united nations educational, scientific and cultural organization

international atomic energy agency the **abdus salam**

international centre for theoretical physics

SMR1312/13

School on High-Dimensional Manifold Topology

(21 May - 8 June 2001)

The Borel Conjecture for non-positively curved manifolds

F.T. Farrell

Binghamton University Department of Mathematical Sciences Binghamton, New York 13902-6000 U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

The Borel Conjecture for non-positively curved manifolds

F.T. $Farrell^{\dagger}$

[†] Binghamton University, Department of Mathematical Sciences, Binghamton, New York 13902-6000, USA

Lecture given at the: School on High Dimensional Manifold Topology, Trieste 21 May - 8 June 2001

LNS

Lecture 4

The focus of this lecture is Borel's Conjecture for closed non-positively curved Riemannian manifolds of dimension $\neq 3, 4$. It is an immediate consequence of the following result "TRT".

Topological Rigidity Theorem. (Farrell and Jones) Let M^m be a closed non-positively curved Riemannian manifold. Then the homotopy-topological structure set $S(M^m \times \mathbb{D}^n, \partial)$ contains only one element when $m + n \geq 5$.

Remark. TRT was proven for T^m $(m \ge 5)$ by Wall and independently by Hsiang-Shaneson (1969). And it was proven for all closed flat Riemannian manifolds M^m $(m \ge 5)$ by Farrell-Hsiang (1983).

Corollary. Let $f : N^m \to M^m$ be a homotopy equivalence between closed manifolds where $m \neq 3, 4$. If M^m is a non-positively curved Riemannian manifold, then f is homotopic to a homeomorphism.

Proof. This result is classical when m = 1 or 2. When $m \ge 5$ set n = 0 in TRT to conclude that N and M are h-cobordant and hence homeomorphic by the s-cobordism since $Wh(\pi_1 M) = 0$ because of the Vanishing Theorem.

Remark 1. Gabai has recently shown that the Borel Conjecture for closed hyperbolic 3manifolds is equivalent to the Poincaré Conjecture.

Remark 2. The Borel Conjecture for closed non-positively curved 4-manifolds M^4 is an interesting open problem which is perhaps more accessible than the 3-dimensional case. The 5-dimensional *s*-cobordism Theorem of Freedman and Quinn combined with TRT shows it is true when M^4 is a closed flat Riemannian manifold.

We now discuss the proof of the TRT. Throughout this lecture M^m denotes a closed (connected) non-positively curved *m*-dimensional Riemannian manifold. We also keep the notation from our last lecture; in particular

$$\begin{array}{ll} \bar{M} & \text{ is the universal cover of } M; \\ \Gamma & = \pi_1(M); \\ \alpha_v & \text{ is the geodesic with } \dot{\alpha}_v(0) = v. \end{array}$$

And we make the simplifying assumption that M^m is orientable so that our discussion is as transparent as possible. Note there are the following two identifications since $Wh(\Gamma) = 0$:

$$L_k^s(\Gamma) = L_k(\Gamma) \text{ and} \ \mathcal{S}^s(M^m imes \mathbb{D}^n, \partial) = \mathcal{S}(M^m imes \mathbb{D}^n, \partial)$$

where $S^{s}()$ denotes the simple homotopy-topological structure set.

The following result, used to reduce TRT to a special case, is a consequence of the codimension-one splitting theorems mentioned in my first lecture.

Lemma 0. $\mathcal{S}(M^m \times \mathbb{D}^n, \partial)$ can be identified with a subset of $\mathcal{S}(M^m \times T^n)$ provided $m+n \geq 5$; and $\mathcal{S}(M^m)$ with a subset of $\mathcal{S}(M^m \times S^1)$ provided $m \geq 5$. **Remark.** Note that $\mathcal{S}^s(N \times [0,1], \partial)$ maps to $\mathcal{S}^s(N \times S^1)$ by sending the structure

 $f: (W, \partial_0 W \amalg \partial_1 W) \to (N \times [0, 1], N \times 0 \amalg N \times 1)$

to the structure

 $\mathcal{W} \to N \times S^1$

where \mathcal{W} results from W by glueing $\partial_0 W$ to $\partial_1 W$ via the composite homeomorphism $(f|_{\partial_1 W})^{-1} \circ (f|_{\partial_0 W})$. The first identification in Lemma 0 is a *n*-fold elaboration of this map using that $\mathbb{D}^n = \mathbb{D}^{n-1} \times [0, 1]$. The second identification sends the structure $f : N \to M$ to the structure $f \times \mathrm{id} : N \times S^1 \to M \times S^1$; which is shown in Lemma 3 (below) to be monic.

