy group of the 'Thorn
spectrum' MSpin [?]. In fact, it turns out that the whole sequence above is
isomorphic (for n > 0) to the following sequence of homotopy groups:

7rn(MSpin A E8BG+) ^ irn(MSpin) -^ 7rn(ko). (2.1)

Here £8£?G+ is the 8-th suspension of BG furnished with a disjoint base
point, and ko is the connective real K-theory spectrum. There is a closely
related spectrum KO, the periodic real K-theory spectrum whose homotopy
groups 7Tn(KO) are isomorphic to KOn(R) for all n. The spectrum ko is the
connective cover of KO in the sense that 7rn(ko) is trivial for n < 0, and
that there is a map per: ko —> KO which induces an isomorphism on 7rn for
n > 0.

It can be shown that the composition

MSpin A E8BG+ -̂ -> MSpin - A ko
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is homotopic to the constant map (by interpreting it as a family index). This
implies that T can be factored in the form

M^pin

MSpin A Y,sBG+-^MSpin

where MSpin is the homotopy fiber of D. The exactness of the sequence
above is equivalent to the surjectivity of the map induced by T on homotopy
groups. ^

It turns out to be convenient to break the proof that T* is surjective into
two steps: surjectivity of T* localized at the prime 2 (i.e., after tensoring
with Z(2) = {§ | b is prime to 2}) and surjectivity away from 2 (i.e., after
tensoring with Z[|]). Away from 2, the bordism ring ir*(MSpin) = Qfpin

is a polynomial ring with generators xn in degrees n — 4, 8,12,. . . , while
7r*(ko) is the polynomial ring generated by JD*(X4) (both MSpin and ko are
ring spectra and D is compatible with this structure, which implies that the
homotopy groups of MSpin and ko form a graded ring, and that D* is a ring
homomorphism). In particular, D* is surjective, and , 7r*(MSpin) can be
identified with the ideal generated by x8 ,xi2 , Hence it suffices to show
that T* is onto modulo decomposable elements in degrees 8,12,. . . , which
is proved by a calculation of characteristic numbers for certain HP2-bundles
(see [KS, §4]).

The proof of surjectivity localized at 2 is technically more involved due to
the existence of 2-torsion in TT*(MSpin). It is proved using the mod 2 Adams
spectral sequence, whose E^-term depends only on the mod 2 cohomology
of the spectrum in question as a module over the Steenrod algebra A] it
converges to the homotopy groups of the spectrum localized at 2. A detailed
analysis of the action of the Steenrod algebra on H* (MSpin A E+; Z/2) and

H*(MSpin]Z/2) shows that as A-module the latter can be identified as a
direct summand of the former via the map T*. It follows that the map
of Adams spectral sequences induced by T is surjective on ^- terms. The
vanishing of all differentials in the Adams spectral sequence of MSpin A Ê _
then implies that T induces a surjection on E^-terms and hence on homotopy
groups localized at 2. •
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2.2 Positive scalar curvature metrics on non-simply
connected spin manifolds

It is tempting to believe that a manifold M with finite fundamental group
admits a positive scalar curvature metric if and only if its universal covering
M does using the following line of reasoning. Suppose # is a positive scalar
curvature metric on M. Then the metric p might not be invariant under
the action of TTI(M) via deck transformations, but the space of Riemannian
metrics on M is a convex subspace of the vector space of 2-tensors on M,
and averaging_c>ver the orbit through #, we obtain an invariant Riemannian
metric j ' on M, which then descents to a Riemannian metric gr on M. It
seems reasonable to expect </' (and hence g') to have positive scalar curva-
ture - after all, it is obtained by averaging positive scalar curvature metrics.
However, the following example shows that the average of positive scalar
curvature metrics might not have positive scalar curvature.

Example 2.5. Let M be the connected sum of RP7 x S2 and a 9-dimensional
homotopy sphere S9 with a(£9) 7̂  0. We note that RP7 is a spin manifold
and hence so is RP7 x S2. We note that a(RP7 x S2) is zero since RP7 x S2

is zero bordant. Since the connected sum (RP7 x S2) # E 9 is spin bordant to
the disjoint union of RP7 x S2 and £9 , we see that

a(M) = a((RP7 x S2) #S 9 ) = a(W>7 x S2) + a(E9) = a(£9) ^ 0.

Hence by Theorem 1.17 M does not^admit a positive scalar curvature metric.
However, the ^universal covering M does admit a positive scalar curvature
metric, since M = (S7 x S 2 )#£ 9 #E 9 , which is diffeomeorphic to S7 x S2,
since S 9 #E 9 is diffeomorphic to S9.

While the above example shows that the question whether a spin manifold
with finite fundamental group TT admits a positive scalar curvature metric
cannot be reduced to the universal covering, Kwasik and Schultz observed
that it can be reduced to the coverings corresponding to the Sylow subgroups
O f TT.

Theorem 2.6 (Kwasik-Schultz [KwS]). Let M be a spin manifold of di-
mension n > 5 with finite fundamental group TT. Then M admits a positive
scalar curvature metric if and only if all coverings of M corresponding to the
p-Sylow groups of TT admit such a metric.

In particular, if the Gromov-Lawson-Rosenberg Conjecture is true for all
p-Sylow groups of a finite group TT, then it holds for TT.

Proof. To prove the non-trivial implication of this theorem, assume that all
coverings of M corresponding to p-Sylow subgroups of n admit positive scalar
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curvature metrics. To show that M also admits such a metric, it suffices by
the Bordism Theorem 1.7 to show [M,u] G ft£pin'+(J37r), where u: M -> BIT
is the map classifying the universal covering of M.

