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1. The geometric realization of a simplicial complex. A simplicial com-
plex L consists of a set / (called the vertex set) and a collection of finite subsets
S(L) of / such that

(a) 0 G S(L)

(b) for each i G / , {i} G <S(L), and

(c) if a G S{L) and r < a then r G S(L). An element a of S(L) is called a
simplex; its dimension is defined by dimcr = Card(cr) — 1.

Let us assume that I = {1, 2 , . . . , m}. The standard (m—1)-simplex on / , denoted
by A7™"1, is the convex polytope in Mm defined by intersecting the positive quadrant
(defined by Xi > 0 for all i G /) with the hyperplane Ea^ = 1. A vertex of A m - 1 is
an element e* of the standard basis for Rm. The poset of faces of A7™"1, denoted
Jr(Arn~1)^ is isomorphic to the poset of all nonempty subsets of / . This gives us a
simplicial complex which we will also denote by A771"1. (Usual practice is to blur
the distinction between a simplicial complex and its geometric realization.)

If a is a nonempty subset of I (= {1, . . .m}), then let Aa denote the face of
A™"1 spanned by {e

If L is a simplicial complex with vertex set / , then its geometric realization is
defined to be the union of all subspaces of A771"1 of the form Aa for some a G S(L).
The geometric realization will also be denoted L.

2. Cubical cell complexes. As before, / = { l , . . . ,m} . The standard m-
dimensional cube is the convex polytope [-l,l]m C Rm. For each subset a of / let
R°" denote the linear subspace spanned by { e ^ } ^ and let D^ denote the standard
cube in W. (If a = 0, then M0 = D0 = {0}.) The faces of [-l,l]m which are parallel
to Da have the form v + Da for some vertex v of [-l,l]m.

Next we want to describe the poset of nonempty faces of [-l,l]m. For each i G /,
let ri : [-l,l]m ->[-l,l]m denote the orthogonal reflection across the hyperplane
Xi = 0. Let J be the group of symmetries of [-l,l]m generated by {r^}^/. Then J
is isomorphic to (Z/2)m. The group J acts simply transitively on the vertex set of
[-l,l]m. The stabilizer of a face v + Da is the subgroup Ja generated by { r ^ } ^ .
Hence, the poset of nonempty faces of [-l,l]m is isomorphic to the poset of cosets

Roughly speaking, a cubical cell complex P is a regular cell complex in which
each cell is combinatorially isomorphic to a standard cube of some dimension. More
precisely, P consists of a poset Jr(= F(P)) such that for each c G T the subposet
F<c is isomorphic to the poset of nonempty faces of [-l,l]fc; k is the dimension of
c. (Here T<c — {x G T\x < c}.) The elements of T are called cells. A vertex of
P is synonymous with a 0-dimensional cell. By definition the link of a vertex v in
P, denoted by Lfe(v,P), is the subposet T>v of all cells which are strictly greater



than v (i.e., which have v as a vertex.) For example, if v is a vertex of [-l,l]m, then
Lk(v, [-l,l]m) is the simplicial complex A™"1. It follows that the link of a vertex
in any cubical cell complex is a simplicial complex.

The geometric realization of a cubical complex P can be defined by pasting
together standard cubes, one for each element of T. A neighborhood of a vertex v
in (the geometric realization of) P is homeomorphic to the cone on Lk(v,P).

3. The cubical complex PL. Given a simplicial complex L with vertex set / ,
we shall now define a subcomplex PL of [-l,l]m. The vertex set of PL will be the
same as that of [-1,1]m. The main property of PL will be that the link of each of its
vertices is isomorphic to L. The construction is very similar to the way in which
we realized L as a subcomplex of Arn~1.

By definition, PL is the union of all faces of [-l,l]m which are parallel to Da for
some a G S(L). Hence, the poset of cells of PL can be identified with

I]

Examples. 1) If L = A m ~ \ then PL =[-l,l]m .

2) If L — d(Arn~1)1 then PL is the boundary of an m-cube i.e., PL is homeomorphic
to Sm~\

3) If L is the disjoint union of m points, then PL is the 1-skeleton of an m-cube.

4) If m = 3 and L is the disjoint union of a 1-simplex and a point then PL is the
subcomplex of the 3-cube consisting of the top and bottom faces and the 4 vertical
edges.

^From the fact that a neighborhood of a vertex in PL is homeomorphic to the
cone on L we get the following.

Proposition. If L is homeomorphic to Sn~1, then PL is an n-manifold.

Proof. The cone on Sn~l is homeomorphic to an n-disk.

4. The universal cover of PL and the group WL> Let PL denote the universal
cover of PL . The cubical cell structure on PL lifts to a cubical structure on PL . The
group J (= (Z/2)m) acts on P^. Let WL denote the group of all lifts of elements
of J to PL and let <p : WL —> J be the homomorphism induced by the projection
PL —> PL- We have a short exact sequence,

We will use the notation:



Since J acts simply transitively on the vertex set of PL, the group WL acts
simply transitively on the vertex set of PL. It follows that the 2-skeleton of PL
is the Cayley 2-complex associated to a presentation of WL- (In particular, the
1-skeleton is the Cayley graph associated to a set of generators.) Next, we use this
observation to write down a presentation for

The vertex set of PL can be identified with J. Fix a vertex v of PL (corresponding
to the identity element in J). Let v be a lift of v in PL- The 1-cells at v or at
v correspond to vertices of L, i.e., to elements of { l , . . . ,m} . The reflection ri
stabilizes the ith 1-cell at v. Let Si denote the unique lift of Ti which stabilizes the
jth i_ce\\ a t {j Since sf fixes v and covers the identity on PL-, it follows that sf = 1.
Suppose a is a 1-simplex of L connecting vertices i and j . The corresponding 2-cell
at v is then a square with edges labelled successively by s», Sj, ŝ , Sj. Hence, we
get a relation (siSj)2 = 1 for each 1-simplex {i,j} of L.

Let WL denote the group defined by this presentation, i.e., a set of generators
for WL is {si}i^i and the relations are given by: s? — 1, for all i G / , and (siSj)2 =
1 whenever {i,j} is a 1-simplex of L. The Cayley 2-complex associated to this
presentation maps to the 2-skeleton of PL by a covering projection. Since PL is
simply connected, this covering projection is a homomorphism and the natural
homomorphism WL —> WL is an isomorphism. Therefore, we have proved the
following.

