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Lecture 5
Recall (Lecture 3) that the Vanishing Theorem showing WhfaM) — 0 extends to complete,
A-regular, non-positively curved Riemannian manifolds M. Likewise there is a version of the
Topological Rigidity Theorem (TRT) valid for such manifolds which we proceed to formulate.

Let M be an arbitrary manifold; i.e. it can be non-compact and can have non-empty
boundary. We say that M is topologically rigid if it has the following property. Let

h : (N, dN) -> (M, dM)

be any proper homotopy equivalence where N is another manifold. Suppose there exists a
compact subset C C N such that the restriction of h to dN U (N — C) is a homeomorphism.
Then there exists a proper homotopy

ht : (iV, dN) -> (M, dM)

from h to a homeomorphism and a perhaps larger compact subset K of N such that the
restrictions of ht and h to dN \J(N - K) agree for all t G [0,1]. (When M and N are closed,
this just says that a homotopy equivalence h : N —» M is homotopic to a homeomorphism.)

Addendum to TRT. (Farrell and Jones 1998). Let Mm be an arbitrary aspherical mani-
fold with m > 5. Suppose TTI(M) is isomorphic to the fundamental group of an A-regular com-
plete non-positively curved Riemannian manifold. (This happens for example when TTI(M)

is isomorphic to a torsion-free discrete subgroup of GLn(M).) Then M is topologically rigid.
In particular, every A-regular complete non-positively curved Riemannian manifold of dim
> 5 is topologically rigid.

The special case of this Addendum where M is an A-regular complete non-positively
curved Riemannian manifold is proved by an argument very close to that made in Lecture
4 for TRT. But stronger control theorems are needed when M is not closed; in particular
when the injectivity radius at a point x G M goes to 0 as x -> oo. These control theorems
were discussed by Lowell Jones in his last lecture. The general case of the Addendum follows
from this special case and the version of the surgery sequence for arbitrary spaces developed
by Andrew Ranicki in his lectures; in particular that the assembly map in homology

,is uniquely determined by the homotopy type of M and the orientation data w : TTI(M) -» Z2.
This Addendum even has (perhaps unexpectedly) consequences beyond, what follows

from TRT, for closed manifolds. We now discuss some of these.

Corollary 1. Let N and M be a pair of closed complete affine flat manifolds with dim(M) ^
3,4. If TTI(N) ~ TTI(M) ; then N and M are homeomorphic (via a homeomorphism inducing
this isomorphism).

Corollary 1 is an affine analogue of the classical Bieberbach Theorem valid for Riemannian
flat manifolds. We note that Corollary 1 does not follow from the TRT proved in Lecture 4
since there are closed complete affine flat manifolds M which cannot support a Riemannian
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metric of non-positive curvature. For example M3 = R3/F does not where F is the group
generated by the three affine motions a, (3 and 7 of R3 with

a(x,y,z) =

1).

Since F is solvable but not virtually abelian, Yau's thesis shows that M cannot support a
non-positively curved Riemannian metric. But Corollary 1 does follow from the Addendum
to TRT since M is aspherical and TTI(M) is a discrete subgroup of Aff(Rm) which is a closed
subgroup of GLm+i(R); namely

A f f ( I T ) = {Ae GLm+l
i < m

lra+l,i —

We next use this Addendum to verify a special case of a well known conjecture of C.T.C.
Wall.

Conjecture. (Wall) Let F be a torsion-free group which contains a subgroup of finite in-
dex isomorphic to the fundamental group of a closed aspherical manifold. Then F is the
fundamental group of a closed aspherical manifold.

Corollary 2. Let Mm be a closed (connected) non-positively curved Riemannian manifold
and T be a torsion-free group which contains TTI(M) as a subgroup with finite index. Assume
that m 7̂  3,4 ; then the deck transformation action of iri(M) on the universal cover M
extends to a topological action ofT on M. Consequently Wall's Conjecture is true in this
case since M/T is a closed apsherical manifold with TTI(M/F) = F.

