
united nations
educational, scientific

and cultural
organization

the
abdus salam
international centre for theoretical physics

international atomic
energy agency

SMR1312/5

School on High-Dimensional Manifold Topology
(21 May - 8 June 2001)

Algebraic K- and /.-theory and applications
to the topology of manifolds

I. Hambleton
Mathematics and Statistics Department

McMaster University
Hamilton, L8S 4K1 Ontario

Canada

These are preliminary lecture notes, intended only for distribution to participants

strada costiera, I I - 34014 trieste italy - tei.+39 04022401 I I fax +39 040224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it





ALGEBRAIC K- AND L-THEORY AND APPLICATIONS
TO THE TOPOLOGY OF MANIFOLDS

IAN HAMBLETON

ABSTRACT. Some lecture notes for the Summer School in High-Dimensional
Topology, May 20 - June 8, 2001 at the Abdus Salam International Centre
for Theoretical Physics.

CONTENTS

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Homology of coverings
Homology of groups
Projective Modules
Finiteness obstructions
Whitehead torsion
Hermitian forms
Normal maps and surgery obstructions
Computation of L-groups
Topological 4-manifolds with finite fundamental group
Surgery obstruction on closed manifolds
The spherical space form problem
Bounded K and L-theory
Mackey properties
Non-linear similarity

Acknowledgments
References

2
3
5
8
9

15
17
23
29
32
35
38
42
43
51
51

The development of geometric topology has led to the identification of spe-
cific algebraic structures of great richness and usefulness. A common theme
in this area is the study of algebraic invariants of discrete groups or rings by
topological methods. The resulting subject is now called algebraic if-theory.

The purpose of these lecture notes is to survey some of the main construc-
tions and techniques in algebraic if-theory, together with an indication of the
topological background and applications. More details about proofs and refer-
ences will be given in the lectures, as time permits. The material is organized
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2 IAN HAMBLETON

into some introductory sections, concerning linear and unitary K-theory, fol-
lowed by descriptions of four important geometric problems and their related
algebraic methods. Good general sources for much of the preliminary material
are the books of K. Brown [3], Curtis-Reiner [11], [10], Milnor [33], Milnor-
Husemoller [34], and Swan-Evans [44]. Some of the material in Section 7 is
based on my DMV lecture notes [45].

1. HOMOLOGY OF COVERINGS

Let X be a CW-complex with fundamental group n = TTI(X, XQ), and denote
by A := ZTT the integral group ring of TT. The standard involution A H-> A on A
is induced by the formula

for ng G Z and g G TT. Notice that this gives an anti-automorphism of the
group ring since uv — vu for all u, v G A.

If X denotes the universal covering of X, then TT acts cellularly on X by
deck transformations, and the cellular chain complex C*(X; Z) becomes a free
A-chain complex of right A-modules. We define C*(X) := C*(X; Z) with this
right A-module structure, and

(1.1) H.(X;A):=H(C*(X)) .

These are just the homology groups of the universal covering together with
the 7r-action. More generally, if M is any right A-module, we define

(1.2) H*(X; M) := H(C*(X) ®A M)

where to define the tensor product we convert M into a left A-module by the
rule Am — mX.

Lemma 1.3. Let p<ir and X(p) be the orbit space of X under the action of
p. Then H^X^ZiTr/p}) = H*(X(p)-Z).

For p — 7T acting trivially on Z this agrees with the ordinary homology of
X — X(ir). The homology of the coverings X(p) are related to H*(X; Z) via
the projection maps p: X(p) -> X and the transfer trf: E°°X+ -> E

Proposition 1.4. If TT — TTI(X, £Q) is a finite group, the composition p* o
ir/*: Hi(X;Z) —>• Hi(X; Z) is multiplication by \TT\.

We can also define the cohomology of X with coefficients in a right A-module
M b y

H*(X;M) :=

Lemma 1.5. For X a finite CW-complex, the groups H*(X;A) are isomor-
phic to the cohomology groups H*p(X; Z) of X with compact support.
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A finite connected CW-complex X which homologically resembles a mani-
fold of dimension n is called a finite Poincare complex of formal dimension n.
More precisely, we start with a pair (X,w) where w: fti(X,x0) -> {±1} is a
homomorphism (in the case of an actual manifold, this is the orientation data
dual to the first Stiefel-Whitney class). If w is trivial we suppress it from the
notation. For such a pair (X, w) we define a new involution on A = ZTTI(X, #O)

by the formula

taking into account the values of the orientation homomorphism. Then w-
twisted homology groups H™(X; M) — H(C*(X) ®A M) are defined as above,
using the ^-twisted involution to convert M from a right A-module into a
left A-module. Poincare duality is defined with respect to a fundamental class
[X] G H™(X\Z). Let f G Cn(X) ®A Z be a representative cycle for [X], so
the transfer trf £ G Cn(X) is a locally finite chain on X. Then (X,w) is a
Poincare complex of formal dimension n and orientation class w if the chain
map

defined by the cap product with trf £ is a chain homotopy equivalence. Since
the choice of representative £ for [X] is unique up to chain homotopy, the
Poincare duality condition just says that the cap product induces isomorphisms

for all r, and any coefficient module M. In the special case where M = A this
is the usual duality between homology and cohomology with compact supports
on£