In order to relate [M,u] to the corresponding bordism class for a cov-
ering of M corresponding to a subgroup if C TT, we consider the transfer
homomorphism

^pin(B7r) {-^% ns
n

pin(BH) defined by [N, / ] .-> [TV, / ] ,

^ def

where N = f*BH —» iV is the covering obtained by pulling back the covering
BH —> BIT via / , and / is the map making the diagram

N = f*BH - ^ - > BH

N —J—> BTT

commutative. Now consider the composition

assuming that if is a p-Sylow group of TT. Then

• The image of [M, u] under the transfer map is in ft^pin'+(BH) due to
the assumption that p-Sylow coverings of M admit a positive scalar
curvature metrics. Hence the image of [M, u] under the composition is
in Q^+(B7T).

• The composition is an isomorphism after tensoring with Z(p) (replac-
ing spin bordism by homology, the composition above is multiplication
by the index of the subgroup H; for a Sylow subgroup, this index is
prime to p and consequently the composition on homology is an iso-
morphism after localizing at 2; the Atiyah-Hirzebruch spectral sequence
then shows that the same holds for spin bordism).

This implies [M, u] G ft£pin'+(jB7r) ® Z(p) for all primes p and hence [M, u] G
S

We recall that the Gromov-Lawson-Rosenberg Conjecture for a group TT
is equivalent to Q^pin^(B7r) = ker(a: n%*n(Bir) -> KOn(C*7v)). This shows
that when attempting to prove the conjecture, it is useful to understand the
kernel of a; this is facilitated by factoring a as follows:

ns
n
pin(Bn) A kon(B7r) ^ KOn{Bix) A KOn{C^). (2.2)
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Here KOn(X) — 7rn(K0AX+) and kon(X) = 7rn(koAX+) are the generalized
homology theories associated to the periodic (resp. connective) real if-theory
spectra KO (resp. ho), which we mentioned earlier in this lecture (in the proof
of Theorem 2.4). The maps D and per are natural transformations between
homology theories which are induced by the corresponding maps between
spectra D: MSpin -> ko and per: ko —>• KO (abusing notation we use the
same letter for the map between spectra and the natural transformation).
The homomorphism A is the assembly map which has been mentioned in
talks by Luck and Schick. We will use the following notation.

2.7. Notat ion. For a spin manifold M, the bordism class [M, idM] G
is the fundamental class of M in fi5^n-theory. We define

[M]ko ^ £>([M, idM]) G £on(M) and [ M ] * o
 d= per([M]fco) G

We call [M]jfeO (resp. [M]^o) the fundamental class of M in connective (resp.
periodic) ifO-homology. Given a map / : M —» JBTT, and the corresponding
bordism class [M, /] G ft^n(E7r), we have

D([M, /]) = /*[M],O G fcon(S7r) per(£>([M, /])) = f.[M]ico G KOn(B7r).

Finally, we define A;o+(X) d= £) ( Q ^ ' + ( X ) ) C fcon(X) and define i^O+(X) C
KOn(X) to be the subgroup generated by pev(ko^+sk(X)) C KOn+sk(X) =

for all fc.

The following result is similar to the Bordism Theorem 1.7.

Theorem 2.8 (Stolz, Jung). Let M be a spin manifold of dimension n >
5 with fundamental growp ir and let w. M —> BTT be the classifying map of
the universal covering M —> M. Then M admits a positive scalar curvature
metric if and only if u*[M]kO is in

In particular, by this result the Gromov-Lawson-Rosenberg Conjecture is
equivalent to the following conjecture.

2.9. Conjecture. kos
n
vin^{Bir) = ker (Aoper: kon(Bit) -> KOn(C*ix)).

The advantage of this formulation of the Gromov-Lawson-Rosenberg Con-
jecture over that used in Conjecture 2.2 is that the groups ko*Bix) are a lot
smaller than Q^(BTT). For example in joint work with Botvinnik and Gilkey
[BGS], the author could calculate the groups kon(B7r) and the kernel of eloper
in the case of 2-groups which are cyclic or generalized quaternion. It turns
out that the kernel of A o per is generated by fco-fundamental classes of lens
spaces and lens space bundles over S2 (in the cyclic case) resp. by lens spaces
and quaternionic space forms (for the quaternionic groups). This proves the
Gromov-Lawson-Rosenberg Conjecture for these 2-groups.
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Previously Kwasik and Schultz [KwS] had proved the Conjecture for cyclic
groups of prime order p ^ 2, and Rosenberg [Ro2] for cyclic groups odd order.
This implies by the Kwasik-Schultz induction result 2.6 that the Conjecture
is true for all finite groups whose p-Sylow groups are cyclic or generalized
quaternion (for p — 2). These are precisely the finite groups with periodic
cohomology and so these arguments prove:

Theorem 2.10 (Botvinnik-Gilkey-Stolz [BGS]). The Gromov-Lawson-
Rosenberg Conjecture holds for finite groups with periodic cohomology.

Next we want to outline the proof of Theorem 2.8. It suffices to show
ker (D: n^pin{X) -» kon(X)) C ft^in'+(X). As in the proof of the Gromov-
Lawson-Rosenberg Conjecture in the simply connected case, there are two
somewhat different arguments, showing that the required inclusion holds
after tensoring with Z(2) and Z[|], respectively (and this of course suffices to
prove the inclusion).

To prove the inclusion localized at 2 (i.e., after tensoring with Z(2)), we
consider the subgroup Tn(X) C ^pm(X) consisting of bordism classes of the

form [ J V A B - > I ] , where p: N -> B is a HP2-bundle over a spin manifold
B. The following result is proved generalizing the techniques from stable
homotopy theory.

Theorem 2.11 ([St2]). The map D induces a 2-local isomorphism

This implies in particular that 2-locally the kernel of D: Q^pin(X) —>
kon(X) is equal to Tn(X) Since total spaces of HP2-bundles admit positive
scalar curvature metrics by Observation 1.3, this implies the desired inclusion
2-locally.