Remark. When M is a symmetric space without 1 or 2 dimensional factors, F embeds in
its isometry group Iso(M) extending TTI(M) C ISO(M); this is a consequence of Mostow's
Strong Rigidity Theorem. When m — 2, Corollary 2 is a consequence of a result due to
Eckmann, Linnell and Muller; our proof only applies to the situation m > 5.

In proving Corollary 2 we can clearly make the simplifying assumptions that M is ori-
entable and TTI(M) is normal in F. We now use an important trick due to Serre where he
constructs a natural, properly discontinuous action of F via isometries on the Riemannian
product Msm of s-copies of M

M = M x M x ••• x M

where s = [TTIM : F]. (Serre's construction is a kind of geometric co-induced representation.)
Note that Msm is A-regular and non-positively curved since Mm is. Hence iVsm = M/T
is a complete (but not closed) A-regular non-positively curved manifold with TTI(N) — T.
Thus the Addendum to TRT applies to iVsm x B* for all k > 0. From this we conclude that
Ranicki's periodic assembly map



is an isomorphism. Also the Vanishing Theorem applies showing that

And Ranicki, by reworking the existence part of surgery theory, has shown that when this
happens BT is homotopically equivalent to a closed manifold Km provided Bn is for some
subgroup 7T of finite index in F. In this case, we can take n = TTI(M).

Let K be the cover of K corresponding to TTI(M). And note that K is homotopically
equivalent to M since both are aspherical and have the same fundamental group. Therefore
K is homeomorphic to M by the TRT. Consequently K — M and the deck transformation
action of F — iri(K) on M is the desired extension of the action by TTI(M). Q.E.D.

Corollary 2 can be applied to obtain positive information about the following generaliza-
tion of the classical Nielsen Problem. Let Top(M) denote the group of all homeomorphisms
of a manifold M and denote the group of all outer automorphisms of TTI(M) by

Generalized Nielsen Problem. (GNP) Let M be a closed aspherical manifold and F be
a finite subgroup of Out(TTiM). Does F split back to Top(M); i.e., does there exist a finite
subgroup F of Top(M) which maps isomorphically onto F under the natural homomorphism

Top(M) -> Out(TTiM)?

Remark. There are cases where this is impossible. One necessary extra condition is that
there exist an extension

inducing the embedding F C Out(TTiM). F. Raymond and L. Scott gave an example where
this condition is not satisfied. In their example M is a nilmanifold. There is a natural exact
sequence

1 -> Center(r) -» F —> Aut(r) —> Out(r) -^ 1

where ^(7) is conjugation by 7. Let IV = ip~1(F). When Center(F) = 1

1 - > F - ^ F F - > F - > 1

is the necessary extension mentioned in this Remark.

Corollary 3. The finite group F of the GNP splits back to Top(M) under the following
extra assumptions:

1. Center(TTIM) = 1.

2. M is a non-positively curved Riemannian manifold.

3. dim(M)^3,4.

4- Fj? is torsion-free.

Remark 1. Conditions 1 and 2 are satisfied when M is negatively curved.

Remark 2. When dim(M) = 2, this result is due to Eckmann, Linnell and Muller (1981).



4 Some calculations of7rn(Top M)...

Remark 3. When M is a symmetric space without 1 or 2 dimensional metric factors, this
result, due to Mostow (1973), is true even with conditions 1, 3 and 4 dropped.

Remark 4. Corollary 3 remains true when condition 2 is replaced by the weaker condition
that TTI(M) is isomorphic to the fundamental group of a complete, ^.-regular non-positively
curved Riemannian manifold. This is because Corollary 2 is also true under the same weak-
ening of its hypotheses.

To prove Corollary 3, note that Fp satisfies the hypotheses for the group F in Corollary
2. Hence IV acts on M extending the action of TTI(M) by deck transformations. The image
of this action in Top(M) is the subgroup F asked for in GNP. Q.E.D.