Lemma 0 together with the fact that $M^m \times T^n$ is also non-positively curved reduces the TRT to the special case where n = 0 and m is an odd integer.

Note that the main result of our second lecture, together with the (semi)-periodicity of the surgery exact sequence, yields the following short exact sequence of pointed sets

$$0 \to [M^m \times [0,1], \partial; G/\text{Top}] \xrightarrow{\sigma} L_{m+1}(\Gamma) \to \mathcal{S}(M^m) \to 0$$

Remark. The techniques developed in this lecture (and the last) give an independent proof (via the focal transfer and the geodesic flow) that the surgery sequence is short exact for non-positively curved closed manifolds M^m . This alternate proof does not use the (semi)-periodicity of the surgery sequence.

Hence it remains to show that σ is an epimorphism; which is Step 2 in the program from Lecture 1 for replacing a homotopy equivalence $f: N \to M$ with a homeomorphism. This is the most complicated step in the program and was the last to be solved. The argument accomplishing it is modeled on the one used to solve Step 3 given in the last lecture. The *s*-cobordism theorem was used in that argument. It's surgery analogue is the algebraic classification of normal cobordisms over M due to Wall. Given a group π , Wall algebraically defined a sequence of abelian groups $L_n(\pi)$ with $L_{n+4}(\pi) = L_n(\pi)$ for all $n \in \mathbb{Z}$. He then showed that there is a natural bijection between the equivalence classes of normal cobordisms W over $M^m \times \mathbb{D}^{n-1}$ and $L_{m+n}(\Gamma)$ with the trivial normal cobordism corresponding to 0. Denote this correspondence by

$$W \mapsto \omega(W) \in L_{m+n}(\Gamma).$$

Wall also proved the following product formula.

Let N^{4k} be a simply connected closed oriented manifold and W be a normal cobordism over $M^m \times \mathbb{D}^{n-1}$. Form a new normal cobordism $W \times N$ over $M^m \times \mathbb{D}^{n-1} \times N^{4k}$ by producting W with N, then

$$\omega(W \times N) = \operatorname{Index}(N)\omega(W).$$

Remark. Anderson's Theorem is an analogue of this result where $\chi(N)$ replaces Index(N).

This product formula has the following geometric consequence.

Proposition. Let K^{4k} be a closed oriented simply connected manifold with Index(K) = 1. Let $f: N \to M$ be a homotopy equivalence where N is also a closed manifold. If

$$f \times \mathrm{id} : N \times K \to M \times K$$

is homotopic to a homeomorphism, then f is also homotopic to a homeomorphism.

Sketch of Proof. Arguing as in the proof of the main result of Lecture 2, we compare the surgery exact sequence for $\mathcal{S}(M)$ with that for $\mathcal{S}(M \times K)$. If $x \in \mathcal{S}(M)$ denotes the homotopy-topological structure $f : N \to M$, it goes to 0 in $\mathcal{S}(M \times K)$. And since the map $[M, G/\text{Top}] \to [M \times K, G/\text{Top}]$ is monic, x is the image of an element $\bar{x} \in L_{m+1}(\Gamma)$ which maps to an element $\hat{x} \in L_{m+1+4k}(\Gamma)$ by producting the normal cobordism with K^{4k} . But the image of \hat{x} in $\mathcal{S}(M \times K)$ is represented by

$$f \times \mathrm{id} : N \times K \to M \times K$$

and is hence zero. Therefore \hat{x} is in the image of the Quinn assembly map in the surgery sequence for $M \times K$. But this map factors through the assembly map

$$[M^m \times \mathbb{D}^{4k+1}, \partial; G/\text{Top}] \to L_{m+4k+1}(\Gamma)$$

which is periodic of period 4k with \bar{x} going to \hat{x} . This factoring can be seen using Quinn's Δ -set description of the surgery sequence or Ranicki's algebraic formulation of it. (See Jones' 3rd lecture and Ranicki's 2nd lecture.) Hence \bar{x} is in the image of σ , and therefore x = 0. \Box

The complex projective plane $\mathbb{C}P^2$ is the natural candidate for K when applying this Proposition. It is important for this purpose to have the following alternate description of $\mathbb{C}P^2$. Let C_2 denote the cyclic group of order 2. It has a natural action on $S^n \times S^n$ determined by the involution $(x, y) \mapsto (y, x)$ where $x, y \in S^n$. Denote the orbit space of this action by F_n ; i.e.

$$F_n = S^n \times S^n / C_2.$$

Lemma 1. $\mathbb{C}P^2 = F_2$.