Proof of Theorem 2.11. We recall from the proof of Theorem 2.4 that the
map T: MSpin AESBG+ -» MS Pin induces a split injection of A-modules;
an fact, more is true and proved in [St2], Proposition 8.3: T is a split surjec-
tion of spectra. In particular, for any space X, the map

MSpm A E8£G+ M + ™ MSpin A X+

induces a 2-locally a surjection on homotopy groups. Since MSpin A X+ is
the homotopy fiber of D A 1: MSpin A X+ —> ko A X + , this implies that the
following sequence is 2-locally exact:

7vn(MSpin A Z*BG+ A X+) ( ^ * irn(MSpin A X+) ( ^ * 7rn(ko A X+).

Identifying 7rn(MSpin A X+) with Q^pin(X) via the Pontryagin-Thom con-
struction, the image of (T A 1)* can be identified as the subgroup Tn(X) C
Q,sn

pin(X). •

20



The proof of the inclusion ker (D: ^pin{X) -* kon(X)) C ̂ i n '
after inverting 2 (i.e., tensoring with Z[|]), is again a consequence of a geo-
metric description of fco-homology, this time as a bordism group of manifolds
with singularities a la Baas-Sullivan. This then implies that if [M, / ] is in
the kernel of JD, then M is zero bordant as a manifold with singularities.
Equivalently, after removing a neighborhood of the singularities from the
zero bordism, we obtain a bordism W between M and another manifold
N which is constructed inductively from the set E of manifolds describing
the possible types of the admissible singularities. The essential observation is
that in the Baas-Sullivan type description of kon(X), the set X can be chosen
to consist of manifolds with positive scalar curvature metrics. An inductive
argument then shows that N admits a positive scalar curvature metric and
then so does M by the Bordism Theorem 1.7.

At the end of this lecture we would like to mention the following re-
sult that can be proved quite similarly to Theorem 2.8 above (replacing e.g.
HP2-bundles by CP2-bundles). To state it, we need the following notation.
For an oriented manifold JV, let [N] G Hn(N; Z) be the usual homology fun-
damental class of N. For any space X, let H+(X;Z) C Hn(X]Z) be the
subgroup consisting of all homology classes of the form /*[AT], where AT is a
manifold with positive scalar curvature metric and / : N —> X.

Theorem 2.12 (Stolz, Jung). Let M be an oriented manifold of dimen-
sion n > 5 with fundamental group TT and let w. M —> BTT be the classifying
map of the universal covering M —> M. Assume that M does not admit a
spin-structure. Then M admits a positive scalar curvature metric if and only
ifu*[M] is in H+(BTT).

3 The Gromov-Lawson-Rosenberg Conjecture
and its relation to the Baum-Connes Con-
jecture

An important feature of the if-theory of C*-algebras is the periodicity of
these groups; they are 2-periodic for complex C*-algebras, and 8-periodic for
real C*-algebras. With the definition of K-theory we have adopted this is
not a deep fact, but rather reflects the algebraic periodicity of the Clifford
algebras. If M is a spin manifold of dimension n with fundamental group TT,
the periodicity isomorphism

maps the index obstruction a(M, u) to a(M x B,u), where B is any simply
connected spin manifold of dimension 8 with A(B) = 8 (we use the letter
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u for the classifying map of the universal covering of whatever manifold we
are talking about) . We pick such a manifold B - the particular choice of it
is immaterial for our purposes - and refer to it as 'Bott manifold', since the
cartesian product with B corresponds to Bott-periodicity.

This shows that the Gromov-Lawson-Rosenberg Conjecture is equivalent
to the following two conjectures.

3.1. Cancellation Conjecture. Let M be a spin manifold of dimension
n > 5. Then M admits a positive scalar curvature metric if and only if
M x B does.

3.2. Stable Conjecture Let M be a spin manifold. Then M has stably a
positive scalar curvature metric (i.e., the product of M with sufficiently many
copies of B has a positive scalar curvature metric) if and only if a(M, u) = 0.

Theorem 3.3 (Rosenberg-Stolz [RSI]). The stable Gromov-Lawson-Ro-
senberg Conjecture is true for manifolds with finite fundamental group.

For the proof of this result we need a if-theoretic reformulation of the
Stable Conjecture, which is based on the following geometric description
of XO-homology. Let (n%pin(X)/Tn(X)) [B~1} be the direct limit of the
homomorphisms

given by the cartesian product with the Bott manifold B. We note that the
groups (^pin(X)/Tn(X)) [B'1} are 8-periodic; in fact, multiplication by B
provides an isomorphism. In other words, we made the non-periodic groups
Q^pin(X)/Tn(X) periodic by inverting the Bott-element, which motivates the
notation.

Theorem 3.4 (Kreck-Stolz [KS]). ThemapperoD: Q,sn
pin(X) -> KOn(X)

induces an isomorphism (Q^in(X)/Tn(X)) [B"1] ^ KOn{X).

We remark that this is a direct consequence of Theorem 2.11 at the
prime 2; an additional argument is needed localized away from 2.

Theorem 3.4 shows in particular that if [M,u] G fi^n(B7ri(M)), is in
the kernel of peroD, then the product M x B x • • • x B with sufficiently
many copies of B represents an element in Tn(i?7ri(M)), and hence carries a
positive scalar curvature metric. This implies the following result.

Corollary 3.5. Let M be a spin manifold of dimension n > 5 with funda-
mental group 7T and let u: M —> Bn be the classifying map of the universal
covering M —> M. Then M admits stably a positive scalar curvature metric
if and only if U*[M]KO is in
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Here KO^(X) C KOn(X) is the subgroup consisting of all elements of
the form f*[N]xo f° r some manifold N with dimN = n mod 8.

Corollary 3.6. The Stable Conjecture holds for spin manifolds with funda-
mental group 7T if and only if KO^(BTT) is the kernel of the assembly map.

For finite fundamental groups TT the group C*-algebra C*TT is just the real
group ring RTT which is isomorphic to a product of matrix rings over R, C,
or H. It follows that the KO*(C*TT) is a sum of copies of the real if-theory
of R, C and H with as many summands of each kind as the corresponding
matrix factors of RTT.