There is also the related question of whether the natural homomorphism

Top(M) -> Out(TTiM)

is onto?

Corollary 4. Let Mm be a closed aspherical manifold. Assume that m ^ 3,4 and that
TTI(M) is isomorphic to the fundamental group of a complete, A-regular, non-positively curved
Riemannian manifold. Then the natural homomorphism Top(M) —> Out(TTiM) is a surjec-
tion.

Corollary 4 is classical for m = 2 or 1. And for m > 5, it follows immediately from the
Addendum to TRT since every outer automorphism of TTI(M) is induced by a self homotopy
equivalence of M; cf. Hurewicz's result mentioned in Lecture 1. Q.E.D.

Remark. When M is a symmetric space without 1 or 2 dimensional metric factors, Corollary
4 is due to Mostow (1973).

Give the group Top(M) the compact open topology and let its closed subgroup Top0(M)
be the kernel of the natural continuous homomorphism (analyzed in Corollary 4) to the
discrete group Out(TTiM). Topo(M) is not in general the connected component of the identity
element in Top(M). However the following is true.

Corollary 5. Let Mm be a closed (connected) non-positively curved Riemannian manifold
with m > 10. Then

7r0(Top0M) = Z?,
7Ti(Top M) <g>Q = Center (TT! M) ®Q, and

7rn(Top M)®Q = 0 if Kn< (m ~ 7 \
O

Remark. There is in particular the following exact sequence

1 -> Z^° -> 7r0(Top M) -+ Out(TTiM) -> 1.

And Z20 denotes the direct sum of a count ably infinite number of copies of Z2.



The proof of Corollary 5 depends not only on the Addendum to TRT but also on the
following result "PIT" concerning the stable topological pseudo-isotopy functor V( ). Recall
that this functor was defined and discussed earlier in lectures by Tom Goodwillie, Lowell
Jones and Frank Quinn.

Pseudo Isotopy Theorem. (Farrell and Jones) Let M be a closed (connected) non-positively
curved Riemannian manifold. Then, for all n,

7rn(V(M))®Q = 0 and

no(V(M)) = Zf.

We will discuss the ideas behind the proof of PIT after first using it in proving Corollary
5.

For this we need to introduce the auxiliary spaces G(M) and Top(M). Let G(M) denote
the i7-space of all self-homotopy equivalences of M; note that Top(M) is a subspace of G(M).
The semisimplicial group Top(M) of blocked homeomorphisms of M can be interpolated
between Top(M) and G(M). A typical £;-simplex of Top(M) consists of a homeomorphism

h : Ak x M -* Ak x M

such that h(A x M) = A x M for each face A of A*, where Ak is the standard A:-simplex.
Let G(M)/Top(M) and Top(M)/Top(M) denote the homotopy fiber of the map

B Top(M) -> BG(M) and B Top(M) -> B Top(M),

respectively. Because of Frank Quinn's function space interpretation of the surgery exact
sequence (discussed in Lowell Jone's lectures) the relative homotopy groups of the map

Top(M) -» G(M)

can be identified with the groups

And these all vanish because of the TRT; consequently the following is true.

Fact 1. G(M)/Top(M) and Top(M)/Top(M) have the same weak homotopy type.

Now the homotopy groups of G(M) are easy to calculate. They are

Fact 2.
^ ) ifn = 0

7Tn(G(M)) = I Center(7r!M) if n = 1

[ i f n > 2 .

Since the calculation for n > 2 is particularly easy to do, we sketch it. Let

/ : S n x M - ) M

represent an element in 7rn(G(M)). To show this element is zero, we need to extend / to a
map

+1 xM -±M.
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The construction of / is by an elementary obstruction theory argument. Fix a triangulation
of M and assume / has already been defined over Dn + 1 x a for all simplices o with dim(a) < k.
Let a be a A;-simplex and identify Dn + 1 x a with W+k+1. Then f\dm+k+i has already
been defined and represents an element of 7rn+fc(M) which vanishes since M is aspherical.
Therefore / extends over Dn + 1 x a. It is shown in this way that 7rn(G(M)) = 0 when n > 2.