2. HOMOLOGY OF GROUPS

Let G be a discrete group and recall that K(G, 1) denotes any CW-complex
X with TTI(X,XQ) — G and 7Ti(X) = 0 for i > 1. Such a space is uniquely
determined up to homotopy equivalence by G. The homology of the group G
with coefficients in a right G-module (i.e. a right ZG-module) is defined to be

(2.1) H.{G]M) := H*(K(G,1);M) .

Similarly, we can define the cohomology of G with coefficients in a G-module
as the cohomology of K(G, 1).

Example 2.2. For G = Z/2, the space X = K(Z/2, l)j= RP°° is the union
of all the real projective spaces RPn as n —> oo. Then X = S°° and

A = Z[Z/2] - Z[T]/(T2 - 1) ̂  Z + ZT
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where T denotes the deck transformation given by the antipodal map on S°
The chain complex C*(RP°°]A) in this case is

ri d r d r d r € v

\-T 1+T
A -* A ' A A c rj

i\ i\ i\ LA

where e: A —> Z is the augmentation map ^2ng9 l~* S % - Since 5°° is
contractible (this always holds for the universal covering of a K(G,1)), the
sequence above is exact and we get a resolution of Z by free A-modules. In
order to compute the homology groups H*(Z/2; M) for a Z/2-module M, we
tensor the complex above with M to obtain

The differentials A <g> M —>• A ® M are given by A ® m H^ 5A <g> m, which is just
multiplication by 1 dz T. Therefore

H2k(Z/2; M) = {meM\m= -Tm}/{m -Tm\meM}

and
F2fc+i(Z/2; M) = {m G M | m = Tm}/{m + Tm | m G M}

for k > 0, and these groups are all 2-torsion. D

Proposition 2.3. For G a finite group, the homology H*{G\M), * > 0; is
torsion of exponent \G\ for any G-module M.

If M = Z with trivial G-action, we write H*(G) = H*(G; Z). Here are some
useful properties:

(i) H1(G)=G/[G,G\.
(ii) If G = F/i? where F is a free group and R is a normal subgroup of F ,

then ff2(G) = i2 n [F, F]/[F, R] (Hopf's formula).
(iii) If G — B\ *A B2 is the amalgamated free product of B\ and B^ over a

common subgroup A, then there is an exact sequence

• • • -> ^ ( A ) -^ ^ (Bx) e if<(B2) ->> Hi(G) -> i/i-iC^) - ) • . . .

(iv) ^ ( C x Z) = Ht(G) 0 Hi-i(G).
(v) If / : G\ —> G^ is a group homomorphism, there is a long exact sequence

where #*(/) is the homology of the mapping cylinder of the induced map

Sometimes the space K(G, 1) is homotopy equivalent to a finite Poincare com-
plex, or even a closed manifold. These groups are of great interest in geometric
topology (see [14] for a comprehensive survey of progess on the Novikov and
Borel conjectures concerning the topology of aspherical manifolds). The basic
example is G — Zk, where K(G, 1) = Tk is a fc-dimensional torus.
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Lemma 2.4. Suppose that K(G, 1) is homotopy equivalent to a finite complex.
Then G contains no elements of finite order except the identity.

This is the first necessary condition for G to be the fundamental group of
an aspherical manifold.

3. PROJECTIVE MODULES

Let R be a ring with unit element. An i?-module P is projective if it is
a direct summand of a free i?-module. The projective class group KQ(R) is
the Grothendieck group of the category V(R) of finitely-generated projective
/^-modules. More explicitly, the generators of K0(R) are isomorphism classes
[P], for each P G V(R), and relations [P © Q] = [P] + [Q] for all P , Q
in V(R). Then K0{R) is an abelian group, and [P] = [Q] in K0(R) if and
only if P © Rk = Q © Rk for some integer k > 0. This relation is called
stable isomorphism. In many cases (e.g. for R a field or skew field), stable
isomorphism implies isomorphism. We will discuss this "cancellation" problem
more below.

Proposition 3.1. / / R is a field, skew field, local ring, or a principal ideal
domain, then KQ(R) = Z, where the isomorphism is given by the rank.