Proposition. WL has a presentation as described above.

Remarks. 1) A group with a presentation of the above form is a Coxeter group, in
fact, a "right-angled" Coxeter group. (In a general Coxeter group we allow relations
of the form (siSj)mi* = 1 where the integer m -̂ can be > 2.

2) Examining the presentation, we see that the abelianization of WL is J. Thus,
F^ is the commutator subgroup of WL>

For each subset a of / let Wa denote the subgroup generated by {si}i£a. If
a G S(L), then Wa is the stabilizer of the corresponding cube in PL which contains
v. It follows that the poset of cells of PL is isomorphic to the poset of cosets,

wL/wa.

5. When is PL contractible?

Definition. A simplicial complex L is a flag complex if any finite set of vertices
which are pairwise connected by edges spans a simplex of L.

Theorem 5.1. PL is contractible if and only ifL is a flag complex.



Corollary 5.2. PL is aspherical if and only if L is a flag complex.

Before sketching the proof of this theorem we make a few comments on the
nature of flag complexes.

An incidence relation on a set / is a symmetric and antireflexive relation R. A
flag in / is defined to be a finite subset of / of pairwise incident elements. The
poset Flag (R) of nonempty flags in / is then a simplicial complex with vertex set
/ . It is obviously a flag complex. Conversely, any flag complex arises from this
construction. (Indeed, given a flag complex L define two vertices to be incident if
they are connected by an edge; if R denotes this incidence relation, then L =
Flag (R).)

Given a poset, we can symmetrize the partial order relation to get an incidence
relation. A flag is then a finite chain of elements in the poset. Given a poset V let
Flag (V) denote the flag complex of chains in V. If JF is the poset of nonempty cells
in a regular convex cell complex P, then Flag (T) can be identified the poset of
simplices in the barycentric subdivision of P. It follows that the condition of being
a flag complex does not restrict the topological type of L: it can be any polyhedron.

Example. A polygon is a simplicial complex homeomorphic to S1. It is a k-gon if
it has k edges. A fc-gon is a flag complex if and only if k > 3.

Remarks. 1) Gromov has used the terminology that a simplicial complex L satisfies
the "no A condition" to mean that it is a flag complex. The idea is that L is a flag
complex if and only if it has no "missing simplices".

2) A flag complex is a simplicial complex which is, in a certain sense, determined
by its 1-skeleton. Indeed, suppose A is a 1-dimensional simplicial complex. Then
A determines an incidence relation on its vertex set. The associated flag complex
L is constructed by filling in the missing simplices corresponding to the complete
subgraphs of A. Thus, A is the 1-skeleton of L.

3) The graph A also provides the data for a presentation of a right-angled Coxeter
group W(= WA). In this case, the flag complex L is called the nerve of the Coxeter
group.

6. Nonpositive curvature. The notion of "nonpositive curvature" makes sense
for a more general class of metric spaces than Riemannian manifolds. A geodesic
in a metric space X is a path 7 : [a, b] -> X which is an isometric embedding. X is
called a geodesic space if any two points can be connected by a geodesic segment.
A triangle in a geodesic space X is the image of three geodesic segments meeting at
their endpoints. Given a triangle T in X, there is a triangle T* in M2 with the same
edge lengths. T* is called a comparison triangle for T. To each point x G T there
is a corresponding point x* e T*. The triangle T is said to satisfy the CAT(0)-
inequality, if given any two points x,y G T we have d(x,y) < rf(x*,i/*). The space
X is nonpositively curved if the CAT(O)-inequality holds for all sufficiently small



triangles. X is a CAT(O)-space (or a Hadamard space) if it is complete and if the
C^4T(0)-inequality holds for all triangles in X. It follows immediately from the
definitions that there is a unique geodesic between any two points in a CAT(0)-
space and from this that any CAT(0)-sp&ce is contractible. Gromov proved that
the universal cover of a complete nonpositively curved geodesic space is CAT(0).
Hence, any such nonpositively curved space is aspherical.

Next, suppose that P is a connected cubical cell complex. There is a natural
piecewise Euclidean metric on P. Roughly speaking, it is defined by declaring each
cell of P to be (locally) isometric to a standard Euclidean cube (of edge length
2). More precisely, the distance between two points x,y e P is defined to be the
infimum of the lengths of all piecewise linear curves connecting x to y. It then can
be shown that P is a complete geodesic space. Gromov proved the following.

Gromov's Lemma. A cubical cell complex P is nonpositively curved if and only
if the link of each of its vertices is a flag complex.

A corollary is that the cubical complex PL constructed previously is CAT(0) if
and only if L is a flag complex. In particular, this gives a proof (in one direction) of
the theorem from the previous section: if L is a flag complex, then PL is contractible.

7. Another construction of PL and PL- The group J (— (Z/2)m) acts as a
group generated by reflection on [-l,l]m. The subspace [0,l]m is a fundamental
domain. (Also, [0,l]m can be identified with the orbit space of the J-action.) Let
e be the vertex (1,...,1) G[0,l]m and for each subset a of / (= {l , . . . ,m}) let

The corresponding fundamental domain K for the J-action on PL is given by

K = pLn [0,1]™.
Thus,

K = U • +

For each i 6 / let [0,1]™ denote the intersection of the fixed point set of r̂  with
[0,l]m, i.e., [0,l]m =[0, l ]mn{^ = 0}. Set K{ = Kn[0,l]m and call it a mirror oiK.
It is not difficult to see that UJK* can be identified with the barycentric subdivision
of L so that Ki is the closed star of the vertex i in this barycentric subdivision.
Thus, K is homeomorphic to the cone on L.

For each x G K, let a(x) = {i G I\x G Ki). The space PL can be constructed
by pasting together copies of K, one for each element of J. More precisely, define
an equivalence relation ~ on J x if by Uix) ~ (f'ix') ^ a nd only if x = x1 and
i " V G J*(x)- Then

PL = (Jx K)/ - .

In other words, ~ is the equivalence relation generated by identifying j x Ki with
jri x Ki, for all i G / .



Similarly,
PL = (WL x

where the equivalence relation on PL is defined in an analogous fashion.