It therefore remains to analyze Top(M)/Top(M). Which can be done in terms of V(M)
by using the following result of Hatcher.

Theorem. (Hatcher) When m > 10 (m — dim M) there is a spectral sequence converging
to

7r,+,+1(Top(M)/Top(M))

with
E%q = Hp(Z2]ir1(V(M)))

in the stable range q < (m+J~7) m

Remark. This result depends on Igusa's Stability Theorem for pseudo-isotopy spaces which
Tom Goodwillie discussed in an earlier lecture.

Combining Hatcher's Theorem and PIT together with Facts 1 and 2 yields that

Fact 3.

7rn(To
\Center(7r1M)(8)Q ifm =

and the following exact sequence:

Center(7rxM) -> H0(Z2]Z?) -> 7T0(Top(M))

Since the kernel of 7To(Top(M)) —» Out(TTiM) is 7To(Top(M)), this exact sequence can be
rewritten as

Fact 4.
Center(TTiM) -+ H0{Z2]Z?) -> 7r0(Top(M)) -> 0.

Define a homomorphism d : Z£° —> Z^° by

d{x) — x + x

where x H> X denotes the action of the generator of Z2 on Z20. Then the formula

is the definition of H0(Z2jZ^). We claim that Zif/image(d) cannot be a finite group. If it
were, then Z^°/ker(d) would also be finite since

ker(d) D image(d).

(Note that d2 = 0 since Z£° has exponent 2.) But image(d) is isomorphic to Z^°/ker(d). And
the finiteness of both image(d) and Z2°/image(d) would imply that ZcJ0 is also finite, which
is a contradiction. Since #0(^2; ^2°) is thus a countable infinite group of exponent 2, it must
be isomorphic to Z20. We therefore rewrite the sequence in Fact 4 as



Fact 5.
Center(TTiM) -> Z£° -> 7r0(Top(M)) -> 0.

Now Lawson and Yau showed that Center(TTIM771) is finitely generated. (In fact it is
isomorphic to Zn where n < m.) Hence Fact 5 implies that 7To(Top0(M)) is a countably
infinite group of exponent 2, and therefore it is isomorphic to Z^. This result together with
Fact 3 proves Corollary 5.

We now return to a discussion of PIT. Its proof follows the pattern established in proving
the Vanishing Theorem (cf. Lecture 3). The main difference is that the corresponding foliated
control theorem is obstructed since V(S1) is not contractible. So we get a calculation instead
of a vanishing theorem. Key ingredients for this calculation are ideas developed by Frank
Quinn which were discussed in his and Lowell Jones' lectures.

We formulate a more precise result than PIT; namely a weak version of the Isomorphism
Conjectures which Wolfgang Lueck talked about in one of his lectures. For the rest of this
lecture M denotes a closed (connected) non-positively curved Riemannian manifold, M its
universal cover, and F = TTI(M) its group of deck transformations. Fix a universal space £
for F relative to the class C of all virtually cyclic subgroups of F.

Theorem. (Farrell and Jones) There exists a spectral sequence converging to 7rp+q(V(M))
with E2

pq = Hp(£/r;irq(V{M/ra))).

Remark. In this theorem F^ denotes the subgroup of F fixing a cell a of £. And
Hp(£/T]7rq(V(M/Ta))) is the p-th homology group of a chain complex whose p-th chain
group is the direct sum of the groups 7rq(V(M/Fa)) where a varies over a set Sp of p-cells of
£. The set Sp contains exactly one p-cell from each F-orbit of p-cells.

To deduce PIT from this result, we must analyze the spectral sequence. Note first that
Fa is either infinite cyclic or trivial since F is torsion-free. Therefore M/Ta is homotopically
equivalent to either the circle S1 or a point * since M/Ta is aspherical. And there is the
following important calculation:

Calculation 1. (a) 7rn(P(*)) = 0 for all n,

(b) 7rn(P(S1))(g)Q = 0 for all n,

(c)"7ro(7>(51))=Zf.