It is a well-known result of Atiyah that for a finite group TT the complex
if-theory K°(BTT) can be identified with a completion of the representation
ring of TT. This was later refined by Atiyah and Segal to give a description of
K0*(B7r) in terms of the representation theory of TT (see [AS]). The following
result is obtained by dualizing their theorem.

Proposition 3.7 (Rosenberg-Stolz). If TT is a finite p-group, the the as-
sembly map

with coefficients in Z/p°° is an isomorphism.

Corollary 3.8. If TT is a finite p-group, then there is a long exact sequence

K0n(B7r) 4 K0n(C*7i) -4
Proof of corollary. The groups K0n(B7r) and KOn(C*7r) are the ra-th homo-
topy groups of certain spectra; moreover, the assembly map A: KOn(B7r) —>
KOn(C*7r) is induced by a map between these spectra. This implies that
KO-groups of BIT (resp. C*TT) with coefficients in some abelian group can be
defined, and that associated to short exact sequences of coefficients we obtain
long exact sequences of if O-groups. Moreover, there is an assembly map for
KO-theory with coefficients compatible with these long exact sequences. In
particular, the short exact sequence

gives rise to the following commutative diagram, whose rows are long exact
sequences.

KOn(B7r; Z{p)) > KOn(B>ir; Q) >

4-
KOn+l(C*n- Z/p°°) -$-> KOn(C*ir; Z(p)) > KOn(C*n; <
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It is well-known and proved by a quick diagram chase in the above diagram,
that this leads to a Meyer-Vietoris type long exact sequence

B^ Q) -> #On(C*7r; Q) A ,

which reduces to the long exact sequence of the corollary. •

Proof of Theorem 3.3. By Theorem 2.6 it is enough to prove the Stable Con-
jecture for finite p-groups. For cyclic group, the Gromov-Lawson-Rosenberg
Conjecture and hence also the weaker Stable Conjecture holds. So the idea
of the proof is to compare the assembly map A for a finite p-group TT with the
assembly maps AH for its cyclic subgroups H C TT by means of the following
diagram.

(C*H- Q) e ^ 0 KOn(BH) ®_^ 0 KOn(C*H)
H H H

Ind Ind Ind

> KOn+1(C*7r) ® Q — > KOn(B7r)) ^ > KOn(C*7r)

Here the vertical maps Ind = ® Ind# are sums of induction maps for cyclic
subgroups H C TT; we sum over representatives H of all conjugacy classes of
cyclic subgroups of TT. The rows are exact by Corollary 3.8.

By Artin induction, the left vertical map is surjective. This implies
by a diagram chase that an element in the kernel of A is in the image of
Indo0<9#. Since the Stable Conjecture holds for cyclic groups, the group
image(<9#) = ker(,4#) is equal to KO^(BH). It follows that the image of
I n d o 0 3 H is contained in KO^(BTT) which proves the theorem. •

Now we want to discuss groups TT which are not necessarily finite. If TT
is torsion free, then according to (a form of) the Novikov-Conjecture, the
assembly map A: KOn{Bix) —» KOn(C*7r) is injective. If this is true for TT,
then obviously the kernel of A is contained in KO+(BTT) and the Stable Con-
jecture holds for 7i. In general the assembly map is not injective, for example
for finite groups. However, the Novikov Conjecture can be generalized to any
discrete group TT in the following way. A s explained in Schick's lectures, the
assembly map can be expressed in terms of the equivariant iifO-homology
and then factored as follows:

BTt) ^ , KOn(C*n)

Here En (resp. E{-K,T)) is the universal ?r-space with trivial (resp. finite)
isotropy groups and the map /J, is induced by the projection of E(n, J-) to the
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point. We note that if TT is torsionfree, then E(TT, T) — ETT, and hence /i can
be identified with the assembly map. The map /i is called the Baum-Connes
map.

Conjecture 3.9 (Baum-Connes [BCH]). The map fi is an isomorphism
for any discrete group TT.

Theorem 3.10 (Stolz [St5]). / / the Baum-Connes map fi is injective for
a group IT, then the Stable Conjecture holds for TT.

We recall that the Stable Conjecture for a group TT is equivalent to the
statement ROU{BTT) = KO^(BTT) (cf. 3.6), where from now on we write
ROn(B7r) for the kernel of the assembly map A: KOn(B7r) —> KOn(C*7r).
To prove this equality, it suffices to prove that it holds localized at p for all
primes p (localizing an abelian group at p means tensoring it with Z(p) =
{| G Q | b is prime to p}). So throughout this section we will fix a prime p
and localize all abelian groups and spectra at that prime.

Our strategy to prove ROn(Bix) = KO^(BTT) is to use the injectivity
of the Baum-Connes map and induction techniques to show that that every
element in &On(BTr) comes from some finite cyclic p-subgroup of TT in a sense
made precise by the following theorem.

By Theorem 3.4 any element of K0*(X) is represented by some spin
manifold N and a map f: N -+X. We will write [N,.f] G K0*(X) for this
element (or [JV, f]xo £ K0*(X) if there might be danger of confusion with
the bordism class [N,f] G £l^pm(X)). Let if be a subgroup of TT, and let
C(H) = {g G 7T | gh = hg for all h G H} be its centralizer. Then there is a
pairing

K0*(BH) ® K0*{BC(H)) —

given by sending [M, /] ® [iV, g] to the class represented by

M xN ^%BH x BC(H) - B(H x C(H)) -^4

where j : H x C(H) —» TT maps (h,c) to the product he (note that this is a
homomorphism since the elements of C(H) commute with the elements of
if). The multiplicative properties of the assembly map (cf) imply that the
above pairing restricts to a pairing &0*(BH) ® K0*(BC(H)) -> &O*(BTT).