Let L denote the flag complex determined by the 1-skeleton of L. Thus, L is the
nerve of WL ' cr G S(L) if and only if Wa is finite. For each a G <S(L), set

Ka = U Ki
i£cr

We are now in position to prove two lemmas which imply the theorem in Section
5.

Lemma 7.1. The following conditions are equivalent.

(i) L is a flag complex

(ii) For each a G S(L)^Ka is contractible.

(Hi) For each a G S(L),Ka is acyclic.

Proof. If L is a flag complex, then L — L and Ka can be identified with a closed
regular neighborhood of a in the barycentric subdivision of L. Hence, (i)=> (ii).
The implication (ii)=>(iii) is obvious. If a G S(L) is a fc-simplex such that da C L
but a (\ L, then a computation shows that Ka has the homology of a (k — l)-sphere.
Hence, (iii)=>(i).

For each w G W, let a{w) = {i G I\l(wsi) < £(w)}. Here £ : W ->- N denotes
word length. Thus, cr(tu) is the set of letters with which a minimal word for w
can end. Geometrically, it indexes the set of mirrors of wK such that the adjacent
chamber wsiK is one chamber closer to the base chamber K. The following is a
basic fact about Coxeter groups (the proof of which we will omit).

Lemma 7.2. For each w G WL->a(w) G S(L).

Now we can sketch the proof that PL is contractible if and only if L is a flag
complex.

Proof. We can compute the homology of PL. Order the elements O£WL : u?i, W2,...,
so that ^(wfc+1) >£(wk). SetYk = wiKU--UwkK. Then wkKnYk_x ^ Ka(Wk\
Hence, H^Yk,Yk^) ^ H^(K,K^Wk^) ^ £„._!(#*<"*)), since K is contractible.
The exact sequence of the pair (Yk,Yk_i) gives

The map ^ ( 1 ^ ) -» H^K.K0^^) is a split surjection. Indeed, a splitting
-> i?*(n) can be defined by the formula:



where a is a relative cycle in C*(K,Ka^Wk^). It is then easy to see that <p(ct) is
a cycle and that the induced map on homology is a splitting. Thus, H*(Yk) —

, and consequently

= 0 H

Thus, PL is acyclic if and only if each Ka^Wk^ is acyclic. The theorem follows from
Lemmas 1 and 2.

Henceforth we shall always assume that L is a flag complex. Moreover, we shall
use the notation EL instead of PL-

8. The reflection group trick. Next we modify the construction of the previous
section.

Suppose X is a space and that dX is a subspace which is homeomorphic to a
polyhedron. Let I be a triangulation of dX as a flag complex with vertex set / .
For each i G / , put Xi = Ki where Ki is the previously defined subcomplex of the
barycentric subdivision of L. In other words, Xi is the closed star of the vertex i in
the barycentric subdivision of L (= dX). Let J, WL and F^ be the groups defined
previously. Set

and

The equivalence relations are defined almost exactly as before.

Next we record a few elementary properties of this construction. The orbit space
of the J-action on PL(X) is X. Let r : PL(X) - ^ X b e the orbit map. Since X can
also be regarded as a subspace of PL(X) (namely as the image of 1 x X), we have
the following theorem.

Theorem 8.1. The map r : PL(X) —> X is a retraction.

Corollary 8.2. K\{X) is a retract of TT1(PL(X)).

Theorem 8.3. If X is a compact n-dimensional manifold with boundary (= dX),
then PL(X) is a closed n-manifold.

Proof. For each x G X, let cr(x) = {i G I\x G Xj}. A neighborhood of x in dX
has the form Rn~k x R°^x) where k = Card(o-(x)), where R+{x) denotes the positive
quadrant where all coordinates are nonnegative. It follows that a neighborhood of
(l,x) in PL(X) has the form Rn~k x (Ja(x) x R+(x))/ ~ which is homeomorphic to
En . Thus, PL(X) is an n-manifold.

We also have that Ex/(X) -> PL(X) is a regular covering with group of deck
transformation F^. The proof of the next proposition is the same as the proof of
Theorem 5.1 given in the previous section.



Proposition 8.4. (i) If X is simply connected, then Ex,(X) is the universal cover
ofPL(X) and hence, TTI(PL(X)) = TL.

(ii) If X is contractible, then Ex, (X) is contractible.

9. Aspherical manifolds not covered by Euclidean space. Suppose Y is a
reasonable space (for example, suppose Y is a locally compact, locally path con-
nected, second countable Hausdorff space). Also, suppose Y is not compact. A
neighborhood of infinity in Y is the complement of a compact set. Y is one-ended
if every neighborhood of infinity contains a connected neighborhood of infinity. A
one-ended space Y is simply connected at infinity if for any compact subset C CY
and any loop 7 in Y — C there is a larger compact subset C D C such that 7 is
null-homotopic in Y — Cr.

For example, W1 is one-ended for n > 2 and simply connected at infinity for
n > 3. The following characterization of Euclidean space was proved by Stallings
for n > 5 and by Freedman for n — 4. For n — 3 the corresponding result is not
known.

Theorem. (Stallings, Freedman) Let Mn be a contractible n-manifold, n > 4.
Then Mn is homeomorphic to W1 if and only if it is simply connected at infinity.

In certain circumstances it is possible to define a "fundamental group at infinity"
for a one-ended space Y. Suppose that C\ C C2 C . . . is an exhaustive sequence
of compact subsets (i.e., Y = UCi). This gives an inverse system of fundamental
groups, 7Ti(y — C\) <— TTI, (Y — C2) ̂— An inverse sequence of groups,

is Mittag-Leffter if there is a function / : N -> N such that the image of Gk in Gn

is the same for all k > /(n). The space Y is semistable if there is such an inverse
system of fundamental groups which is Mittag-Leffler. If this condition holds for
one such system, then it holds for all and the resulting inverse limit is independent
of the choice of base points. Hence, if Y is semistable we define its fundamental
group at infinity, denoted by 7rJ°(y), to be the inverse limit, lim7Ti(y — Cfc).

Definition. A closed manifold Nn is a homology n-sphere if H*(Nn) ^ i?*(5n)

For n > 3 there are many examples of homology spheres iVn which are not
simply connected (however, 7Ti(Nn) must be a perfect group).