For R a Dedekind domain, such as the ring of integers in an algebraic number
field, the group KQ(R) is difficult to calculate since it involves the ideal class
group of R. If K denotes the field of fractions of i?, then a fractional i?-ideal
is a finitely-generated /?-submodule of K. The product J\ J2 of two fractional
ideals is the i?-ideal consisting of all finite sums ^ xiyi with X{ G J\ and yi G J2-
The inverse ideal J~l = {x G K\xJ C i?}, and the product JJ~l = R. Two
fractional ideals are called equivalent if they are isomorphic as i?-modules, and
the equivalence class of J is denoted [J]. The ideals equivalent to R are called
principal ideals, and the abelian group (under multiplication) of ideal classes
modulo principal ideals is the ideal class group Cl(R).

Theorem 3.2. Let R be a Dedekind domain whose quotient field is an alge-
braic number field or a function field. Then the ideal class group Cl(R) is
finite.

Even for R = Z[e27rz/p], where p is an odd prime, the structure of the ideal
class group Cl(R) is generally unknown (see [33, p. 30]), although there is an
explicit formula for its order, called the ideal class number.

Theorem 3.3. Let R be a Dedekind domain. Then KQ(R) = Z © Cl(R).

The ideal class number is often non-trivial (e.g. for p — 23, 29), so these
rings have projective modules which are not stably isomorphic to free modules.

The projective class group respects products of rings
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and if / : R —> S is a ring homomorphism, there is an induced map

f*:K0(R)->K0(S)

induced by /*(P) = P ® # 5, with the usual functorial properties. In addition,
Ko is Morita invariant so that

K0(Mn(R)) * K0(R) .

We define K0{R) to be the quotient of K0(R) by the subgroup generated by
the free modules [Rk]. In other words, if i: Z -> R maps 1 e Z to the unit
element of i?, then

K0(R) := #<>(£)/ Im z*

The finiteness result above for the class group of Dedekind domains has a
striking generalization due to R. Swan. A module is called locally free if it
becomes free after tensoring with Z(p) for all primes p.

Theorem 3.4 (Swan). Let R be a Dedekind domain of characteristic 0, and
G be a finite group such that no rational prime dividing the order of G is
invertible in R. Then every finitely generated protective RG module is locally
free. Moreover, K0(RG) = Z 0 K0{RG) and K0(RG) is finite.

If R can be embedded into a (skew) field F , then we define rank(P) =
dimF(P ®R F). It follows that K0(R) = ker{r: K0(R) -> K0(F)}, where
r{[P})= rank P .

Lemma 3.5. If R can be embedded in a field or skew field, then KQ(R) =
Z®K0(R).

This direct sum splitting doesn't always hold. For example, if R = Mn(F)
is the ring of n x n matrices over a field F, then KQ(R) = Z generated by the
simple module, but KQ(R) = Z/n.

The primary methods for computing K0(R) are localization sequences and
the Mayer-Vietoris type exact sequences arising from fibre squares of rings.
The general idea is to reduce the study of projective i?-modules to the same
problem over simpler rings, such as full matrix rings over (skew) fields, or
complete rings. Recall that R with a 2-sided ideal / is a complete in the /-adic
topology if R = limR/Ik.

i—

Lemma 3.6. If R be a complete in the I-adic topology, then KQ{R) = K0(R/I)
via the projection map.

For example, this holds if R is either a left artinian ring, or a finitely gen-
erated algebra over a complete noetherian local ring, and / is contained in
Radi?. We will be particularly interested in group rings RG, where G is a
finite group and R = Zp. In this case, KO(ZPG) S KO(FPG) ^ K0(ZpG/Rad).
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To recontruct projectives over R out of projectives over simpler rings, we
need the technique of fibre squares. Suppose that a commutative square of
rings

R > oi

(3.7) J t J,

has the following properties

(i) The maps z, j , k, and / are ring homomorphisms.
(ii) R is the fibre product of Si and S2 over T.

(iii) At least one of j and I is surjective.

Given left modules Pi and P2 over S\ and S2 respectively, together with an
isomorphism

h: j^Pi) = Px ®Sl T ^ P2 ®s2 T = h(P2)

let M(PuP2,h) := {(pi,p2) G Pi x P2|Mi*(Pi)) = ^ fe )} . This has an
i?-module structure by the formula r • (pi,p2) := (i(r)pi, ̂

Proposition 3.8 (Milnor). / / P i anrf P2 are finitely generated or protective,
then so is M(Pi,P2,h). Every protective R-module is isomorphic to some
M(Pi,p2,h) for suitable choices of Pi, P2 and h.

The choice of isomorphism h does change the isomorphism class of M(Pi, P2, h)
in general, but the information so far tells us that the sequence

K0{R) -> Ko(5i) 0 K0(S2) -> K0(T)

is exact. Extending this Mayer-Vietoris type sequence to the left or right will
involve the definition of new if-theory functors.