Theorem 3.11. Assume that the Baum-Connes map for the group n is in-
jective. Then the homomorphism

KO*(BC(H)) —
H

is p-locally surjective, where H runs through representatives of all conjugacy
classes of cyclic p-subgroups of IT.
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Proof of Theorem 3.10 assuming Theorem 3.11. We have &On(BH) = KO+(BH)
for every cyclic p-subgroup H C TT, since the Stable Conjecture holds for
cyclic groups. We observe that the cartesian product of manifolds M x N
admits a positive scalar curvature metric if M does, which implies that the
image of the above pairing restricted to KO^(BH) <g> KO*{BC(H)) is con-
tained in KOt{Bn). This proves Theorem 3.10. •

Outline of the proof of Theorem 3.11. For the proof it is necessary to ex-
press the groups KOn{Bix) = KO*(ETT), KO{(E(TT,T)) and KOn(C^) =
KOn(pt) as the n-th homotopy group of homotopy limits as explained in the
lectures by Thomas Schick. More precisely, let Or(7r) be the orbit category of
7T, whose objects are orbits of TT (i.e., transitive 7r-sets); morphisms from an
orbit V to an orbit U are the 7r-equivariant maps U —> V. There is a functor

KO: Or(7r) -> SPECTRA

to the category of spectra with the property that for a ?r-orbit TT/H we
have 7rn(KO(7r/H)) = KOn(C*H). Restricting the functor KO to the full
subcategories Or(7r,T) resp. (resp. Or(7r,^r)) (resp. Or(7r, F(p)) of the orbit
category consisting of orbits whose isotropy groups are trivial (resp. finite
groups, resp. finite p-groups). The natural inclusions of categories

Or(7r,T) C Or(7r,^(p)) C Or(7r,J^) C Or(7r)

induces the following maps of homotopy colimits:

hocolimi^O —> hocolim KO —> hocolimXO —> hocolimXO,
Or(7r,T) Or(7r,^(p)) Or(7r,J^) Or(7r)

which on Tin induces the following homomorphism whose composition is the
assembly map

KOn(B7r) -> KOZ(E(n,F(p))) -+ KO^E^,?)) -> KOn(C*v).

By assumption the right map is injective, and it can be shown that the middle
is p-locally injective by constructing a p-local splitting for the corresponding
map of homotopy colimits. Hence the elements in the kernel of A are in the
image of the map

7rn(fiber(/)) -> 7Tn(hocolimKO) = KOn(Bn).
Or(7r,T)

To identify the homotopy fiber fiber(/), it is useful to rewrite

hocolim KO in the form hocolim i*
Or(7r,T) O r ( ^ ( ) )

where the functor i*KO: Or(7r, Tip)) —> SPECTRA is the Kan extension of
the functor KO: Or(7r,T) -^ SPECTRA via the inclusion i: Or(7r,T) -^
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Or(7r,.F(p)). More explicitly, i*KO(ir/H) can be identified with KOABH+
(the domain of the assembly map for the finite p-subgroup H C TT), and
the natural transformation ^KO(TT/H) -> KO(n/H) = KO(C*H) is just
the (spectrum level) assembly map for H. Corollary 3.8 implies that the
homotopy fiber of this map is E ~ 1 X O Q , where the subscript Q indicates the
rationalization of the spectrum in question. Thus we obtain the following
homotopy fibration

hocolim Y,~lKOn —̂-> hocolim i*KO —> hocolim KO.
O(T(P)) V Oi(irT(p)) O ( T ( ) )

Let Or(?r, C(p)) C Or(7r,^:(p)) be the subcategory consisting of all orbits
whose isotropy subgroups are cyclic p-groups. Artin induction implies that
the map

hocolim YTlKOn —> hocolim
Or(7r,C(p)) V Or(

induced by the inclusion of categories is a homotopy equivalence.
There is a simpler category Or(yr, C(p))f, whose objects are cyclic p-subgroups

H C 7T, one for each conjugacy class of such subgroups. The endomorphisms
of the object H is the centralizer C(H) of H in TT, and there are no other
morphisms in Or(7r, C(p))'. Let F: Or(7r, C(p)); -» Or(7r, C(p)) be the functor
which sends a subgroup H to the orbit TT/H and an element c G C(H) to the
7r-map TT/H —>• 7i/H given by gH \-^ cgH. It can be shown that the functor
F induces a surjection on homotopy groups of the corresponding homotopy
colimits

hocolim TT^KOn —> hocolim E^KO®.
Or(7r,C(p))' V Or(7r,C(p))

(here the fact that KOQ is rational is of central importance).
It is easy to obtain the isomorphism

hocolim Q )
J

where we sum over representatives of the conjugacy classes of cyclic p-subgroups
of TT. Moreover, the image of the pairing of Theorem 3.11 can be identified
with the image of the composition ghk on homotopy groups. However, the
induced map (ghk)* surjects onto the kernel of /*, which agrees with the
kernel of the assembly map if we assume the injectivity of the Baum-Connes
map. This finishes the outline of the proof of Theorem 3.11. •
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4 Survey on the problem of finding a positive
Ricci curvature metric on a closed manifold

4.1 Ricci curvature
In this lecture we will talk about Ricci curvature, which is a finer curvature
invariant of a Riemannian manifold than the scalar curvature s(p): For each
point p G M the Ricci curvature is a quadratic form

Ric: TPM —>R

on the tangent space at this point. Averaging Ric(v) over all unit tangent
vector v G TPM gives the scalar curvature s(p) at the point p (up to a factor).
More precisely,

n

s(p) =
1=1

where {e i , . . . , en} is an orthonormal basis for TPM.
It is interesting that the geometric interpretation of scalar curvature in

terms of volume measurement can be refined to a description of the Ricci
curvature as follows. We recall that the geometric description of s(p) is based
on comparing the volume of the ball Br(0, W1) of radius r in euclidean space
with the volume of the ball Br(p, M) of radius r around p. We note that we
might identify i?r(0,Rn) with the ball of radius r around the origin in the
tangent space TPM, and Br(p, M) with its image under the exponential map
expp: TPM —> M. This suggests to refine s(p) by comparing the standard
volume form on TpM with expp(dvol), where dvol is the volume form on M
determined by the Riemannian metric. To do this, it is convenient to work
with polar coordinates on TPM\ in other words, we identify TPM \ 0 with
Up x Rj., where Up C TPM denotes the unit tangent bundle, and to define a
function f(v, t) on Up x R+ by the equation

exp*p(dvol) = 0(v, t) /JL A dt,

where [x is the canonical volume form on Up. Then the Ricci curvature Ric(v)
shows up when expaning 9(v,i) in t (see [Be, 0.61]):

e(v,t) = tn~l(1 - -Ric{v)t2 + . . . ) .
o

By integrating over Up we obtain from this the geometric description of scalar
curvature 1.1.