The next result is an easy consequence of surgery theory for n > 5. It was proved
by Freedman for n = 4.
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Theorem. Let Nn~1 be a homology (n — 1)-sphere. Then there is a compact con-
tractible n-manifold with boundary X such that dX = Nn~l.

Now suppose that a flag complex L is a homology (n — l)-sphere and that Xn is a
contractible n-manifold with dX — L. By Theorem 8.3 and Proposition 8.4, PL(X)
is an aspherical n-manifold. Its universal cover Y,L(X) is a contractible n-manifold.

Proposition 9.1. Suppose as above that L is a homology (n — l)-sphere cobounding
a contractible manifold X. If L is not simply connected, then YIL(X) is not simply
connected at infinity.

Proof. As in the proof at the end of Section 7, order the elements of WL' WI, ^2? • • •
so that £(wk+i) > £(u)k) and put Yk — w\X U • • • U WkX. Then Yk is a contractible
manifold with boundary. Let Yk denote the complement of a open collared neigh-
borhood of its boundary. Then it is easy to see that S^(X) — Yk is homotopy
equivalent to dYk- Moreover, since WkXDYk-i = Ka(Wk\ which is an (n — l)-disk,
it follows that dYk is the connected sum of k copies of dX (= L). Hence, if n > 3,
TTI (dYk) is the free product of k copies of TTI(L) and the inverse system of funda-
mental groups is,

7Ti(L) 4 - 7Ti(L) * 7Ti(L) <- . . .

Thus, 7rf)(EL(X)) is not trivial.

As a corollary of the construction we have proved the following

Theorem 9.2. For each n > 4, there is a closed aspherical n-manifold (of the
form PL(X)) such that its universal cover is not homeomorphic to W1.

10. The reflection group trick, continued. As before, (X, dX) is a pair of
spaces and L is a triangulation of dX as a flag complex.

Theorem 10.1. If X is aspherical, then so is PL(X).

Proof It suffices to show that the covering space E^(X) is aspherical. Order the
elements of WL as before and set Yk = w\X U • • • U WkX. Thus, Yk is formed by
gluing on a copy of X to Yk~\. Since WkX n Y/c-i is contractible. Yk is homotopy
equivalent to Yk-i V X and hence, to X V • • • V X (k times). Since X is aspherical,
so is Yfc. Since T>L(X) is the increasing union of the Y ,̂ Ei,(X) is also aspherical.

Definition. A group n is of type F if its classifying space BTT has the homotopy
type of a finite complex. (BIT is also called the "K(TT, l)-complex.")

If B is homotopy equivalent to a finite CW complex, then we can "thicken" it
to a compact manifold with boundary. This means that we can find a compact
manifold with boundary X which is homotopy equivalent to B. The proof goes as
follows. First, up to homotopy, we can assume that B is a finite simplicial complex.
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The next step is to piecewise linearly embed B in some Euclidean space Rn. So, we
can assume B is a subcomplex of same triangulation of W1. Finally, possibly after
taking barycentric subdivisions, we can replace B by its regular neighborhood in
Rn. This is X.

The "reflection group trick" can then be summarized as follows. Start with a
group 7T of type F. After thickening we may assume that Bn is a compact manifold
with boundary X. Triangulate dX as a flag complex L. Then PL(X) is a closed
aspherical manifold which retracts onto BIT.

11. The Isomorphism Conjecture.

The Borel Conjecture. Suppose (M,dM) and (M',dMf) are aspherical mani-
folds with boundary and f : (M,dM) -» (Mf\dM') is a homotopy equivalence such
that f\dM is a homeomorphism. Then f is homotopic reldM to a homeomorphism.

In the case where dM = 0, the Borel Conjecture implies that two closed aspher-
ical manifolds with the same fundamental group are homeomorphic.

Suppose (X,dX) is a pair of finite complexes with TTI(X) = TT. Then (X,dX)
is a Poincare pair of dimension n if there is a Zyr-module D which is isomor-
phic to Z as an abelian group and a homology class /i 6 Hn(X,dX\D) so that
for any Zyr-module A, cap product with /i defines an isomorphism: Hl(X;A) =
iJn_i(X, dX\ D® A). If dX = 0, then X is a Poincare complex. A group TT of type
F is a Poincare duality group of dimension n (or a PDn-group) if Bit is a Poincare
complex.

The PDn-group Conjecture. . Suppose TT is a group of type F and that (X, dX)
is a Poincare pair with X homotopy equivalent to BIT and with dX a manifold.
Then (X, dX) is homotopy equivalent rel dX to a compact manifold with boundary.

A weak version of this conjecture replaces the word manifold by "ANR homology
manifold."

In the absolute case, where dX — 0, this conjecture asserts that for any PDn-
group 7T of type F, Bn is homotopy equivalent to a closed manifold.

As others will explain in their lectures, there is an important space in surgery
theory denoted by G/TOP. Its homotopy groups are 4-periodic and are given by
the formula:

Z, i = 0(4)
7Ti(G/TOP) = { Z/2, i = 2(4)

0, otherwise
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Moreover, the 4-fold loop space, f24(Z x G/TOP), is homotopy equivalent to Z x
G/TOP. It follows that Z x G/TOP defines a spectrum L and a generalized
homology theory iI*(X;L). It is almost, but not quite, true that

Quinn has defined an "assembly map" An : Hn(X]h) -> Ln(Z7r) where TT = it\(X)
and where Ln(Z7r) denotes Wall's surgery group for ZTT. These groups are also
known to be 4-periodic.

The Isomorphism Conjecture. Suppose TT is a group of type F. Then the as-
sembly map A* : H* (BIT',11) —>• Z/*(ZTT) is an isomorphism.

Conceivably, the Isomorphism Conjecture could be true for any torsion-free group
7T.

In dimension > 5 it is known that for a given group TT the truth of the Isomor-
phism Conjecture is equivalent to the truth of both the Borel Conjecture and (the
weak version of) the PDn-group Conjecture.

Theorem 11.1. The Isomorphism Conjecture is true for the fundamental groups
of all closed aspherical manifolds if and only if it is true for all groups of type F.

