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Lecture 4
The focus of this lecture is Borel's Conjecture for closed non-positively curved Riemannian
manifolds of dimension ^ 3,4. It is an immediate consequence of the following result "TRT".

Topological Rigidity Theorem. (Farrell and Jones) Let Mm be a closed non-positively
curved Riemannian manifold. Then the homotopy-topological structure set S(Mm xW^d)
contains only one element when m + n > 5.

Remark. TRT was proven for Tm (m > 5) by Wall and independently by Hsiang-Shaneson
(1969). And it was proven for all closed flat Riemannian manifolds Mm (m > 5) by Farrell-
Hsiang (1983).

Corollary. Let f : Nm —> Mm be a homotopy equivalence between closed manifolds where
m / 3 , 4 . If Mm is a non-positively curved Riemannian manifold, then f is homotopic to a
homeomorphism.

Proof. This result is classical when m = 1 or 2. When m > 5 set n = 0 in TRT to
conclude that N and M are /i-cobordant and hence homeomorphic by the s-cobordism since
Wh(7TiM) — 0 because of the Vanishing Theorem. •

Remark 1. Gabai has recently shown that the Borel Conjecture for closed hyperbolic 3-
manifolds is equivalent to the Poincare Conjecture.

Remark 2. The Borel Conjecture for closed non-positively curved 4-manifolds M4 is an
interesting open problem which is perhaps more accessible than the 3-dimensional case. The
5-dimensional s-cobordism Theorem of Freedman and Quinn combined with TRT shows it
is true when M4 is a closed flat Riemannian manifold.

We now discuss the proof of the TRT. Throughout this lecture Mm denotes a closed
(connected) non-positively curved m-dimensional Riemannian manifold. We also keep the
notation from our last lecture; in particular

M is the universal cover of M;

T =7ri(M);

av is the geodesic with a^(0) = v.

And we make the simplifying assumption that Mm is orientable so that our discussion-is as
transparent as possible. Note there are the following two identifications since Wh(T) = 0:

Ls
k(T) = Lk(T) and

Ss(MmxBn,d) =

where Ss( ) denotes the simple homotopy-topological structure set.
The following result, used to reduce TRT to a special case, is a consequence of the

codimension-one splitting theorems mentioned in my first lecture.

Lemma 0. S(Mm xDn , d) can be identified with a subset ofS(MmxTn) providedm+n > 5;
and S(Mm) with a subset of S(Mm x S1) provided m > 5.
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Remark. Note that SS(N x [0,1],<9) maps to SS(N x S1) by sending the structure

/ : (W, d0W II d{W) -+ (N x [0,1], N x 0 II N x 1)

to the structure
W-+N xS1

where W results from W by glueing d$W to d\W via the composite homeomorphism
{f\diw)~l ° (f\dow)- The first identification in Lemma 0 is a n-fold elaboration of this
map using that W1 = D71"1 x [0,1]. The second identification sends the structure f : N -* M
to the structure / x id : N x S1 -» M x 51; which is shown in Lemma 3 (below) to be monic.

Lemma 0 together with the fact that Mm x Tn is also non-positively curved reduces the
TRT to the special case where n = 0 and m is an odd integer.

Note that the main result of our second lecture, together with the (semi)-periodicity of
the surgery exact sequence, yields the following short exact sequence of pointed sets

0 -> [Mm x [0,1], 3; G/Top] - ^ Lm+1(T) -> S(Mm) -> 0.

Remark. The techniques developed in this lecture (and the last) give an independent proof
(via the focal transfer and the geodesic flow) that the surgery sequence is short exact for
non-positively curved closed manifolds Mm. This alternate proof does not use the (semi)-
periodicity of the surgery sequence.