Example 3.9. Let G = Z/p for p a prime, and let R = ZG. Then there is a
fibre square of the kind just considered

R—^—Z

where (p = e27T^p. The sequence above shows that the new ingredient in the
calculation of K0(ZG) is the kernel

D(ZG) := ker{ifo(ZG9 -> K0(Z[CP] 0 K0(Z)} .

By analysing this fibre square one can show:

Theorem 3.10 (Reiner). Let G = Z/p where p is a prime. Then D(ZG) = 0.
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Using this result, Reiner was able to completely classify the integral repre-
sentation of Z/p, or in other words, the finitely-generated modules over Z[Z/p]
which are torsion-free as abelian groups. For most finite groups such a classi-
fication is not available. •

For G any finite group, there exists a maximal Z-order M. C QG containing
ZG. In particular, M. is a subring of QG which is finitely generated as a Z-
module, and such that M. ®z Q — QG. In the example above, M. — Z[£p] © Z.
For any finite group G, we define

D(ZG) := kev{K0(ZG) -> K0(M)} C K0(ZG) .

The calculation of this group has been a major research goal in the algebraic
if-theory of finite groups (see [35] or [10] for references). Note that D(ZG)
has finite order by Swan's theorem.

4. FlNITENESS OBSTRUCTIONS

For X a finite CW-complex and A = TTI(X, XQ), the chain complex C*(X; A)
is a complex of finitely generated free A-modules. We say that a CW-complex
X is finitely dominated if there exists a finite CW-complex Y and continuous
maps r: Y -> X and i: X —> Y such that r o i ~ idx • Here is a nice result of
Mather and Ferry:

Theorem 4 .1 . Let X be a finitely dominated CW-complex. Then the product
space X x S1 has a canonical finite CW-structure (independent of the finite
domination).

The chain complex C*(X; A) of a finitely dominated space is a finite length
complex of finitely generated projective A-modules. In this situation, C. T. C.
Wall defined the finiteness obstruction

ew(x) =
and proved:

Theorem 4.2 (Wall). If X is a finitely dominated CW -complex, then 9\y(X)
is a homotopy invariant. Moreover 6w{X) — 0 if and only if X is homotopy
equivalent to a finite complex.

Wall also proved that any element of K0(ZG) could arise as the finiteness
obstruction of some finitely dominated complex. In some interesting cases
there are restrictions on the allowable finiteness obstructions.

Theorem 4.3 (Mislin-Varadarajan). Suppose that X is a finitely dominated
nilpotent space with finite fundamental group G. Then 9\y{X) G D(ZG).

One example of a nilpotent space is the quotient of sphere X = Sn/G, where
G is a nilpotent group acting freely.
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Another assumption which restricts the possible finiteness obstructions is
Poincare duality. If (X, w) is a finitely dominated Poincare complex, the un-
twisted involution A i-* A on A induces an Z/2-module structure on KQ(ZG)

by the formula [P] *-» — [P*], where P is a projective right A-module and P* =
HoniA(P, A) is converted from a left to a right A-module by the involution.

Lemma 4.4. Let (X, w) be a finitely dominated Poincare complex with funda-

mental group G and with formal dimension n. Then 6\y(X) = (—l)n+19w(X)

This shows that the finiteness obstruction of a Poincare n-complex gives a
well-defined element in Hn+1(Z/2;K0(ZG)).

5. WHITEHEAD TORSION

In this section we consider automorphisms of finitely generated free R-
modules. If the free module has rank k, the group of all automorphisms is

Identifying each A G GLh(R) with the matrix

we obtain the inclusions

GLX{R) c GL2(R) c GL3(R)...

and the union is the infinite general linear group GL(R). A matrix is called
elementary if its entries coincide with those of the identity matrix except for
one off-diagonal entry.

Lemma 5.1 (Whitehead). The subgroup E(R) C GL(R) generated by all el-
ementary matrices is just the commutator subgroup of GL(R).

Proof Let aE^ denote the matrix which has at most one non-zero entry a in
the (i, j) position. Then the relation

(/ + aEl3)(I + Ejk){I - aEiiJilEjk) = (/ + aEik)

for i, jt k a ^ distinct, shows that every elementary matrix of GLn(R) is a
commutator for n ^ 3. On the other hand, Whitehead's identities below show
that any commutator ABA~lB~l in GLn(R) can be written as a product of
elementary matrices in GL2n(i?).