Proof We use the reflection group trick. Suppose TT is a group of type F. Thicken
Bn to a manifold with boundary X and triangulate dX as a flag complex L. Then
PL(X) is a closed aspherical manifold. Let r : PL(X) -» X be the retraction from
Theorem 8.1 and let G = TTI(PL(X)). We have the following commutative diagram:

Hn(PL(X);h) -> L

i ti r* i* t4- r*

Hn(X;h) -> LN(ZTT).

Hence, if the arrow on the top row is an isomorphism, so is the arrow on the bottom.

Remark. What this argument shows is that, in dimensions > 5, if we have a
counterexample to the relative version of the Borel Conjecture or to the rela-
tive version of the PDn-gro\ip Conjecture, then the reflection group trick will
provide us with a counterexample in the absolute case. For example, suppose
/ : (M,dM) -> (Mf,dMr) is a counterexample to the Borel Conjecture. We
might as well assume that dM — dM' = L and that f\dM =id. Then / induces
a homotopy equivalence PL(M) —> PL{M') which is not homotopy equivalent to
a homeomorphism. Similarly, if (X, dX) is a counterexample to the PDn-group
Conjecture and L = dX, then G = TTI(PL(X)) is a PDn-group which is not the
fundamental group of a closed aspherical manifold.
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12. Aspherical manifolds which cannot be smoothed. Suppose (X,dX)
is a compact aspherical n-manifold with boundary and that dX is triangulable.
Suppose further that the Spivak normal fibration of X does not lift to a linear
vector bundle. (In other words, a certain map X —» BG does not lift to BO.)
Apply the reflection group trick with L — dX. Since X is codimension 0 in PL(X)
and X is a retract of PL(X), the Spivak normal fibration of PL(X) cannot lift
to linear vector bundle. Hence, PL(X) is not homotopy equivalent to a smooth
manifold. J-C. Hausmann and I showed that there exist examples of such X for
each n > 13, thereby proving the following.

Theorem 12.1. In each dimension > 13, there is a closed aspherical manifold not
homotopy equivalent to a smooth manifold.

We will prove a stronger result in Section 16.

13. Further applications of the reflection group trick. The next two results
were proved by G. Mess.

Theorem 13.1. (Mess). For each n > 4, there is a closed aspherical n-manifold
whose fundamental group is not residually finite.

Theorem 13.2. (Mess). For each n > 4, there is a closed aspherical n-manifold
whose fundamental group contains an infinitely divisible abelian group.

On the other hand, it is known that there are no such examples in dimension 3.

The proofs of both theorems are similar. By a theorem of R. Lyndon, if TT is a
finitely generated 1-relator group and if the relation cannot be written as a proper
power of another word, then the presentation 2-complex for TT is aspherical. In
particular, any such TT is of type F with a 2-dimensional BIT. This 2-complex can
then be thickened to a compact 4-manifold. For Theorem 13.1 take TT to be the
Baumslag-Solitar group < a,b\ab2a~1 — bs >. It is known that TT is not residually
finite; hence, neither is any group which contains it. For Theorem 13.2 take TT to be
the Baumslag-Solitar group < a, b\aba~l — b2>. The centralizer of b in this group
is isomorphic to a copy of the dyadic rationals.

S. Weinberger has pointed out that some of the original examples of finitely
presented groups with unsolvable word problem are groups of type F. Since any
group which retracts onto such a group also has unsolvable word problem, the
reflection group trick gives the following.

Theorem 13.3. (Weinberger). There are closed aspherical manifolds the funda-
mental groups of which have unsolvable word problem.
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14. Hyperbolization. "Hyperbolization" refers to certain constructions, invented
by Gromov, for converting any cell complex into an aspherical polyhedron (in fact,
into a nonpositively curved polyhedron). One of the key features of such construc-
tions is that they preserve local structure. Thus, hyperbolization will convert an
n-manifold into an aspherical n-manifold. In this section we describe one such
construction, Gromov's "Mobius band hyperbolization procedure," which given a
cubical cell complex P produces an aspherical cubical cell complex h(P). Before
giving the definition, we discuss some properties of the construction: 1) The con-
struction is functorial in the following sense: if / : P —>> Q is an embedding onto
a subcomplex, then there is an induced embedding h(f) : h(P) -> h(Q) onto a
subcomplex.

2) The cubical complexes P and h(P) have the same vertex set. Moreover, for
each vertex v, Lk(v, h(P)) is the barycentric subdivision of Lk(v, P).

In particular, it follows that if P is an n-manifold, then so is h(P). Property
2) also shows that the link of each vertex in h(P) is a flag complex. Hence, by
Gromov's Lemma (stated in Section 6), the piecewise Euclidean metric on h{P) is
nonpositively curved. Consequently, we have the following property.

3) h(P) is aspherical.

By functoriality, each cube • in P is converted into a subspace h(D) of h(P) (called
a "hyperbolized cell"). There is a map c : h(P) —> P, unique up to homotopy,
which is the identity on the vertex set and which takes each hyperbolized cell to
the corresponding cell of P. The map c has the following two properties.

4) c induces a surjection on homology groups with coefficients in Z/2.

5) c* : 7Ti(h(P)) —> TTI(P) is surjective.

We also list one final property.

6) If P is an n-manifold, then there is an (unoriented) cobordism between P and
HP).
A corollary of 6) is the following.

Theorem 14.1. (Gromov). Every triangulable manifold is cobordant to an as-
pherical manifold.

The definition of h(P) is by induction on dimP. If dimP < 1, then h(P) — P.
Suppose that the construction has been defined for all cubical complexes of dimen-
sion < n and that properties 1) and 2) hold. Let Dn denote the standard n-cube
and let a : Dn —>• Dn denote the antipodal map (a is also called the "central symme-
try" of Dn). By induction, h(dOn) has been defined and by 1) the isomorphism a
induces an involution h(a) : h(dOn) -> h(dOn). The quotient space h{dUn)/{Z/2)
is also a cubical complex. We define h(On) to be the canonical interval bundle over
/*(cCP)/(Z/2), i.e.,
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where Z/2 acts on the first factor via t —» —t and on the second via h(a).