Hence it remains to show that a is an epimorphism; which is Step 2 in the program
from Lecture 1 for replacing a homotopy equivalence / : N —> M with a homeomorphism.
This is the most complicated step in the program and was the last to be solved. The
argument accomplishing it is modeled on the one used to solve Step 3 given in the last
lecture. The s-cobordism theorem was used in that argument. It's surgery analogue is
the algebraic classification of normal cobordisms over M due to Wall. Given a group TT,
Wall algebraically defined a sequence of abelian groups Ln{it) with I/n+4(7r) = Ln(7r) for all
n e Z. He then showed that there is a natural bijection between the equivalence classes
of normal cobordisms W over Mm x IP"1 and Lm+n(T) with the trivial normal cobordism
corresponding to 0. Denote this correspondence by

Wall also proved the following product formula.
Let iV4/c be a simply connected closed oriented manifold and W be a normal cobordism

over Mm x D71"1. Form a new normal cobordism W x N over Mm x D71"1 x Â 4^ by producting
,W with JV, then

u(W xN)= Index(N)uj{W).

Remark. Anderson's Theorem is an analogue of this result where x(^) replaces Index(Af).

This product formula has the following geometric consequence.

Proposition. Let Kik be a closed oriented simply connected manifold with Index(K) = 1.
Let f : N —> M be a homotopy equivalence where N is also a closed manifold. If

fx id :NxK->MxK

is homotopic to a homeomorphism, then f is also homotopic to a homeomorphism.



Sketch of Proof. Arguing as in the proof of the main result of Lecture 2, we compare the
surgery exact sequence for S(M) with that for S(M x K). If x G S(M) denotes the
homotopy-topological structure / : N —> M, it goes to 0 in S(M x K). And since the
map [M, G/Top] —> [M x X, G/Top] is monic, x is the image of an element x G Lm+1(F)
which maps to an element x G Lm+i+4fc(r) by producting the normal cobordism with K4k.
But the image of x in S(M x K) is represented by

and is hence zero. Therefore x is in the image of the Quinn assembly map in the surgery
sequence for M x K. But this map factors through the assembly map

[AT x O4*+1,d;G/Top] -> Lm+Ak+1(T)

which is periodic of period 4fc with x going to x. This factoring can be seen using Quinn's
A-set description of the surgery sequence or Ranicki's algebraic formulation of it. (See Jones'
3rd lecture and Ranicki's 2nd lecture.) Hence x is in the image of <r, and therefore x — 0. •

The complex project ive plane CP2 is the natural candidate for K when applying this
Proposition. It is important for this purpose to have the following alternate description
of CP 2 . Let C2 denote the cyclic group of order 2. It has a natural action on Sn x Sn

determined by the involution (x,y) »->• (y,x) where x,y G Sn. Denote the orbit space of this
action by Fn; i.e.

Fn = Sn x Sn/C2.

Lemma 1. CP2 = F2.

Proof Let sl2 (C) be the set of all 2 x 2 matrices with complex number entries and trace
zero. Since 5/2 (C) is a 3-dimensional C-vector space, CP2 can be identified as the set of all
equivalence classes [A] of non-zero matrices A G 5/2 (C) where A is equivalent to B iff A — zB
for some z G C. The characteristic polynomial of A G 5/2 (C) is A2 + det(A). Consequently,
A has two distinct 1-dimensional eigenspaces if det(A) ^ 0, and a single 1-dimensional
eigenspace if det(A) = 0 and A =̂  0. Also, A and zA have the same eigenspaces provided
z 7̂  0. These eigenspaces correspond to points in S2 under the identification S2 — CP1 . The
assignment

[A] H-> the eigenspaces of A

determines a homeomorphism of CP2 to F2. •

Remark . The TRT was first proved in the case where Mm is a hyperbolic 3-dimensional
manifold by making use of Lemma 1. It was then realized that the general result for m odd
could be proven using Fm_i once one could handle the technical complications arising from
the fact that F^ is not a manifold when k > 2. The following result is used in overcoming
these complications. It shows that Fk is "very close" to being a manifold of index equal to
1 when k is even.

Lemma 2. Let n be an even positive integer. Then Fn has the following properties.