/ ABA-lB~l

V 0

A 0
0 A~



10 IAN HAMBLETON

1 A)-T1 TT (I + X-E--)

n
The abelian quotient group

KX{R) =GL(R)/E{R)

was defined by J. H. C. Whitehead in order to compare homotopy equiva-
lent complexes. Notice that a ring homomorphism / : R —> 5 induces a map
/*: Ki(R) -> Ki(S) with the usual functorial properties. In addition the
functor K\ respects products of rings

and is Morita invariant

For calculations in the case where R is commutative we have a homomorphism

det:

given by the determinant. If R is a field, or R — Z then K\(R) = Rx.
For i? a skew field, then K\(R) — Rx /[Rx ,RX] via the "non-commutative
determinant". If R is a Z-order in a semi-simple Q-algebra S, then S ®Q C
is a product of full matrix rings over the complex numbers by Wedderburn's
theorem. Composing the inclusion R C S with projection onto one of these
factors Mn(C) gives a homomorphism

xnr: KX{R) -> K^S) -> #i(Afn(C)) ^ > Cx

detecting the torsion-free part of K\(R). The image of this homomorphism
lies in the ring of integers of the centre field of the associated factor of S.

Theorem 5.2 (Bass). Let R be a Z-order in a semisimple Q-algebra S. Then
Ki(R) is a finitely generated abelian group of rank r — q, where q denotes the
number of simple factors in S and r denotes the number of simple factors in

For more precise calculations, the method of pull-back squares is available.
If R is the pullback of S\ and S2 over T as in (3.7), then we have a six term
exact sequence

A K0(R) -> K0{S1)^K0{S2) -* K0(T).

For example, this sequence explains the role of the isomorphism h in the pull-
back construction M(Pi,P2,h) of projectives over R from projectives over S\
and S2.

Remark 5.3. There is an interesting connection between the following three
questions:
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(i) given a € Ki(R), what is the minimum n such that a = [A] for some
matrix A G GLn(R) ?

(ii) given an ideal / C i?5 what is the minimum number of generators / =
( r i , . . . Tk) among all generating sets for / ?

(iii) given an isomorphism M © N = M' © iV, does it follow that M = Mr ?

The last question is the cancellation problem for modules over i?. The unifying
idea linking these three questions is transitivity of elementary matrices on the
set of unimodular elements (i.e. those generating a free direct summand) in a
given i?-module M.

Theorem 5.4 (Bass). Suppose that R is a ring with Krull dimension d? and
M7 Mf and N are right R-modules, with N protective, such that M © N =
M' © N. If N contains a free direct summand Rk of rank k > d + 2, then
M ^ M'.

Proof. We may assume that N = Rk. Under the given stability condition,
the elementary linear automorphisms of M © Rk act transitively on the set of
unimodular elements. Therefore, any isomorphism M' © J?* = M © Rk can
be composed with an elementary automorphism to ensure that the standard
basis of Rk is mapped by the identity. It follows that M = M'. D

A similar method gives stability bounds for the other two questions.

We turn now to the original geometric motivation for introducing the K\
functor. If X is a finite CW-complex, its fundamental group TT := TTI(X, XO)

acts on the cells of X to give C*(X) the structure of a free A-module chain
complex. To obtain a basis for this chain complex, order the cells of X (of a
given dimension r), orient each one, and then choose a lifting of each cell to
an r-cell of X. This gives a free A-base for Cr(X), unique up to order, sign,
and multiplication on the right by elements of TTI(X, XQ)- NOW if / : X —> Y is
a homotopy equivalence of finite CW-complexes, we have a short exact exact
sequence of chain complexes

where the chain complex of the mapping cylinder of / has chain groups Ci(f) :=
© Ci(Y) and its differential is given by the formula

The chosen bases of C*(X) and C*(Y) induce a basis for C*(/), so the above is
an exact sequence of free, based, A-module chain complexes. Moreover, since
/ is asssumed to be a homotopy equivalence, the homology H(C*(f)) of the
mapping cylinder is zero. In this situation, one can define a Ki-invariant called
the Whitehead torsion of / .
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To explain the process, we will consider any acyclic (i.e. zero homology)
chain complex

Cn -> C n . i ->•• • -> C2 -> Cx -> Co
of free A-modules, and assume that each group Ci has a given A-basis {q}.
Let Bi denote the image of ^ + 1 : Cz+i —» C2, and note that we have exact
sequences

O-+Bi-+d-+ Bi-X -> 0
for each i, together with the equality Bo — Co- Inductively we see that all
of these sequences split, so the modules Bi are all stably free. By taking the
direct sum of the complex with elementary based complexes of the form

0 -» Ar -> Ar 0 A5 -> A5 -+ 0

we may assume that all the modules Bi are free to begin with. Choose a basis
{bi} for each Bi, and notice that we now have two different bases, namely Q
and {bi,bi-i} for each C\. Let [ci/bibi-i] G JK*I(A) denote the element given by
the change of basis isomorphism on C».