The question we want to discuss in this lecture is:
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4.1. Question. Which manifolds admit metrics with positive Ricci curva-
ture (i.e., Ric(v) > 0 for all non-zero tangent vectors v)?

There is a classical result that restricts the topology of manifolds with
Ric > 0 (see [Be, Cor. 6.52]):

Theorem 4.2 (Myers). If M is a Riemannian manifold with Ric > 0, then
the fundamental group TTI(M) is finite.

One would expect that there are many manifolds with positive scalar cur-
vature metric, which do not admit a Riemannian metric with Ric > 0, since
the scalar curvature of a manifold M is the trace over the Ricci curvature,
and since the requirement that a quadratic form is positive definite is so much
stronger than the requirement that its trace is positive. So it is surprising
that in some sense Myer's Theorem is the only known restriction for simply
connected manifolds with positive scalar curvature of dimension n > 5 to
admit a metric with Ric > 0: There are no known examples of simply con-
nected manifolds with positive scalar curvature metrics, which don't admit
metrics with Ric > 0. The following conjecture would imply in particular
the existence of such examples (see 4.5.2).

4.2 A Conjecture concerning Ricci curvature
4.3. Conjecture Let M be a spin manifold of dimension n = Ak and assume
that y (M) G i74(M;Z) vanishes. If M carries a Riemannian metric with
Ric > 0, then the Witten genus (ftw(M) vanishes.

Explanation of y (M) : for vector bundles with spin structure, the first
Pontragin class p\ is divisible by 2 (in fact canonically: do it for the universal
spin bundle over BSpin(n)). Short of a better name for it, this class is
denoted y . We should stress that due to the possible torsion in i /4(M;Z),
the condition y (M) = 0 might be stronger than the requirement pi(M) = 0.

4.4. The Witten genus (see [Wi]) If M is an oriented manifold of dimen-
sion n = 4/c, its Witten genus is the power series (j)w(M) G Q[[q\] defined
by

where the complex vector bundles Ri —> M are constructed from the com-
plexified tangent bundle E = TMc and its symmetric powers SkE in the
following way: Combine all symmetric powers of E to the total symmetric
power

StE
 d- 1 + Et+ {S2E)t2 + (SsE)t3 + . . . ,
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where t is a formal variable. Then expand the following expression as a
powerseries of q whose coefficients are vector bundles over M:

SqiE = Ro + Rx • q + R2 • q2 + . . .
1=1

To illustratre the procedure, we calculate Ri for 0 < I < 3 explicitely by
expanding 0 ^ 1 ^ ^ while ignoring all terms involving ql, for / > 3 getting

(1 + Eq + S2£g2 + 5 3 ^ 3 + .. . )(1 + Eq2 + . . . )(1 + Eq3 + . . .)
= 1 + Eq + {S2E + E)q2 + (S3E + E®E + E)q3 + .. .

This shows

Ro = l Ri=E R2S
2E ®E R3 = S3E®(E®E)®E

where 1 is the trivial complex line bundle.

4.5. Remarks.

1. The conjecture is true for formal reasons for manifolds of dimension
n < 24 by the following argument. It can be shown that the Witten
genus of any n-manifold M with p\(M) = 0 is the q-expansion of a
modular form of weight n/2 (for a definition of these terms, we refer to
[HBJ, §6.3]). If we denote by 9Jlk the C-vector space of modular forms
of weight fc, the direct sum 371* = @Ĵ L09ttfc is a graded C-algebra,
which turns out to be isomorphic to the polynomial algebra generated
by the modular forms

oo oo

C4 = 1 + 240]jT a3(n)qn and C6 = 1 - 504 J^^{n)qn

n=l n=l

of weight 4 and 6, respectively. In particular, Wl^ has dimension < 1
for k < 12, which implies that the Witten genus of a manifold M of
dimension n < 24 (assuming p\(M) = 0) is determined by its constant
term, which equals A(M). This of course vanishes by Lichnerowiz'
result Theorem 1.10 if we assume Ric > 0, which proves the Conjecture
for n < 24.

2. There are simply connected spin manifolds M of dimension = 24 and
n - 4k > 30 with f (M) = 0, A(M) = 0 and </>w(M) ^ 0. By Theorem
2.4 any such manifold admits a positive scalar curvature metric, but -
if the Conjecture holds - M does not admit a metric with Ric > 0.
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3. The standard Fubini-Study metric on the quaternionic projective plane
HDP2 has Ric > 0 (even the sectional curvature is positive), however
(j)w(HP2) 7̂  0. This is not a counterexample to Conjecture 2.2, but
it shows that the condition y ( M ) = 0 cannot be dropped. It is in-
teresting to compare this to what happens in the case of the complex
projective plane CP2: the standard metric has positive scalar curvature
(even positive sectional curvature), yet A(CP2) / 0. Of course this is
not a contradiction to Lichnerowicz' Theorem, since CP2 is not a spin
manifold.

4.3 Evidence for the Conjecture
Supporting evidence for the conjecture 2.2 is provided by fact that it has
been checked for some classes of manifolds, including the following:

4.6. Examples of manifolds with Ric > 0

1. Homogeneous spaces G/H with G compact and semi-simple. To obtain
a Ricci positive Riemannian metric on G/H, pick a bi-invariant metric
on G; this induces a metric on G/H, refered to as the normal homoge-
neous metric which is characterized by the property that G —> G/H is
a Riemannian submersion [Be], .