1. Fn is orientable 2n-dimensional Z[^]-homology manifold.
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2. Fn is simply connected

3. Hi(Fn) = { Z2 if n < i < 2n and i is even

0 otherwise

4- Hl(Fn) — \7J2 if n + 2 < i < 2n and i is odd

0 otherwise

5. The cup product pairing

Hn(Fn)®Hn(Fn)^H2n(Fn)

is unimodular and its signature is either 1 or —1.

Proof. There is a natural stratification of Fn consisting of two strata B and T. The bottom
stratum B consists of all (agreeing) unordered pairs (u, v) where u = v\ while the top stratum
T consists of all (disagreeing) pairs (u,v) where u / v.

Note that B can be identified with Sn. Also real projective n-space RP71 can be identified
with the set of all unordered pairs (u, —u) in Fn. It is seen that Fn is the union of "tubular
neighborhoods" of Sn and RP71 intersecting in their boundaries. The first tubular neighbor-
hood is a bundle over Sn with fiber the cone on RP71"1. The second tubular neighborhood
is a bundle over RP71 with fiber Dn. Furthermore, they intersect in the total space of the
RP71"1-bundle associated to the tangent bundle of Sn. This description of Fn can be used
to verify Lemma 2. •

Caveat. The fundamental class of B represents twice a generator of Hn(Fn). On the other
hand, if we fix a point yo e 5 n , then the map x H->> (x, yo) is an embedding of Sn in Fn which
represents a generator of Hn(Fn).

Let / : N -> M represent an element in S(M). Then / x id : iV x S1 —>• MxS1 represents
an element in S{M x Sl). This defines a map S(M) H* S(M X S1).

Lemma 3. The map S(M) >-> S(M x S1) is monic.

Proof. Suppose / x id is homotopic to a homeomorphism g via a homotopy

h : TV x S1 x [0,1] -+ M x Sl x [0,1]

where h\^xsixo — / x id and h\^xsixi — 9- By the codimension-one splitting theorems
mentioned in my first lecture, we can split h along M x 1 x [0,1].



X

Figure 1
That is h is homotopic rel d to a map k such that

k\w : W -» M x 1 x [0,1]

is a homotopy equivalence where

x [0,1]).

We use that Wh(T) = 0 to get this. Now note that W is an /i-cobordism between M and
N. But W is a cylinder; again since Wh(T) = 0. D

Remark. In order to prove the TRT, it suffices to show that / x id is homotopic to a
homeomorphism because of Lemma 3.

We now formulate a variant of the Proposition. This variant is used in showing that

/ x id : N x S1 -> M x S1

is homotopic to a homeomorphism. There is a bundle

p : TM -> M x S1

whose fiber over a point (x, 6) G M x Sl consists of all unordered pairs of unit length vectors
(u, v) tangent to M x S1 at (x, 0) and satisfying the following two constraints.

1. If u ^ v, then both u and v are tangent to the level surface M x 9.

2. If u = v, then the projection u of u onto TQS1 points in the counterclockwise direction
(or is 0).

The total space TM is stratified with three strata:

B = {(u,u)\u = 0}
A = {(u,u) \u^0}
J = {(u,v) | u^v}.
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Note that B is the bottom stratum and that TM — B is the union of the two open sets A
(auxiliary stratum) and T (top stratum). The restriction of p to each stratum is a sub-bundle.
Let Tx, Bx, Ax and Tx denote the fibers of these bundles over x G M x 51 ; i.e.,

Tx = P~\x), Bx = Txn B, Ax = Tx n A, Tx = Tx n T.

Note that 5X = 5 m " 1 , 4 = D m , T , U B x = Fm_i and the bundle p : B -> M x S1 is the
pullback of the tangent unit sphere bundle of M under the projection M x S1 —> M.

The space Fm_i will play the role of the index one manifold K in our variant of the
Proposition. Since it is unfortunately not a manifold when m > 3, we need to introduce the
auxiliary fibers Ax. Hence the total fiber is homeomorphic to Fm_\ UDm where the subspace
B in Fm_i is identified with Sm~l = dW1. Let

denote the pullback of
TM -> M x S1

along / x id : N x S1 -> M x S1 and let

f : T f ^ lM

be the induced bundle map. Note that the stratification of TM induces one on Tf and that
/ preserves strata.