Proof. Let $sl_2(\mathbb{C})$ be the set of all 2×2 matrices with complex number entries and trace zero. Since $sl_2(\mathbb{C})$ is a 3-dimensional \mathbb{C} -vector space, $\mathbb{C}P^2$ can be identified as the set of all equivalence classes [A] of non-zero matrices $A \in sl_2(\mathbb{C})$ where A is equivalent to B iff A = zBfor some $z \in \mathbb{C}$. The characteristic polynomial of $A \in sl_2(\mathbb{C})$ is $\lambda^2 + \det(A)$. Consequently, A has two distinct 1-dimensional eigenspaces if $\det(A) \neq 0$, and a single 1-dimensional eigenspace if $\det(A) = 0$ and $A \neq 0$. Also, A and zA have the same eigenspaces provided $z \neq 0$. These eigenspaces correspond to points in S^2 under the identification $S^2 = \mathbb{C}P^1$. The assignment

 $[A] \mapsto$ the eigenspaces of A

determines a homeomorphism of $\mathbb{C}P^2$ to F_2 .

Remark. The TRT was first proved in the case where M^m is a hyperbolic 3-dimensional manifold by making use of Lemma 1. It was then realized that the general result for m odd could be proven using F_{m-1} once one could handle the technical complications arising from the fact that F_k is not a manifold when k > 2. The following result is used in overcoming these complications. It shows that F_k is "very close" to being a manifold of index equal to 1 when k is even.

Lemma 2. Let n be an even positive integer. Then F_n has the following properties.

1. F_n is orientable 2n-dimensional $\mathbb{Z}[\frac{1}{2}]$ -homology manifold.

3.
$$H_i(F_n) = \begin{cases} \mathbb{Z} & \text{if } i = 0, n, 2n \\ \mathbb{Z}_2 & \text{if } n < i < 2n \text{ and } i \text{ is even} \\ 0 & \text{otherwise} \end{cases}$$

4.
$$H^{i}(F_{n}) = \begin{cases} \mathbb{Z} & \text{if } i = 0, n, 2n \\ \mathbb{Z}_{2} & \text{if } n + 2 < i < 2n \text{ and } i \text{ is odd} \\ 0 & \text{otherwise} \end{cases}$$

5. The cup product pairing

$$H^n(F_n) \otimes H^n(F_n) \to H^{2n}(F_n)$$

is unimodular and its signature is either 1 or -1.

Proof. There is a natural stratification of F_n consisting of two strata B and T. The bottom stratum B consists of all (agreeing) unordered pairs $\langle u, v \rangle$ where u = v; while the top stratum T consists of all (disagreeing) pairs $\langle u, v \rangle$ where $u \neq v$.

Note that B can be identified with S^n . Also real projective *n*-space $\mathbb{R}P^n$ can be identified with the set of all unordered pairs $\langle u, -u \rangle$ in F_n . It is seen that F_n is the union of "tubular neighborhoods" of S^n and $\mathbb{R}P^n$ intersecting in their boundaries. The first tubular neighborhood is a bundle over S^n with fiber the cone on $\mathbb{R}P^{n-1}$. The second tubular neighborhood is a bundle over $\mathbb{R}P^n$ with fiber \mathbb{D}^n . Furthermore, they intersect in the total space of the $\mathbb{R}P^{n-1}$ -bundle associated to the tangent bundle of S^n . This description of F_n can be used to verify Lemma 2.

Caveat. The fundamental class of B represents twice a generator of $H_n(F_n)$. On the other hand, if we fix a point $y_0 \in S^n$, then the map $x \mapsto \langle x, y_0 \rangle$ is an embedding of S^n in F_n which represents a generator of $H_n(F_n)$.

Let $f: N \to M$ represent an element in $\mathcal{S}(M)$. Then $f \times \mathrm{id} : N \times S^1 \to M \times S^1$ represents an element in $\mathcal{S}(M \times S^1)$. This defines a map $\mathcal{S}(M) \mapsto \mathcal{S}(M \times S^1)$.

Lemma 3. The map $\mathcal{S}(M) \mapsto \mathcal{S}(M \times S^1)$ is monic.

Proof. Suppose $f \times id$ is homotopic to a homeomorphism g via a homotopy

$$h: N \times S^1 \times [0,1] \to M \times S^1 \times [0,1]$$

where $h|_{N \times S^1 \times 0} = f \times \text{id}$ and $h|_{N \times S^1 \times 1} = g$. By the codimension-one splitting theorems mentioned in my first lecture, we can split h along $M \times 1 \times [0, 1]$.