2. Complete intersections Xn C CPn + r with positive first Chern class
(i.e., transverse intersections of r hyperplanes in CPn + r . The standard
Fubini-Study metric on CPn4~r induces a Kahler metric on X, which
might not have positive Ricci curvature. However, thanks to the posi-
tivity of the first Chern class and the Calabi-Yau Theorem [Be], Theo-
rem 11.15 (see also 11.16(ii)), X admits a Kahler metric with positive
Ricci curvature.

In the case of homogeneous spaces, the vanishing of the Witten genus
is a consequence of the following result which was proved independently by
Dessai [De] and Hohn (unpublished), based on work of Liu [Liu]. This result
is analoguous to the classical result of Atiyah and Hirzebruch saying that the
A-genus of a spin manifold with non-trivial 51-action vanishes.

Theorem 4.7 (Dessai, Hohn). Let M be a spin manifold of dimension
n — Ak with vanishing first Pontryagin class pi(M). If M admits a non-
trivial S3-action, then its Witten genus (f>w(M) is zero.

The Witten genus of complete intersections was calculated by Landweber
and Stong (see [HBJ], the last Example in section 6.3). Their result is:

Theorem 4.8 (Landweber-Stong). If Xn C CPn + r is a complete inter-
section with vanishing first Pontryagin class, then its Witten genus is zero.
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4.4 Towards a proof of the Conjecture
At first sight, one hope for proving the vanishing of the Witten genus for
a manifold M or - equivalently - the vanishing of all the numbers a\ is to
interpret the latter as indices of 'twisted' Dirac operators.

4.9. Twisted Dirac operators Let M be a spin manifold with spinor
bundle S and let E be a complex vector bundle over M equipped with a
connection. Then we can define an elliptic first order differential operator

DE: C°°{S ®E)—± C°°{S ® E)

by the same formula 1.2 as the Dirac operator; the only difference is that now
V is the product connection on S ® E induced by the usual connection on S
and the given connection on E. The operator D^is called the Dirac operator
twisted by E. There is a Bochner-Lichnerowicz-Weitzenbock formula for DE
(cf. [LaM, Ch. II, Thm. 8.17]) of the form

where 9\E: S ® E -» S ® E is a vector bundle homomorphism determined
by the curvature tensor of the connection on E.

As in the untwisted case, we denote by D%: C°°(S+®E) —> C°°(S-<g>E)
the restriction of DE- According to the Atiyah-Singer Index Theorem (cf.
[LaM, Ch. Ill, Thm. 13.10])

indexes) = (A(TM)ch(E), [M]).

Coming back to the case of interest to us, we note that for a spin manifold
M we have a\ — index (£)#,). Moreover, since R\ is build from symmetric
powers of TMc, the Levi-Civita connection on TM induces a connection on
Ri. The curvature term %KRl can then (at least in principle) be expressed in
terms of the curvature tensor of M. One might hope to prove the conjectured
vanishing of a\ by arguing that Ric > 0 implies that F = | + 9KRl is a positive
endomorphism of each fiber of S ® Ri (i.e., (Fv,v) > 0 for each non-zero
v G S ® i?/), which by the same argument as in the proof of Lichnerowicz'
Theorem would imply the vanishing of D^).

Alas, this strategy can't work, since nowhere in this line of argument did
we use the assumption y(M) = 0, without which the conjecture is false as
we've seen in Remark 4.5.3.

4.5 Relation with the loop space
What we have said so far in this lecture is bound to appear quite mysterious,
and the reader might have wondered about some of the following questions:
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(i) Where does the A-genus come from?

(ii) Why the assumption f (M) = 0?

(iii) Even if the conjecture happens to hold for homogeneous spaces and
complete intersections, is there some heuristic argument that should
let us expect it to be true in general?

Thinking of the conjecture as analoguous to Lichnerowicz' Theorem, let
us imagine we go back in time to before Lichnerowicz proved his result, but
after Hirzebruch defined the A-genus, say sometime in the late fifties. Imag-
ine being lectured to about the definition of the A-genus (as in our first
lecture, cf. 1.11), and being presented with the conjecture that the A-genus
vanishes for manifolds with ^ ( M ) = 0 which admit a positive scalar cur-
vature metric. As supporting evidence for this 'conjecture' it is observed
that it is true for homogeneous spaces and complete intersections. Then the
following questions might come to mind:

(i') Where does the Witten genus come from?

(ii') Why the assumption w2(M) = 0?

(iii') Even if the conjecture happens to hold for homogeneous spaces and
complete intersections, is there some heuristic argument that should
let us expect it to be true in general?

Questions (i') and (ii') are basically answered by the construction of the
Dirac operator by Atiyah and Singer: the condition W2(M) = 0 is needed to
construct the spinor bundle M and hence the Dirac operator which acts on
the sections of this bundle. The index of the Dirac operator is the A-genus.
Similarly, the questions (i) and (ii) are essentially answered by Witten's con-
struction of the 'Dirac operator' on the free loop space LM consisting of all
'loops' 7: 5 1 —>• M: the condition y ( M ) = 0 is needed to construct the
'spinor bundle' over LM, on whose sections the 'Dirac operator' DLM acts.
The 51-equivariant index of DLM can be identified with the Witten genus of
M. Unfortunately, Witten's considerations in [Wi] with regard to DLM axe
very much on a formal/heuristic level and to date there is no mathematically
rigorous construction of DLM (except for homogeneous spaces, as we discuss
below). In fact, Witten does not discuss the question of how to construct
DLM, but rather assumes it has been constructed, that its 51-equivariant
index can be defined, and that the fixed point formula which expresses the
equivariant index of an elliptic differential operator on a finite dimensional
compact manifold continues to hold for the infinite dimensional manifold
LM.
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4.10. Digression on the fixed point formula. Let M be a spin man-
ifold of dimension n = 4k, on which S1 acts by isometries. We further
assume that the S1 -action is compatible with the spin structure in the sense
that the induced S^-action on the oriented frame bundle S0(M) lifts to
an 51-action on the double covering Spin(M) —± S0(M) given by the spin
structure. The induced action on C°°(S) comutes with the Dirac operator
D; in particular, kerD+ and cokerD+ are representation of 51,and we define
the S1-equivariant index

index51 (D+) = J ^ (dim [ker D+]i - dim [coker D+}t) q\

where for any representation of 51 , we denote by V\ C V is the subspace
where z £ S1 acts by multiplication by zl.