Lemma 5.5. The element

is independent of the choice of bases {bi} for the B^.

Now in the geometric situation, we have made choices of the bases for C*(X)
and C*(Y). To allow for the effect of these choices, we define the Whitehead
group

Wh(ZG):=K1(ZG)/{±g\geG}
for any group G. Then we have

Theorem 5.6 (Whitehead). Let f: X —>• Y be a homotopy equivalence of
finite CW-complexes with fundamental group IT. Then the element r(f) :=
r(C*(/)) G Wh(ZTr) is a homotopy invariant.

Whitehead went on to show that r ( / ) = 0 if and only if X and Y were
related by a sequence of cellular operations called "elementary expansions and
collapses". In addition, if G is a finitely presented group, Whitehead proved
that any element of Wh(ZG) can be realized by some homotopy equivalence
of finite CW-complexes with fundamental group G.

A homotopy equivalence f:X—>Y with r(f) = 0 is called a simple homo-
topy equivalence. The study of simple homotopy types is now an important
subject within homotopy theory. Here is another result of Whitehead which
opened up an active research area. Let X V rS2 denote the wedge of X with
r copies of S2.

Theorem 5.7 (Whitehead). Let X and Y be finite 2-complexes with the same
Euler characteristic, and let a: TTI(X,XO) — 7Ti(Y,y0) be an isomorphism be-
tween their fundamental groups. Then there is a simple homotopy equivalence
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/': X V rS2 ~ 7 V rS2 realizing the given isomorphism a on fundamental
groups.

There is also a geometric analogue of the cancellation problem for modules,
namely to remove as many 5 2 wedge summands as possible from a stable
homotopy equivalence. For complexes with finite fundamental groups, we can
remove all but one S2.

Theorem 5.8 (Hambleton-Kreck). Let X and Y be finite 2-complexes with
the same Euler characteristic and finite fundamental group. Let a: TTI (X, XQ) =
TTI(Y, j/o) be a given isomorphism and suppose that X ~ Xo V S2. Then there
is a simple homotopy equivalence f: X —>• Y inducing a on the fundamental
groups.

If (X,w) is a finite Poincare complex of formal dimension n, then the
mapping cylinder of the duality map [X]fi: C* —> C* is acylic. We call
T(X,W) := r([X]n) G Wh(Z7T1(X,x0) the torsion of (X,w) and say that
(X, w) is a simple Poincare complex if r(X, w) = 0. The w-twisted involution

on A induces an involution A \-> (A1) on GL(A) and hence an involution on
Wh(A). Any closed manifold is a simple Poincare complex.

Theorem 5.9. Let (X,w) be a finite Poincare complex of formal dimension

n. Then r(X,w) — (—l)nr(X,w). If(X,w) is homotopy equivalent to a closed
n-manifold with orientation class w, then T{X,W) — 0.

One of the most famous results about Whitehead torsion is that r(f) is an
obstruction for / to be homotopic to a homemorphism.

Theorem 5.10 (Chapman). Let f': X —> Y be a homeomorphism of finite
CW-complexes. Then r{f) = 0.

For the geometric applications of Whitehead torsion we must develop meth-
ods to compute Wh(ZG) for finitely presented groups G. In this problem,
there are two sharply different approaches depending on whether G is finite
or infinite. If G is infinite and torsion-free, then the main conjecture is that
Wh(ZG) = 0 and the methods are geometric (see [14]). On the other hand, if
G is finite the Whitehead group is generally non-trivial and there are exten-
sive calculations available using algebraic methods (see [35]). Of course this
summary leaves open what to do about infinite groups which have non-trivial
elements of finite order, for example ZxG where G is finite. More generally it
would clearly be useful to have some idea how the Whitehead groups change
under Laurent polynomial extension (i.e. direct product with Z), amalgamated
free products and HNN extension. We mention only the result on polynomial
extensions, involving new if-theory functors Nil(ZG) based on nilpotent ma-
trices over the group ring.

Theorem 5.11 (Bass-Heller-Swan). For any group G,

Wh(Z[Z x G\) ^ Wh(ZG) 0 K0(ZG) 0 Nil(ZG) 0 Nil(ZG) .
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For G a finite group, we define the arithmetic square

ZG

ZG

where Z is the direct product of all the rings Zp and Q is the restricted product
of the rings Qp. An element of the direct product Y\QP is in the restricted
product if all but finitely many of its entries are in Zp. Although the arithmetic
square is not a pullback in the sense of (3.7), the strong approximation theorem
in algebraic number theory gives and exact sequence

KX(ZG) -> ATi(QG) 0 tfi(ZG) -> K^QG) A K0{ZG) -»

-> K0(QG) © K0(ZG) -> K0(QG)

which is very effective for calculations. For example, Swan's theorem show

that the map Ki(QG) —> K0(ZG) is surjective, and this suggests that the
finiteness obstruction Ow{X) for a finitely dominated space X should have
a lifting to Ki(QG). This is indeed the case: after choosing bases h for
the homology of C*(X) ®z Q5 one can define the idelic Reidemeister torsion
A(X,h) G ifi(QG) so that <9A(X,h) = 9W(X). This invariant plays an
important role in the solution of the spherical space form problem.