Since the restriction of this interval bundle to each cell of h(dOn)/Z/2) is a trivial
bundle, /i(Dn) naturally has the structure of a cubical complex: each new cell is
the product of [-1,1] with a cell of h(dOn)/(Z/2). If follows that if v is a vertex
of Dn, then there is a new (k + l)-simplex in Lk(v, h(Dn)) for each fc-simplex in
Lk(v, h(dDn)). Thus, Lk(v, h(Dn)) is the cone on Lk(v, h(dnn)). Using induction,
this implies that Lk(v, h(Dn)) is the barycentric subdivision of A72"1.

We note that the boundary of /i(Dn) is canonically identified with h(dOn). (The
identification is canonical because a lies in the center of the automorphism group
of the cube.)

Let p(fc) denote the fc-skeleton of a cubical complex P. If dimP = n, then h(P)
is defined by attaching, for each n-cell Dn in P, a copy of h(\3n) to the subcomplex
h{dUn) of h(P^n~^) via the canonical identification.

Given an embedding / : P -> Q with restriction /(n~1) : P^" 1 ) -> Q^"1), the
map h(f) : h(P) —>- h(Q) is induced by the map on each new cell which is the
product of the identity map of [-1,1] with h(f(n~~1^). It is clear that the new links
are barycentric subdivisions of the old ones. The proof of properties 3) and 4) are
straightforward and are left to the reader.

To check property 5), let P denote the universal cover of P and let TT = TTI(P). By
functorality, n acts freely on h(P) and h(P) —> /I(P)/TT is a covering projection. In
fact, it is clear that h(P)/7r = h(P). This defines an epimorphism <p : iri(h(P)) -> TT.
In fact, it is not hard to see that cp is just the homomorphism induced by the
canonical map c : h(P) —» P.

To check 6), suppose that M is triangulated manifold. Let CM denote the cone
on M, i.e., CM = (M x [0,1])/ ~ where (x,0) - (x',0) for all x , ^ e M. Let c
denote the cone point. There is a standard method for subdividing each simplex
of CM into cubes. This gives CM the structure of a cubical complex. The link of
c in h(CM) is isomorphic to the barycentric subdivision of M. Hence, removing
a small regular neighborhood of c from h(CM) we obtain a cobordism between
M and/i(M)(=/i(Mx 1)).

Remark. There is a slight variation of the above which provides a sort of "relative
hyperbolization procedure." Suppose Q is a subcomplex of P. Let p : P —> P be
the universal cover. Let P be the cubical complex formed by attaching a cone to
each component of p~1(Q) in P. Let h(P)o denote the complement of small regular
neighborhoods of the cone points in h(P). The fundamental group n = TTI(P) acts
on /i(P)o, so we define

In general, /i(P, Q) will not be aspherical. However, if Q is aspherical and if TTI(Q) ->
TTI(P) is injective, then the link of each cone point in h(P) is contractible (since it
is a copy of the universal cover of Q). Hence, h(P) and h(P)o will be homotopy
equivalent. So, in the above situation, /i(P, Q) is aspherical.
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Not only did Gromov state Theorem 14.1, he also asserted that if two closed
aspherical manifolds Mi and M2 were cobordant, then one could choose the cobor-
dism to be an aspherical manifold with boundary. Although I don't know how to
prove Gromov's assertion, the construction above does prove the following.

Theorem 14.2. Suppose that there is a triangulable cobordism JVn+1 between two
closed aspherical manifolds Mi andM£ such that for i = 1, 2, TTI(M™) —» 7Ti(iVn+1)
is injective. Then there is an aspherical cobordism between Mf and M£ with the
same property.

Remark Let Mn = /i(dDn+1)/(Z/2)). The manifolds Mn occur in nature. In-
deed, consider real projective space RPn and the collection of all its coordinate
hyperplanes, defined by the equations xi — 0, for 1 < i < n + 1. Then Mn is the
manifold resulting from blowing up (in the sense of algebraic geometry) all projec-
tive subspaces which are intersections of such coordinate hyperplanes. It follows
from this that Mn can also be described as the "closure of a generic torus orbit on
a real flag manifold." More precisely, the flag manifold is the homogeneous space
SL(n + 1; R)/2? where B denotes the Borel subgroup of upper triangular matrices.
The real "torus" H is the subgroup of diagonal matrices in SL{n + 1,R). Thus,
H = (R*)n. An if-orbit on the homogeneous space is "generic" if it is the orbit
of a flag which is in general position with respect to the coordinate hyperplanes in
Rn+1 (in other words, it is generic if its stabilizer in H is trivial). It can then be
shown that the closure of a generic iif-orbit is homeomorphic to Mn.

15. An orientable hyperbolization procedure. The trouble with the Mobius
band procedure is that the hyperbolized cells are not orientable. Gromov gave a
second construction which remedied this. We explain it below.

The rough idea behind any hyperbolization procedure is this. We first give some
functorial procedure for hyperbolizing cells. Then, given a cell complex A, we define
its hyperbolization by gluing together hyperbolized cells in the same combinatorial
pattern as the cells of A.

Gromov's second procedure can be applied to any finite dimensional simplicial
complex A. The result will be an aspherical (in fact, nonpositively curved) cubical
cell complex /i(A). The construction will have analogous properties to properties
1) through 6) in the previous section. In addition, it will have the following two
properties.

7) the natural map c : h(A) —» A induces on surjection on integral homology
groups.

8) If A is a manifold, then c pulls back the stable tangent bundle of A to the
stable tangent bundle of h(A).

The definition of the construction will again be by induction on dimension. In
order to define the hyperbolization of an n-dimensional simplicial complex A, we
first need to define the hyperbolization of an n-simplex, h(An). To complete the
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definition of h(A) we need to have some fixed identification of each n-simplex in A
with the standard n-simplex. Thus, we need to assume that A admits a "folding
map" p : A -» An, that is, a simphcial map p which restricts to an injection on
each simplex. If we replace A with its barycentric subdivision A' then it always
admits such a folding map. Once we have such a p, h(A) is defined to be the fiber
product of p : A -» An and c : h(An) -> An. In other words, h(A) = {{x,y) G
Axh(An)\p(x) =

Each transposition of two vertices of An induces a reflection on An. In order to
make such a reflection into a simphcial isomorphism it is necessary to pass to the
barycentric subdivision (An) /.