According to the Fixed Point Formula, also refered to as the equivariant
Atiyah-Singer Index Theorem, the equivariant index can be computed in
terms of the fixed point set of the 51-action and the equivariant normal
bundle of the fixed point set. To describe the explicit formula, let F be
a component of the fixed point set. Then S1 acts on the normal bundle
N —> F, and the real vector bundle N can be written uniquely in the form
N — (Bj>0 N\, where JVj —> F is a complex vector bundle over F, on which
z G S1 acts by multiplication by zl. Then

index51 (D) = ^±(A(TF)ch I(g)(A^^^)1/2^^ J , [F]),

J
where rii = dime A ,̂ and we sum over the connected components of the fixed
point set. The determination of the sign for each component is quite involved
and we refer to Atiyah-Bott for details.

4.11. Witten's 'Index Theorem' for the Dirac operator on the loop
space [Wi], [HBJ, §6.1] Now we will 'apply' the Fixed Point Formula to
the Dirac operator on the free loop space LM of a manifold M, equipped with
the 51-action given by rotating the parametrization of the loops. It should be
stressed that this is a 'formal' calculation, since neither has a Dirac operator
on LM be constructed, nor is the Fixed Point Formula a priory valid when
applied to an infinite dimensional manifold like the free loop space.

We note that the fixed point set of the S^-action on LM consists of the
constant loops. Moreover, if 7 is a constant loop, say j(t) — x0 G M for
all t G [0,1], then the tangent space T7LM consists of all loops {s: [0,1] —>
TX0M I 7(0) = 7(1)}. Such a loop s has a Fourier decomposition

s(t) = — + ]P(a/ cos 27rlt + bi sin 2nlt) with ahbt G TXoM.
l 0
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This implies that we have an isomorphism

s TXnM

given by sending a loop s to its Fourier components (thinking of a\ + ibi &s
an element of the l-th copy of TXoMC = TXoM <g>R C). It is easy to check
(cf. [HBJ, §6.1]) that with this identification z G S1 acts trivially on TXoM
and by multiplication by zl on the /-th copy of TXoM<c- This shows that the
normal bundle N of the fixed point set M C LM decomposes equivariantly
as N = 0jiVi, where Nt = TMc. It follows that (An'^JVi)1/2 = q%, since
AnTMc is the complexification of AnTM, which is trivial since M is assumed
orientable. After pulling out all these factors we obtain

index31 (DLM) = ( n ^ l (A(TM)chl(g)Sqi(TMc)\ ,[M]>. (4.1)

To the earthbound eyes of a mathematician, the factor

< oo \

appears to make no sense. However a physicist, used to dealing with ugly
infinities showing up when trying to sum certain series, would proceed to
'regularize' the sum X]^i ^ by considering the Riemann ^-function £(s) =
YMII l~s which converges to a holomorphic function if the real part of the
complex number s is sufficiently large. Then this function can be extended
to a meromorphic function ((s) for s G C. It turns out that £(s) has no pole
at s — — 1, and C(~l) = ~~i~2- Note that if we formally substitute — 1 for s in
the sum defining ((s) for s with large real part, we obtain YMII h ^his is the
motivation behind considering — ̂  as the 'regularized' value of this sum.

We recall from Definition 4.4 that

(ATM)ch((g)Sqi(TMc)j,lM}).

Comparison with formula 4.1 shows that

^m (4.2)

where rj(q) = q1/24 Yl^iO- ~~ Ql) ^s Dedekind's 77-function.

This Index 'Theorem' of Witten shows that heuristically the Witten genus
should be thought of as the equivariant index of the Dirac operator
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on the free loop space LM. As an optimist, one might believe that it should
be possible to imitate the argument used in the proof of Lichnerowicz' The-
orem 1.10. In other words, the hope is to prove a 'Bochner-Lichnerowicz-
Weitzenbock Formula' for DLM which implies that if M has positive Ricci
curvature, then DLM is positive which in conjunction with Witten's 'Index
Theorem' (Formula 4.2) would imply the vanishing of the Witten genus for
manifolds with ^ ( M ) = 0 and Ric > 0.

In analogy with the finite dimensional case, one might suspect that DLM

is invertible if the scalar curvature of LM is positive, and might hope that the
scalar curvature of LM at a loop 7 is given by integrating the Ricci curvature
Ric(j) applied to the tangent vector 7 to the loop 7 over S1. However, this is
too naive for various reasons: first, DLM is more analoguous to Dirac operator
associated to a Spmc-structure than the Dirac operator of a spin manifold,
which produces an extra term in the Weitzenbock formula. Secondly, there
are many possible Riemannian metrics on LM induced by a fixed Riemannian
metric on M; for the simplest one (the L2-metric), the sectional curvature
of the loop space is easy to calculate, but the sum describing the scalar
curvature is divergent. For the other 'Sobolev-metrics', it seems that the
(very complicated) expression for the scalar curvature of LM depends not
only on the curvature tensor along 7, but also its covariant derivative, thus
making it seem unlikely to be able to prove positivity when given only control
over the Ricci tensor (but not its derivatives).

An interesting test case for this line of argument was provided by the
recent construction of a 'Dirac operator' DLM for the loop space of a ho-
mogeneous space M = G/H of a compact semi-simple Lie group G by
G. Landweber [?]. Of course, we know that Conjecture 4.3 is true for homo-
geneous spaces by Theorem 4.7; however, with the proposed line of argument,
not just the index of D\M, but the kernel of DLM should be trivial. This is
indeed the case for Landweber's operator.
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