Figure 1 That is h is homotopic rel ∂ to a map k such that

 $k|_W: W \to M \times 1 \times [0,1]$

is a homotopy equivalence where

$$W = k^{-1}(M \times 1 \times [0, 1]).$$

We use that $Wh(\Gamma) = 0$ to get this. Now note that W is an h-cobordism between M and N. But W is a cylinder; again since $Wh(\Gamma) = 0$.

Remark. In order to prove the TRT, it suffices to show that $f \times id$ is homotopic to a homeomorphism because of Lemma 3.

We now formulate a variant of the Proposition. This variant is used in showing that

$$f \times \mathrm{id} : N \times S^1 \to M \times S^1$$

is homotopic to a homeomorphism. There is a bundle

$$p:\mathcal{F}M\to M\times S^1$$

whose fiber over a point $(x, \theta) \in M \times S^1$ consists of all unordered pairs of unit length vectors $\langle u, v \rangle$ tangent to $M \times S^1$ at (x, θ) and satisfying the following two constraints.

1. If $u \neq v$, then both u and v are tangent to the level surface $M \times \theta$.

2. If u = v, then the projection \bar{u} of u onto $T_{\theta}S^1$ points in the counterclockwise direction (or is 0).

The total space $\mathcal{F}M$ is stratified with three strata:

$$\begin{split} \mathbb{B} &= \{ \langle u, u \rangle \mid \bar{u} = 0 \} \\ \mathbb{A} &= \{ \langle u, u \rangle \mid \bar{u} \neq 0 \} \\ \mathbb{T} &= \{ \langle u, v \rangle \mid u \neq v \}. \end{split}$$

Note that \mathbb{B} is the bottom stratum and that $\mathcal{F}M - \mathbb{B}$ is the union of the two open sets \mathbb{A} (auxiliary stratum) and \mathbb{T} (top stratum). The restriction of p to each stratum is a sub-bundle. Let \mathcal{F}_x , B_x , A_x and T_x denote the fibers of these bundles over $x \in M \times S^1$; i.e.,

$$\mathcal{F}_x = p^{-1}(x), \ B_x = \mathcal{F}_x \cap \mathbb{B}, \ A_x = \mathcal{F}_x \cap \mathbb{A}, \ T_x = \mathcal{F}_x \cap \mathbb{T}.$$

Note that $B_x = S^{m-1}$, $A_x = \mathbb{D}^m$, $T_x \cup B_x = F_{m-1}$ and the bundle $p : \mathbb{B} \to M \times S^1$ is the pullback of the tangent unit sphere bundle of M under the projection $M \times S^1 \to M$.

The space F_{m-1} will play the role of the index one manifold K in our variant of the Proposition. Since it is unfortunately not a manifold when m > 3, we need to introduce the auxiliary fibers A_x . Hence the total fiber is homeomorphic to $F_{m-1} \cup \mathbb{D}^m$ where the subspace B in F_{m-1} is identified with $S^{m-1} = \partial \mathbb{D}^m$. Let

$$\mathcal{F}_f \to N \times S^1$$

denote the pullback of

$$\mathcal{F}M \to M \times S^1$$

along $f \times \mathrm{id} : N \times S^1 \to M \times S^1$ and let

$$\hat{f}: \mathcal{F}_f \to \tilde{t}M$$

be the induced bundle map. Note that the stratification of $\mathcal{F}M$ induces one on \mathcal{F}_f and that \hat{f} preserves strata.

We say that \hat{f} is admissibly homotopic to a split map provided there exists a homotopy $h_t, t \in [0, 1]$, with $h_0 = \hat{f}$ and satisfying the following four conditions.

- 1. Each h_t is strata preserving.
- 2. Over some closed "tubular neighborhood" \mathcal{N}_0 of \mathbb{B} in $\mathbb{B} \cup \mathbb{T}$, each h_t is a bundle map; in particular, h_t maps fibers homeomorphically to fibers.
- 3. There is a larger closed "tubular neighborhood" \mathcal{N}_1 of \mathbb{B} in $\mathbb{B} \cup \mathbb{T}$ such that h_1 is a homeomorphism over $\mathbb{B} \cup \mathbb{T} \operatorname{Int}(\mathcal{N}_1)$ and over $\mathbb{B} \cup \mathbb{A}$.
- 4. Let $\rho : \mathcal{N}_1 \to M \times S^1$ denote the composition of the two bundle projections $\mathcal{N}_1 \to \mathbb{B}$ and $\mathbb{B} \to M \times S^1$. Then there is a triangulation K for $M \times S^1$ such that h_1 is transverse to $\rho^{-1}(\sigma)$ for each simplex σ of K. Furthermore

$$h_1: h_1^{-1}(\rho^{-1}(\sigma)) \to \rho^{-1}(\sigma)$$

is a homotopy equivalence.