If dimA < 1, then, by definition, h(A) = A. Suppose that h(A) has been defined
for simphcial complexes of dimension < n. Choose a reflection r : (dAn)f —>• (<9An)'.
By functorality, we have an induced involution h(r) : h((dAnY) -* h((dAn)'). The
involution h{r) acts as a reflection on the (n — l)-manifold h((dAn)') and its fixed
point set separates h{(dAn)') into two "half-spaces" which we denote by H+ and
H-. Then h(An) is defined to be

(h((dA)') x [-1,1])/ ~

where the equivalence relation ~ identifies if_ x { —1} with i?_ x {+1}. The
boundary of h(An) consists of two copies of H+ glued together, i.e., it can be
identified with h((dAn)'). Another way to describe this procedure is to form the
manifold h((dAn)') x S1 and then cut it open along H+ x {1}. It is clear that h{An)
is an orientable manifold with boundary (assuming that h((dAn)') is orientable).
Assuming that h({dAn)') is a cubical cell complex, we see that h(An) inherits the
structure of a cubical cell complex (possibly after subdividing the [-1,1] factor).
Moreover, the link of a vertex v in h(An) is the cone on Lk(v,h((dAn)')). It
follows that the link of any vertex in h(An) is a flag complex and hence, that
h(An) is nonpositively curved. Finally, as indicated above, the hyperbolization
of an arbitrary n-dimensional simphcial complex is defined by the fiber product
construction.

Using the fact that Hn(h(An),dh(An)) ^ Z, it is not hard to verify property
7). Property 8) follows from the observation that when A is a manifold, h(A) is
defined as a submanifold of A x An with trivial normal bundle.

Remark. One consequence of 8) is that c : h(A) —> A pulls back the stable char-
acteristic classes of A (e.g., its Pontriagin classes and Stiefel-Whitney classes) to
those of h(A). Thus, the characteristic numbers h(A) are the same as those of A.
This shows that the condition of being aspherical does not impose any restrictions
on the characteristic numbers of a manifold.
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16. A nontriangulable aspherical 4-manifold. The E^-form is a certain posi-
tive definite, unimodular, even symmetric bilinear form on Z8. (So, its signature is
8). The plumbing construction gives a smooth, simply connected 4-manifold with
boundary, iV4, with intersection form the Eg-form. The boundary of N4 is a ho-
mology 3-sphere; moreover, it is not simply connected. (In fact, dN4 is Poincare's
homology 3-sphere). Let A4 be a simplicial complex formed by triangulating N4

and then attaching the cone on dN4. Of course, A4 is not a 4-manifold since there
is no Euclidean neighborhood of the cone point. On the other hand, it is a poly-
hedral homology manifold in the sense that the link of each vertex is a homology
sphere. It is called the E% homology 4-manifold. Stiefel-Whitney classes make sense
for homology manifolds and it follows from the fact that N4 is stably parallelizable
that the Stiefel-Whitney classes of A4 all vanish. Its signature is 8.

A famous theorem of Rohlin asserts that for any smooth or PL closed 4-manifold
M4 with wi(M4) = 0 = W2(M4), the signature of its intersection form must be
divisible by 16. It follows that A4 is not homotopy equivalent to a smooth or PL
4-manifold. On the other hand, by Freedman's result (stated in Section 9), there is
a contractible manifold N' with dN' — dN. Hence, A4 is homotopy equivalent to
the topological manifold M4 — NUN'. (We have replaced the cone on a homology
3-sphere by the contractible manifold N'.) By Rohlin's Theorem M4 cannot be
homotopy equivalent to a PL 4-manifold.

After Freedman's result was proved, it still seemed possible that A4 could be ho-
motopy equivalent to triangulated manifold M4. However, it follows from Casson's
work on the Casson invariant that this is also not the case. Indeed, the link of any
vertex in a triangulation of M4 must be a homotopy 3-sphere (and at least one such
link must be a fake 3-sphere since the triangulation cannot be PL). One can then
arrange that the connected sum of all fake 3-spheres which arise as links bounds a
PL submanifold of M4 of signature 8. This implies that the Casson invariant of
such a fake 3-sphere must be an odd integer. However, since the Casson invariant
of a homology sphere depends only on its fundamental group, this integer is 0. This
contradiction shows that M4 is not triangulable.

The hyperbolization technique of the previous section allows us to promote this
result to aspherical 4-manifolds. Consider fo(A4), the result of applying Gromov's
oriented hyperbolization procedure to A4. It is a polyhedral homology manifold
with only one non-manifold point (namely, the hyperbolization of the cone point).
By property 8) of the previous section, its Stiefel-Whitney classes vanish. Since
the complement of a regular neighborhood of the cone point is oriented cobordant
rel dN to iV4, it follows that the signature of h(A4) is 8. Now let M4 denote
the result of replacing the regular neighborhood of the cone point in h(A4) by
the contractible manifold N'. Since M4 is homotopy equivalent to /i(A4), it is
aspherical. The argument of the previous paragraph now proves the following.
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Theorem 16.1. There is an aspherical J^-manifold M4 which is not homotopy
equivalent to any triangulable l^-manifold.

In particular, M4 is not homotopy equivalent to a PL manifold. Standard
arguments show that this property is preserved when we take the produce with
a fc-torus; hence, we have proved the following.

Theorem 16.2. For each n > 4; there is a closed aspherical n-manifold which is
not homotopy equivalent to a PL manifold.

17. Relative hyperbolization. As we have been learning in these lectures, Far-
rell and Jones have proved the Isomorphism Conjecture (cf. Section 10) for the
fundamental group of any nonpositively curved, closed Riemannian manifold. It
seems likely (or at least plausible) that the Farrell-Jones program can be adapted
to prove the Isomorphism Conjecture for the fundamental group of any closed PL
manifold equipped with a nonpositively curved, piecewise Euclidean metric (cf.
Section 6). In this section we describe a variant of the reflection group trick (it is
also a variant of hyperbolization) which can be used to prove the following.

Theorem 17.1. Suppose that the Isomorphism Conjecture is true for the funda-
mental group of any closed PL manifold with a nonpositively curved, piecewise
Euclidean metric. Then it is also true for the fundamental group of any finite
polyhedron with a nonpositively curved, piecewise Euclidean metric.