Calculation (a) is a consequence of Alexander's Trick discussed in Lecture 1. Calculation
(b) is due to Waldhausen, and (c) is due to Waldhausen and Igusa. Calculations (b) and
(c) are deep results related to Tom Goodwillie's Lectures 1 and 2. Because of (a) and (b),
E*q ® Q = 0. Hence the Theorem yields that 7rn(V(M)) ® Q = 0; which is the first assertion
of PIT.

Our Theorem also yields that

7T0(V(M)) = H0(£/T'MV(M/Ta))).

Since we can pick £ to be a countable CW-complex (because F is countable) this equation
together with Calculations (a) and (c) imply that 7TQ(V(M)) is a quotient group of Z20; i.e.
is a countable abelian group of exponent 2. To complete the proof of PIT, it remains to
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show that 7TQ(V(M)) is an infinite group. We will only show this when M is negatively
curved, since the general case depends on constructing a universal space £ for F with better
properties than the abstract construction. This geometric construction of E uses strongly the
assumption that M is closed and non-positively curved. But, when M is negatively curved,
the fact that TTQ(V(M)) is infinite is an immediate consequence of the following Assertion.

Assertion. Assume M is negatively curved and let 7 : S1 —> M represent a non-trivial
element [7] G TTI(M). Then

is monic where V(j) : V(Sl) -> V(M) is the functorially induced map.

We indicate the proof of this Assertion under the simplifying assumption that M is
orient able. To do this we construct a transfer map

r : V(M) -> ViS1)

such that r o V(°f) is homotopic to id-p^s1)- The Assertion is clearly a consequence of this.
Our construction uses ideas from Lecture 2. We first define a map

P(M)-+P(M).

(Recall that M — MuM(oo) is homeomorphic to Dm.) This is done by sending the pseudo-
isotopy / to the pseudo-isotopy / where

x iixeM(oo) x [0,1]
f{x) i f x G M x [0,1]

and / is the unique lift of/ such that /|xfXo = ^Mxo- This pseudo-isotopy / i s "well-defined"
because Cartan's Theorem shows that property 2 of Condition (*) holds (cf. Lecture 2). To
be precise, / is only well defined after we collapse x x [0,1], x G M(oo), to the single point
x. But this quotient space can be identified with M x [0,1]. Note that / is F-equivariant.
Let S be the infinite cyclic subgroup of T generated by [7]. There are exactly two points S+

and S~ on M(oo) fixed by S since [7] can be represented by a closed geodesic (because M is
compact). Furthermore S acts freely and properly discontinuously on M — {S'+,5'~} = Ms
and hence / induces a pseudo-isotopy

feP(Ms/S).

But Ms/S is homeomorphic to S1 x D m - 1 since M is orientable. The function / i-> /
mapping

P{M)->P(Sl xD™"1)

stabilizes to give the desired transfer r. Q.E.D.
We end our lectures by giving an analogue of Corollary 5 true for Diff(M).



Corollary 6. Suppose that Mm is orientable, m > 10 and 1 < n < ^ 7^. Then

{0 if m is even

^-yiy(n+i)_4j(M,Q) z/ra is odd.
Furthermore, 7Ti(Diff(M)) ® Q = Center(TTIM) ® Q.

Corollary 6 is an immediate consequence of the following result combined with TRT, PIT
and the Vanishing Theorem.

Theorem. (Farrell and Hsiang 1978) Let Nm be a closed aspherical manifold such that

S(Nm x 11^,9 = 0 for all k > 0,

7rk(V{N)) <g> Q = 0 for all k> 0,

x Z f c ) = 0 for all k>0.

Then for 1 <n< (^f1)

0 if n > 1, n even

ij(N,Q) ifn>l,n

Center(TTIN) ® Q if n—\.

7rn(DifF(JV)) ® Q =
oo