Remark. Conditions 3 and 4 should be hueristically replaced by the simpler and stronger condition that " h_1 is a homeomorphism". But for technical reasons we need to work instead with conditions 3 and 4.

The variant of the Proposition needed to prove the TRT is the following.

Proposition (*). The map $f : N \to M$ is homotopic to a homeomorphism provided $\hat{f} : \mathcal{F}_f \to \mathcal{F}M$ is admissibly homotopic to a split map.

Proposition (*) is the surgery theory part of the proof of the TRT. The geometry of M (in particular, its non-positive curvature) is used to show that the hypothesis of Proposition (*) is satisfied; i.e, that \hat{f} is admissibly homotopic to a split map. We now proceed to discuss how this is done.

It is a consequence of several applications of both ordinary and foliated topological control theory as discussed in Lowell Jones' lectures. Let $g: M \to N$ be a (strong) homotopy inverse to f and let h_t and k_t be (strong) homotopies of the composite $f \circ g$ to id_M and $g \circ f$ to id_N , respectively. Strong means base point preserving. It implies the following useful property.

Property (*). For each point $x \in N$, the two paths

$$t \mapsto h_t(f(x))$$
 and $t \mapsto f(k_t(x))$

are homotopic rel end points.

Figure 2

We may assume that N is a smooth manifold by using Kirby-Siebenmann smoothing theory. For this we need only observe that the stable topological tangent bundle of N has a real vector bundle structure since it is the pull back of TM stabilized via f because $f: M \to N$ maps to 0 in [M, G/Top]. Therefore we may also assume that f and g are smooth maps and that both h_t and k_t are smooth homotopies.

The crucial point is to construct "good" transfers of the map g and the homotopies h_t , k_t to a map $\hat{g} : \mathcal{F}M \to \mathcal{F}_f$ and homotopies \hat{h}_t , \hat{k}_t from $\hat{f} \circ \hat{g}$ to $\mathrm{id}_{\mathcal{F}M}$, and $\hat{g} \circ \hat{f}$ to $\mathrm{id}_{\mathcal{F}_f}$, respectively, so that control theory can be applied to admissibly homotope \hat{f} to a split map. We proceed to describe what a good transfer is and then indicate how to construct one. The first requirement is that \hat{g} , \hat{h}_t and \hat{k}_t be bundle maps covering $g \times \mathrm{id}$, $h_t \times \mathrm{id}$, $k_t \times \mathrm{id}$, respectively. (Here id is the identity map on S^1 .) Second, each map \hat{g} , \hat{h}_t and \hat{k}_t should preserve strata. Finally, it is necessary that a certain family \mathcal{T} of paths determined by the lift is sufficiently "shrinkable". A path $\alpha : [0, 1] \to \mathcal{F}M$ is in \mathcal{T} if either

$$\begin{aligned} \alpha(t) &= \hat{h}_t(\omega) & \text{for some } \omega \in \mathcal{F}M, \text{ or} \\ \alpha(t) &= \hat{f}(\hat{k}_t(\omega)) & \text{for some } \omega \in \mathcal{F}_f. \end{aligned}$$

(The family \mathcal{T} is called the tracks of the transfer.) Note that each track is contained in a single stratum of $\mathcal{F}M$.

We construct good transfers by constructing their tacks \mathcal{T} . Since this is easier to explain when M is negatively curved, we now make this assumption. The construction of \mathcal{T} uses (mainly) the asymptotic transfer of paths discussed in lecture 3. (The general case uses the focal transfer which, although more elementary, requires greater technical details.) Let \mathcal{T}_1 be the tracks determined by f, g, h_t and k_t ; i.e. a curve $\alpha : [0, 1] \to M$ is in \mathcal{T}_1 if for all $t \in [0, 1]$ either

$$lpha(t) = h_t(x)$$
 for some $x \in M$; or
 $lpha(t) = f(k_t(y))$ for some $y \in N$.