Remark. In the case of the Whitehead group, this program was carried out about
ten years ago by B. Hu. He first proved the vanishing the Whitehead group of
the fundamental group of any closed PL manifold with a nonpositively curved
polyhedral metric. He then used a construction similar to the one described below
to derive the same result for the fundamental group of any nonpositively curved
polyhedron.

Suppose B is a cell complex equipped with a piecewise Euclidean metric. Subdi-
viding if necessary, we may assume that B is a simplicial complex. Suppose further
that B is a subcomplex of another simplicial complex X. Possibly after another
subdivision, we may assume that B is a full subcomplex of X. This means that
if a simplex a of X has nonempty intersection with J5, then the intersection is a
simplex of B (and a face of a). We note that while each simplex of B is given a
Euclidean metric, no metric is assumed on the simplices of X which are not in B.
In practice X will always be a PL manifold.

We will define a new cell complex D(X, B) equipped with a polyhedral metric.
We will also define a covering space D(X, B). Each cell of D(X, B) (or of D(X, B))
will have the form ax [-l,l]fc, for some integer k > 0, where a is a simplex of B
and where ax[-l,l]fc is equipped with the product metric. (Usually we will use a
for a simplex of B and a for a simplex in X which is not in B.) Here are some
properties of this construction.



20

1) For n — dimX, there will be 2n disjoint copies of B in D(X, B).

2) For each such copy and for each vertex v m B, the link of v in D(X, B) will
be isomorphic to a subdivision of Lk(v,X). In particular, if X is a manifold then
D(X, B) will be a manifold.

3) If the metric on B is nonpositively curved, then the metric on D(X,B) will
be nonpositively curved and each copy of B will be a totally geodesic subspace of
D(X,B).

4) The group (Z/2)n will act as a reflection group on D{X,B). A fundamental
chamber for this action will be denoted by K(X, B). It will be homeomorphic to a
regular neighborhood of B in X. Thus, K(X, B) will be a retract of D(X, B) and
B will be a deformation retract of K(X, B).

In fact, the entire construction depends only on a regular neighborhood of B in
X. More precisely, it depends only on the set of simplices of X which intersect B.

Let V denote the poset of simplices a in X such that a n B ^ 0 and such that
a is not a simplex of B. For each simplex a of B, let V>a denote the subposet of
V consisting of all a which have a as a face. Let T =Flag(P) denote the poset of
chains in V (an element of T is a nonempty, finite, totally ordered subset of V).

Given a chain / = {G$ < • • • < crfc} G T, let GJ denote its least element, i.e.,
af = <T0. Given a simplex a of S, let Jr>{a} denote the set of chains / with GJ > a.

We begin by defining the fundamental chamber K (= K(X, B)). Each cell of K
will have the form ax [0,1]^, for some / G F>{a}' Thus, the number of interval
factors of ax [0,1]^ is the number of elements of / . If / < / ' , then we identify [0,1]^
with the face of [0,1]^' defined by setting the coordinates xa = 1, for all a G / ; — / .

We define an incidence relation on the set of such cells as follows: ax[0,1]^ <
a;x[0,l]^ if and only if a < a' and / < / ' . (Notice that if a < ar, then
3Z>{OL'} ̂  F>{OL}') K is defined to be the cell complex formed from the disjoint
union JJax[0,l]^ by gluing together two such cells whenever they are incident. It
is clear that K is homeomorphic to a regular neighborhood of B in X.

Next we define the mirrors of K. For each a G V>a
 a nd for each chain / with

cjj — a define 5a(ax[0,l]^) to be the face of ax[0,1]^ defined by setting xa = 0,
i.e.,

Sa(a x [0,l]/) - a x 0 x [ O , ! ] ' - ^ .

The mirror SaK is the subcomplex of K consisting of all such cells. In other words,
5aK — a x 5cr, where a = B n G and where Sa denotes the star of the barycenter
of G in the simplicial complex T (=Flag(7>)).

Next we apply the reflection group trick. Set J = (1/2)v. Define D = D(X, B)
by

D=(JxK)/ ~

where the equivalence relation ~ is defined as in Section 7.
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Remark. Suppose X is the cone on a simplicial complex dX and that B is the cone
point. Then D(X,B) coincides with the cubical complex PL defined in Section 3
(where L is the barycentric subdivision of dX).

The definition of the space D = D{X, B) is similar to that of D only one uses
the smaller group (Z/2)n, n = dimX, instead of J. If {r i , . . . , rn} is the standard
set of generators for (Z/2)n, then we identify the points (pr^, x) and (#, x) whenever
x belongs to a mirror 5aK with i = dimcr.

There is another definition of D(X, B) which is similar to the definitions of the
hyperbolization constructions in the previous two sections. Define dim(X, B) to be
the maximum dimension of any simplex in X which is not in B. We shall define
a space D^k\X,B) for any pair (X,B) with dim(X, B) < k. The definition is by
induction on dim(X, B). First of all, D^\X, B) is defined to be B. Assume that
£)(™-!) h a s been defined and that dim(X, B) = n. Set

If a is an n-simplex such that a D B 7̂  0 and a is not in 5 , then define

D^ (a, aDB) = D^^ {da, daDB)x [-1,1].

We note that the boundary of D^ (a, aHB) is naturally a subcomplex o
B,B). Hence, we can glue in each hyperbolized simplex D^n\a,a n B) to obtain

The advantage of this definition is that it makes it easier to prove property
3) (that if B is nonpositively curved, then so is D{X,B).) The proof is based
on a Gluing Lemma of Gromov. This lemma asserts that if we glue together two
nonpositively curved spaces via an isometry of a common totally geodesic subspace,
then the new metric space is nonpositively curved. The inductive hypothesis gives
that the spaces D^n'^{X^1"1^ UB,B) and D^n"^{da,dar\B) are nonpositively
curved. Using the Gluing Lemma, we get that D^(X^B) is also nonpositively
curved.

Remark. The construction of D(X,B) was explained to me about eight years ago
by L. Jones. It is a variation of the "cross with interval" hyperbolization procedure
which had been described previously by T. Januszkiewicz and me. Relative versions
of this were described by B. Hu and by R. Charney and me. In these earlier versions
the 1-skeleton of X was not changed. Jones realized that the construction is nicer
if, as in this section, we also hyperbolize the 1-simplices.