Let

SKX(ZG) := ker{Xx(ZG) -> Ki(QG)} .

Then

Theorem 5.12 (Wall). For G a finite group, the torsion subgroup of K\(ZG)
is just {±Gab}(&SKi(ZG). The standard oriented involution induces the iden-
tity on the torsion-free quotient Wh'(ZG) := Wh(ZG)/SKi(ZG).

For G finite cyclic, SKi(ZG) = 0 and the Whitehead group is torsion-
free (the rank was given above). In general however, the groups SKi(ZG)
are highly non-trivial. A homotopy equivalence / : X -> Y with r ( / ) G
SKi(ZG)0{±Gab} is called a weakly simple homotopy equivalence . Similarly,
a Poincare complex X is weakly simple if its duality map has zero torsion in

Corollary 5.13 (Wall). An orientable finite Poincare complex of odd formal
dimension, with finite fundamental group, is weakly simple. A homotopy equiv-
alence between (weakly) simple oriented Poincare complexes of even formal
dimension, with finite fundamental group, is weakly simple.
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6. HERMITIAN FORMS

An involution a(r) — f on a ring R with unit has the properties

(i) a(r + s) = ar + as for all r, 5 G R.
(ii) a(rs) = a sa r for all r, s € R.

(iii) a2(r) = r for all r e R.
(iv) a( l ) - 1.

Let R be a ring with involution, and let e G Rx be a unit of R with ee = 1.
An e-hermitian form on a right jR-module M is a map h: M x M —> R such
that

(i) h(x + y,z) = /i(x, z) + /i(y, z) for all x,y,z e M.
(ii) /i(x, yr) = /i(x, y)r for all x,y G M and all r € R.

(iii) /i(y,x) = e/i(x,y) for all x,y e M.

The adjoint map ad(/i): M —>- M* = Hom^(M, i?) is defined by ad(h)(x)(y) =
/i(x, y) for all x,y € M. The form (M, /i) is non-degenerate if the adjoint map
ad(h) is injective, and non-singular if ad(h) is an isomorphism of right i?-
modules. As usual, we convert M* from a left .R-module to a right i?-module
by using the involution. The form can be described either by h or by ad(h),
whichever is most convenient. We usually take e = ±1 . Two e-hermitian
forms (M, h) and (JV, k) are isometric if there exists an i?-module isomorphism
<p: M —> N such that h(x, y) — k(cp(x), <p(y)) for all x, y G M. There is an ob-
vious notion of orthogonal direct sum (M, h) i_ (iV, fc) = (M@N, h JL A;), where

/i _L fc = ( }. We can then define K0(H(R,a)) to be the Grothendieck
\0 kj

group of the category of hermitian forms on finitely generated projective JR-
modules. This is a hermitian version of K0(R) and we have a forgetful map

K0(H{R,a))-+K0{R),

taking a form (M, h) to its underlying module M.

Example 6.1. Let M = N 0 iV* and h(x,f), (y,g)) = f(y) + eg(x), for all
x.yinN and / , j 6 iV*. This defines the hyperbolic form H(JV) oniV© Â *.
Applying this to projective modules N, we get a homomorphism

called the hyperbolic map.
If M = Rn is a free i?-module and {e i , . . . , en} is a basis, then a non-singular

hermitian form (M, /&) has a Ki-valued "determinant" invariant d(M, /i) =
[ad(/fc)] G Ki(R) where M* is given the dual basis. This gives an invariant of
forms on free based modules which is additive under orthogonal direct sums.

Notice that d(M,h) = ed(M,h). Changing the basis of M changes the
— t

matrix for h by the usual formula A i-» P AP\ so the ifi-invariant changes
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by an element of the form u + u. We get a well-defined invariant [d(M, h)] G
Hk(Z/(2); Ki(R))1 additive under orthogonal direct sums.

If R = K is a field with fixed field F under the involution, this invariant
is just the usual determinant of the hermitian form taking values in Fx with
indeterminancy from choice of basis in the image of the norm map NK/F(KX).