Given $\gamma \in \mathcal{T}_1$ and $\omega = \langle u, v \rangle \in \mathcal{F}M$ with foot $(\gamma(0), \theta) \in M \times S^1$, we associate a lift $\omega \gamma$ of γ to a path in $\mathcal{F}M$ covering γ_{θ} which is the path in $M \times S^1$ defined by

$$\gamma_{\theta}(t) = (\gamma(t), \theta).$$

When $\omega \in \mathbb{B} \cup \mathbb{T}$, $\omega \gamma$ is defined by

$$\omega\gamma(t) = \langle u\gamma_{\theta}(t), v\gamma_{\theta}(t) \rangle$$

where $u\gamma_{\theta}$ and $v\gamma_{\theta}$ are the asymptotic transfers defined in Lecture 3. When $\omega \in \mathbb{A}$ (and hence u = v) $\omega\gamma$ is defined by

$$\omega\gamma(t) = \langle u(\gamma_{\theta}, d)(t), u(\gamma_{\theta}, d)(t) \rangle$$

where $u(\gamma_{\theta}, d)$ is the focal transfer with focal length d and chosen so that $d \to \infty$ as the angle between u and the level surface $M \times \theta$ approaches 0. Using that the asymptotic and focal transfers both satisfy properties 1-3 of lecture 3 and that property (*) is satisfied by g, f, h_t , k_t ; there is a natural construction of a good transfer \hat{g} , \hat{h}_t , \hat{k}_t whose tracks

$$\mathcal{T} = \{ \omega \gamma \mid \gamma \in \mathcal{T}_1, \omega \in \mathcal{F}M \}.$$

We now address the problem of "shrinking" the paths $\omega \gamma \in \mathcal{T}$. Since the geodesic flow g^t is defined on $\mathbb{A} \cup \mathbb{B}$, applying it to $\omega \gamma$ gives a method for making $\omega \gamma$ skinny when $\omega \in \mathbb{A} \cup \mathbb{B}$; i.e. $g^t \circ (\omega \gamma)$ is (β, ϵ) -controlled with respect to the 1-dimensional foliation of the manifold $\mathbb{A} \cup \mathbb{B}$ by the flow lines of the geodesic flow.

But the situation is different when $\omega = \langle u, v \rangle \in \mathbb{T}$. We are tempted then to "flow ω " in the direction of its arithmetic average $\frac{u+v}{2}$. But this does nothing when u = -v. Fortunately a different method can be used on the top stratum \mathbb{T} . But to describe it we need some more geometric preliminaries. We start by defining the *core* \mathbb{P} of \mathbb{T} by

$$\mathbb{P} = \{ \langle u, -u \rangle \in \mathbb{T} \}.$$

The core is naturally identified with the total space of the projective line bundle associated to $(TM) \times S^1$. In particular there is a natural 2-sheeted covering space

$$\mathbb{B} = (SM) \times S^1 \to (\mathbb{R}P^{m-1}M) \times S^1 = \mathbb{P}$$

and the image of the geodesic line foliation of \mathbb{B} gives \mathbb{P} a canonical 1-dimensional foliation denoted by \mathcal{G} . The top strata \mathbb{T} also has an *asymptotic foliation* \mathcal{A} by *m*-dimensional leaves where each leaf of \mathcal{A} is an *asymptoty class* of elements in \mathbb{T} . We say that elements $\omega_1 = \langle u_1, v_1 \rangle, \ \omega_2 = \langle u_2, v_2 \rangle \in \mathbb{T}$ lying over $M \times \theta$ (for some $\theta \in S^1$) are *asymptotic* provided (up to interchanging u_1 and v_1) there exist points $x, y \in \tilde{M}$ together with vectors $\tilde{u}_1, \tilde{v}_1 \in$ $S_{(x,\theta)}(\tilde{M} \times S^1)$ and $\tilde{u}_2, \tilde{v}_2 \in S_{(y,\theta)}(\tilde{M} \times S^1)$ lying over u_1, v_1, u_2, v_2 , respectively, and satisfying:

 \tilde{u}_1 is asymptotic to \tilde{u}_2 , and \tilde{v}_1 is asymptotic to \tilde{v}_2 .

Note that the restriction of the bundle map

$$\mathbb{T} \xrightarrow{p} M \times S^1 \xrightarrow{proj} M$$

to any leaf L of A is a covering space. This puts a flat structure on this bundle. And each leaf L of A inherits a negatively curved Riemannian metric from M via this covering projection. We call it the natural metric and note that it is compatible with the leaf topology on L.