We say that / is admissibly homotopic to a split map provided there exists a homotopy
ht, t € [0,1], with h0 — f and satisfying the following four conditions.

1. Each ht is strata preserving.

2. Over some closed "tubular neighborhood" A/o of B in B U T, each ht is a bundle map;
in particular, ht maps fibers homeomorphically to fibers.

3. There is a larger closed "tubular neighborhood" J\f\ of B in B U T such that h\ is a
homeomorphism over B U T — Int(A/i) and over B U A.

4. Let p : A/i —» M x S1 denote the composition of the two bundle projections A/i —» B
and B - ^ M x S 1 . Then there is a triangulation K for M x S1 such that hi is transverse
to p~1(o') for each simplex a of K. Furthermore

is a homotopy equivalence.

Remark. Conditions 3 and 4 should be hueristically replaced by the simpler and stronger
condition that "hi is a homeomorphism". But for technical reasons we need to work instead
with conditions 3 and 4.

The variant of the Proposition needed to prove the TRT is the following.

Proposition (*). The map f : N -^ M is homotopic to a homeomorphism provided f :
Tf -> TM is admissibly homotopic to a split map.
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The proof of Proposition (*) is basically an elaboration of the one sketched above for
Proposition. It in particular uses again Quinn's A-set approach to the surgery exact sequence
and generalizes Wall's product formula to the stratified setting above by using Lemma 2.

Proposition (*) is the surgery theory part of the proof of the TRT. The geometry of M
(in particular, its non-positive curvature) is used to show that the hypothesis of Proposition
(*) is satisfied; i.e, that / is admissibly homotopic to a split map. We now proceed to discuss
how this is done.

It is a consequence of several applications of both ordinary and foliated topological control
theory as discussed in Lowell Jones' lectures. Let g : M —> N be a (strong) homotopy inverse
to / and let ht and kt be (strong) homotopies of the composite fog to id^ and go f to id AT,
respectively. Strong means base point preserving. It implies the following useful property.

Property (*). For each point xGiV, the two paths

t^ht(f{x)) and t

are homotopic rel end points.

Figure 2
We may assume that N is a smooth manifold by using Kirby-Siebenmann smoothing

theory. For this we need only observe that the stable topological tangent bundle of TV
has a real vector bundle structure since it is the pull back of TM stabilized via / because
/ : M —» N maps to 0 in [M, G/Top]. Therefore we may also assume that / and g are
smooth maps and that both ht and kt are smooth homotopies.

The crucial point is to construct "good" transfers of the map g and the homotopies ht,
kt to a map g : TM —> Tf and homotopies hu kt from / o p to idjrM, and g o f to idjr/5

respectively, so that control theory can be applied to admissibly homotope / to a split map.
We proceed to describe what a good transfer is and then indicate how to construct one.
The first requirement is that p, ht and kt be bundle maps covering g x id, ht x id, kt x id,
respectively. (Here id is the identity map on S1.) Second, each map p, ht and kt should
preserve strata. Finally, it is necessary that a certain family T of paths determined by the
lift is sufficiently "shrinkable". A path a : [0,1] -* TM is in T if either

a{t) — ht(oj) for some u G TM, or

a(t) = f(kt(u))) for some LJ G Tf.
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(The family T is called the tracks of the transfer.) Note that each track is contained in a
single stratum of TM.

We construct good transfers by constructing their tacks T. Since this is easier to explain
when M is negatively curved, we now make this assumption. The construction of T uses
(mainly) the asymptotic transfer of paths discussed in lecture 3. (The general case uses the
focal transfer which, although more elementary, requires greater technical details.) Let 7i
be the tracks determined by / , #, ht and kt; i.e. a curve a : [0,1] —> M is in 71 if for all
t G [0,1] either

a(t) — ht(x) for some x G M; or

a(t) = f(kt(y)) for some y G N.