The foliation \mathcal{A} intersects the core \mathbb{P} in its \mathcal{G} foliation; i.e., there is a bijective correspondence between the leaves of \mathcal{A} and \mathcal{G} given by

$$L \mapsto L \cap \mathbb{P}, \quad L \in \mathcal{A}.$$

Also $L \cap \mathbb{P}$ is a closed subset of L in its leaf topology and is a (simple) geodesic of its natural metric. This geodesic $\mathbb{P} \cap L$ is called the *marking* of L. Furthermore, the inclusion map of $\mathbb{P} \cap L$ into L is a homotopy equivalence when L is given the leaf topology and $\mathbb{P} \cap L$ is given the subspace of L topology.

Now there is a bundle with fiber \mathbb{R}^{m-1}

$$\rho: \mathbb{T} \to \mathbb{P}$$

defined as follows.

For each $\omega \in \mathbb{T}$ let $L \in \mathcal{A}$ be the leaf containing ω and g be its marking. Then $\rho(\omega)$ denotes the (unique) closest point to ω on g measured inside L.

Figure 3

When $\omega \notin \mathbb{P}$, there is a unique geodesic segment g_{ω}^{\perp} in *L* connecting ω to $\rho(\omega)$. The unit length vector tangent to g_{ω}^{\perp} at ω which points towards $\rho(\omega)$ is denoted by $w(\omega)$. This defines a continuous vector field on $\mathbb{T} - \mathbb{P}$.

We denote the length of g_{ω}^{\perp} by $d(\omega)$. This extends to a continuous function $d: \mathbb{T} \cup \mathbb{B} \to [0, +\infty]$ when we set

$$d(\omega) = \begin{cases} 0 & \text{if } \omega \in \mathbb{P} \\ +\infty & \text{if } \omega \in \mathbb{B}. \end{cases}$$

There is also a bundle with fiber the open cone in $\mathbb{R}P^{m-1}$

$$\eta: (\mathbb{T} - \mathbb{P}) \cup \mathbb{B} \to \mathbb{B} = SM \times S^1$$

defined by

$$\eta(\omega) = egin{cases} \omega & ext{if } \omega \in \mathbb{B} \ dp(w(\omega)) & ext{if } \omega \in \mathbb{T} - \mathbb{P}. \end{cases}$$

Remark. We think of $\eta(\omega)$ as the asymptotic average of the two vectors u and v where $\omega = \langle u, v \rangle$ as opposed to their arithmetic average $\frac{1}{2}(u+v)$.

The vector field w() integrates to give an incomplete radial flow r^t on \mathbb{T} . In particular $r^t(\omega)$ is only defined for $t \in [0, d(w)]$. And there is the following important relation between r^t and g^t .

Intertwining Equation. $\eta(r^t(\omega)) = g^t(\eta(\omega))$ for all $\omega \in \mathbb{T} - \mathbb{P}$ and $t \in [0, d(\omega)]$.

We associate to each closed interval $J \subseteq [0, +\infty]$ a compact subspace W_J of $\mathbb{T} \cup \mathbb{B}$ defined by

$$W_J = d^{-1}(J).$$

If $+\infty \notin J$, then W_J is a codimension-0 submanifold of \mathbb{T} with

$$\partial W_J = \begin{cases} d^{-1}(\partial J) & \text{if } 0 \notin J \\ d^{-1}(b) & \text{if } J = [0, b]. \end{cases}$$

Furthermore, we have the following:

- 1. If $0 \in J$ and $+\infty \notin J$, then $\rho: W_J \to \mathbb{P}$ is a fiber bundle with fiber \mathbb{D}^n .
- 2. If $+\infty \in J$ and $0 \notin J$, then $\eta: W_J \to \mathbb{B}$ is a fiber bundle with fiber the (closed) cone on $\mathbb{R}P^{m-1}$.
- 3. If neither 0 nor $+\infty$ is in J, then $\eta \times d : W_J \to \mathbb{B} \times J$ is a fiber bundle with fiber $\mathbb{R}P^{m-1}$.

Now fix a closed interval $I \subseteq (0, +\infty)$ containing 1 in its interior, and a very large positive real number σ together with a second closed interval R which contains $+\infty$ and is disjoint from σI . Then $[0, +\infty) - (\text{Int}(R) \cup \text{Int}(\sigma I))$ is the disjoint union of 2 closed intervals A and B denoted so that $0 \in A$.

Figure 4

Fix another closed interval $I' \subseteq (0, +\infty)$ which contains I in its interior but is slightly larger and define a homeomorphism

$$\phi: W_{\sigma I'} \to W_{I'},$$

using the radial flow, by the formula

$$\phi(\omega) = r^t(\omega)$$

where $t = d(\omega) - \frac{1}{\sigma}d(\omega)$.

Note that ϕ becomes arbitrarily strongly contracting as we let $\sigma \to +\infty$. In particular if $\omega \gamma \in \mathcal{T}$ with $\omega \in W_{\sigma I}$, then $\phi \circ \omega \gamma$ is uniformly pointwise ϵ_{σ} -controlled in W_I with $\lim_{\sigma \to \infty} \epsilon_{\sigma} = 0$.

Therefore we can use the ordinary control theorem to homotope \hat{f} over $W_{\sigma I}$ (i.e. homotope $\hat{f}|_{\hat{f}^{-1}(W_{\sigma I})}$), in a controlled way, to a homeomorphism provided σ is large enough. This begins our construction of the admissible homotopy of \hat{f} to a split map. And it gives a slightly different collection of tracks \mathcal{T}_1 . These new tracks differ only for some of those $\gamma \in \mathcal{T}_1$ which start in $W_{\sigma I}$. And for them $\phi \circ \gamma$ is pointwise close to $\phi \circ \bar{\gamma}$ where $\bar{\gamma} \in \mathcal{T}$ is the corresponding track.

We next extend this homotopy to a homotopy of f over W_A to a homeomorphism. This is done by using the fibered and foliated version of the control theorem with respect to the fiber bundle

$$\rho: W_A \to \mathbb{P}$$

and the foliation \mathcal{G} of \mathbb{P} . It is applicable since the fiber of ρ is \mathbb{D}^m and the structure set $\mathcal{S}(\mathbb{D}^m \times \mathbb{D}^k, \partial)$ contains only one element for each $k \geq 0$. We need only check the control condition. For this, note that there exists a positive number β such that

 $\rho \circ \omega \gamma$

is $(\beta, 0)$ -controlled for each $\omega \gamma \in \mathcal{T}$ such that $\omega \in A$. And hence the tracks of \mathcal{T}_1 which start in A are $(\beta + \epsilon, \epsilon)$ -controlled where $\epsilon \to 0$ as $\sigma \to \infty$.

Independent of these two steps, we use the foliated control theorem with respect to the foliation of $\mathbb{B} \cup \mathbb{A}$ by the orbits of the geodesic flow and the control map

$$g^{\sigma}:\mathbb{B}\cup\mathbb{A}\to\mathbb{B}\cup\mathbb{A}$$

to homotope \hat{f} over $\mathbb{B} \cup \mathbb{A}$ to a homeomorphism. And then use the covering homotopy theorem to extend this to a homotopy of bundle maps over W_R relative to the fiber bundle

$$\eta: W_R \to \mathbb{B}$$

to a homeomorphism over W_R .

Let $\tau : B \to [0,1]$ denote the (unique) increasing linear homeomorphism, and fix a continuous function $\phi : B \to [\sigma, +\infty)$ such that

$$\phi(x) = \begin{cases} \sigma & \text{for all } x \text{ close to } B \cap R \\ (1 - \frac{1}{\sigma})x & \text{for } x \in I' \cap B. \end{cases}$$

Consider the fiber bundle

$$\xi: W_B \to \mathbb{B} \times [0,1]$$

where ξ is the composite

$$W_B \xrightarrow{\eta \times \mathrm{id}} \mathbb{B} \times B \xrightarrow{g^{\phi \circ d} \times \tau} \mathbb{B} \times [0, 1]$$

i.e.,

$$\xi(x) = (g^{\phi(d(x))}(\eta(x)), \tau(d(x))).$$

Finally, we use a foliated and fibered version of the control theorem with respect to the fiber bundle $\xi: W_B \to \mathbb{B} \times [0,1]$ and the foliation of $\mathbb{B} \times [0,1]$ by the flow lines of the geodesic flow in order to extend over W_B the homotopy defined in steps 1, 2 and 3 given above. And thus complete the construction of an admissible homotopy of \hat{f} to a split map. The control condition is met provided σ is sufficiently large and R is contained in a sufficiently small neighborhood of $+\infty$. The intertwining equation is used to see this. But there is one extra point to observe. The fiber of ξ is $\mathbb{R}P^{m-1}$ and $\mathcal{S}(\mathbb{R}P^{m-1} \times \mathbb{D}^k, \partial)$ usually contains more than a single element. Consequently, the control theorem only yields the weaker conclusion that the result of the homotopy is a split map rather than a homeomorphism.