Given 7 G 71 and to = (u,v) G TM with foot (7(0), 9) G M x 5 1 , we associate a lift CJJ of
7 to a path in TM covering 70 which is the path in M x S1 defined by

When a; G B U T, uj is defined by

where uje and vje are the asymptotic transfers defined in Lecture 3. When uo G A (and
hence u = v) cuj is defined by

where 1/(70, d) is the focal transfer with focal length d and chosen so that d —>• 00 as the
angle between i£ and the level surface M x 6 approaches 0. Using that the asymptotic and
focal transfers both satisfy properties 1-3 of lecture 3 and that property (*) is satisfied by #,
/ , ht, kt] there is a natural construction of a good transfer g, ht, kt whose tracks

T = {uj I 7 G 71, LJ G ̂ M } .

We now address the problem of "shrinking" the paths cj^y G T. Since the geodesic flow gl

is defined on AUB, applying it to uj gives a method for making 0*7 skinny when a; G AUB;
i.e. gl o (a;7) is (/?, e)-controlled with respect to the 1-dimensional foliation of the manifold
A U B by the flow lines of the geodesic flow.

But the situation is different when u = (u, v) G T. We are tempted then to "flow a;" in
the direction of its arithmetic average y^. But this does nothing when u — —v. Fortunately
a different method can be used on the top stratum T. But to describe it we need some more
geometric preliminaries. We start by defining the core P of T by

P= {(u,-u) G T}.

The core is naturally identified with the total space of the projective line bundle associated
to (TM) x Sl. In particular there is a natural 2-sheeted covering space

B - (SM) x S 1 ^ (RPm~lM) x S1 = P



and the image of the geodesic line foliation of B gives P a canonical 1-dimensional foliation
denoted by Q. The top strata T also has an asymptotic foliation A by ra-dimensional
leaves where each leaf of A is an asymptoty class of elements in T. We say that elements
cji = (u\, vi), UJ2 — (u2, v2) G T lying over M x 0 (for some 0 G Sl) are asymptotic provided
(up t o in t e rchang ing ^ i a n d ^ i ) the re exist po in t s x,y G M t oge the r w i t h vectors U\^V\ G
S(xfl)(MxSl) and u2,v2 G S(Vio)(MxSl) lying over Ui,Vi,u2,v2, respectively, and satisfying:

u\ is asymptotic to u2, and

v\ is asymptotic to v2.

Note that the restriction of the bundle map

T —^ M xS1 —^ M

to any leaf L of .4 is a covering space. This puts a flat structure on this bundle. And each leaf
L of A inherits a negatively curved Riemannian metric from M via this covering projection.
We call it the natural metric and note that it is compatible with the leaf topology on L.

The foliation A intersects the core P in its Q foliation; i.e., there is a bijective correspon-
dence between the leaves of A and Q given by

L^inP, L eA.

Also L n P is a closed subset of L in its leaf topology and is a (simple) geodesic of its natural
metric. This geodesic P Pi L is called the marking of L. Furthermore, the inclusion map of
P D L into L is a homotopy equivalence when L is given the leaf topology and P n L is given
the subspace of L topology.

Now there is a bundle with fiber E m - 1

defined as follows.
For each u G T let L G A be the leaf containing 00 and g be its marking. Then p(u)

denotes the (unique) closest point to uo on g measured inside L.

1

Figure 3
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When u ^ P, there is a unique geodesic segment g^ in L connecting u to p(co). The unit
length vector tangent to g^ at u which points towards p(cu) is denoted by W(CJ). This defines
a continuous vector field on T — P.

We denote the length of g£ by d{u). This extends to a continuous function d : T l J B ^
[0, +00] when we set

f i fo;GP

+00 if a; 6 1

There is also a bundle with fiber the open cone in RP™"1

7 7 : ( T - P ) U B ^ B = SM x S1

defined by

Jo; if a; G
if a; G T - P.

Remark. We think of 77(0;) as the asymptotic average of the two vectors u and v where
u) = (uj v) as opposed to their arithmetic average \{u + v).

The vector field w( ) integrates to give an incomplete radial flow rl on T. In particular
r*(a;) is only defined for t G [0, d(w)]. And there is the following important relation between
rl and gl.

Intertwining Equation. 7/(r*(o;)) = g^r/fa)) for all a; G T - P and t G [0, d(u)].

We associate to each closed interval J C [0, +00] a compact subspace Wj of TUB defined
by

Wj = d~\J).

If +00 ^ J, then Wj is a codimension-0 submanifold of T with

\d-\b)

Furthermore, we have the following:

1. If 0 G J and +00 g J, then p : Wj -» P is a fiber bundle with fiber Dm.

2. If +00 G J and 0 ^ J, then 77 : Wj -^ B is a fiber bundle with fiber the (closed) cone
on

3. If neither 0 nor +00 is in J, then rj x d : Wj —>• B x J is a fiber bundle with fiber

Now fix a closed interval / C (0, +00) containing 1 in its interior, and a very large positive
real number a together with a second closed interval R which contains +00 and is disjoint
from al. Then [0, +00) — (Int(i?) U Int(<r/)) is the disjoint union of 2 closed intervals A and
B denoted so that 0 G A.
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Figure 4
Fix another closed interval / ' C (0, +oo) which contains / in its interior but is slightly

larger and define a homeomorphism

using the radial flow, by the formula

where t = d(oj) — ^d(u).
Note that <f> becomes arbitrarily strongly contracting as we let a —>• +oo. In particular

if uj G T with u) G WGj, then (/> o uj is uniformly pointwise e^-controlled in Wj with
lim ea = 0.

Therefore we can use the ordinary control theorem to homotope / over Waj (i.e. homotope
f\f-\(W 0, in a controlled way, to a homeomorphism provided a is large enough. This begins

our construction of the admissible homotopy of / to a split map. And it gives a slightly
different collection of tracks 7i. These new tracks differ only for some of those 7 G 71 which
start in Wai. And for them (^07 is pointwise close to ^ 0 7 where 7 G T is the corresponding
track.

We next extend this homotopy to a homotopy of / over WA to a homeomorphism. This
is done by using the fibered and foliated version of the control theorem with respect to the

.fiber bundle
p : WA -» P

and the foliation Q of P. It is applicable since the fiber of p is Dm and the structure set
S(Wn x t f ^ ) contains only one element for each k > 0. We need only check the control
condition. For this, note that there exists a positive number (3 such that

p o UJJ

is (/?, 0)-controlled for each uo^ G T such that uo G A. And hence the tracks of 71 which start
in A are (/3 + 6, e)-controlled where e —> 0 as a —>• 00.
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Independent of these two steps, we use the foliated control theorem with respect to the
foliation of B U A by the orbits of the geodesic flow and the control map

to homotope / over B U A to a homeomorphism. And then use the covering homotopy
theorem to extend this to a homotopy of bundle maps over WR relative to the fiber bundle

77 : WR -» B

to a homeomorphism over WR.
Let r : B -> [0,1] denote the (unique) increasing linear homeomorphism, and fix a

continuous function <$> : B -> [a, +00) such that

for all x close to B n R

Consider the fiber bundle

where £ is the composite

Finally, we use a foliated and fibered version of the control theorem with respect to the fiber
bundle £ : WB —» B x [0,1] and the foliation of B x [0,1] by the flow lines of the geodesic
flow in order to extend over WB the homotopy defined in steps 1, 2 and 3 given above. And
thus complete the construction of an admissible homotopy of / to a split map. The control
condition is met provided a is sufficiently large and R is contained in a sufficiently small
neighborhood of +00. The intertwining equation is used to see this. But there is one extra
point to observe. The fiber of £ is RP771'1 and S(RPm~l x D*, d) usually contains more than
a single element. Consequently, the control theorem only yields the weaker conclusion that
the result of the homotopy is a split map rather than a homeomorphism.