The hyperbolic form on the standard based free module M = Rn 0 Rn of
rank n has d(M,h) — (—l)n. For hermitian forms on based free modules of
rank 2n there is a refinement of the if i-valued determinant

called the discriminant of (M, h). The discriminant vanishes on hyperbolic
forms. •

Example 6.2. Let R — Z, e = ±1 , and M — Zn be a free abelian group of
rank n. Then a non-singular e-hermitian form on M is just a symmetric or
skew-symmetric unimodular form on Zn. In the symmetric case, we say that a
form h is even if h(x,x) = 0mod2 for all x G M, and otherwise h is odd . A
form is called definite if h(x, x) ^ 0 whenever x ^ O , and otherwise indefinite.

Theorem 6.3. Indefinite unimodular symmetric forms are classified by the
rank, type (odd or even), and the signature.

The classification of definite symmetric unimodular forms over Z is a fasci-
nating subject (see [34]). The number of distinct isometry classes grows rapidly
with the rank n. In contrast, the classification of skew-symmetric unimodu-
lar forms over Z is trivial: there is just one such form (the hyperbolic form)
for each even rank. Similarly, we often encounter (skew) symmetric forms on
vector spaces over fields with trivial involution (e.g. Q, bR, or finite fields
Fp . If the characteristic of the field is not 2, every symmetric form can be
diagonalized and every non-singular skew-symmetric form is hyperbolic. For
symmetric forms (M, h) over Q or R, the signature a(M, h) G Z is defined to
be the number of positive entries minus the number of negative entries in any
diagonalization of (M,h). This integer is well-defined, and together the rank,
determinant, and signature classify the forms over Q or R up to isometry.
Over R = Fp , for p odd, the rank and determinant classify the forms.

An interesting contrast is the case R = F2, or any finite field with char-

acteristic 2. In this case there is no difference between symmetric and skew-

symmetric forms, but there are non-isometric forms, for example I ) and

I, with the same rank and determinant. Any non-singular form over F2

is isometric to orthogonal direct sums of these with the rank 1 form (1). •

Example 6.4. Let R = C with the involution given by complex conjugation,
and M — Cn. Then the form h(z,w) = Yl*iwi ls a non-singular hermitian
form. •



ALGEBRAIC K- AND L-THEORY 17

7. NORMAL MAPS AND SURGERY OBSTRUCTIONS

We now describe a geometrical setting for the algebra of hermitian forms.
This is the Browder-Novikov-Sullivan-Wall theory of surgery, which has had
such a decisive impact on geometric topology.

Suppose that Wn+1 is a smooth compact manifold with two boundary com-
ponents MQ and Mi. Let / : W —> [0,1] denote a Morse function, namely a
smooth function with /(Mo) = 0, / (Mi) = 1, non-degenerate critical points
and distinct critical values 0 < c\ < C2 < ... < cr < 1. By the Morse lemma,
in a neighborhood U of critical point po £ W with /(po) — c, there exists a
co-ordinate system xl\ — rr^p), 1 < i < n + 1, so that

f(p) = /(Po) -*\ 4 + 4+i + '" + 4+x
for all p G [/'. The integer /c, 0 < A ; < n + l i s the index of the critical point.
If e > 0 is so small that W = f~l(c — e, c + e) has no critical points other than
Po, then Mc+e = f~1(c + e) is obtained from Mc_€ by an elementary surgery of
type (fc,n — k):

Mc+e - (Mc_e - (pis*'1 x Dn~k+1)) LV (£>* x Sn-*)

where <p: S^"1 x Dn~k+l -> Mc_e is an embedding. The manifold PF = (Mc_e x
I)U Dk x Dn~k+1 is usually called the trace of the surgery. This is the basic
construction in surgery.

The discussion above shows that the equivalence relation cobordism of man-
ifolds is generated by elementary surgeries. To reverse this point of view, and
produce a scheme for the classification of manifolds requires a way to keep
track of the effect of elementary surgeries. First we define, for any space X,
the n-dimensional structure set Sn(X). This is the set of equivalence classes
of pairs (M71 ,/), where Mn is a closed n-manifold and / : M —> X is a ho-
motopy equivalence. Two such pairs (Mo,/o), (Mi,/ i) are equivalent if there
is a diffeomorphism g: Mo —>• Mi such that fiog ^ /0 . One can now ask
for a "computation" of Sn(X) given X. Of course it would be reasonable to
start with X a closed n-manifold, or at least a finite Poincare complex of for-
mal dimension n, and then Sn(X) would measure the manifolds in the same
homotopy type.

A Poincare space (X,w) resembles a manifold in another way. Let X —>
jjn+fe j ^ a n embedding (for k large) and N a regular neighborhood. Then it
turns out that the composite i: ON —> TV —> X is (up to homotopy) a spherical
fibration, with each fibre homotopy equivalent to S^"1. If k is sufficiently large,
this fibration vx is unique up to fibre homotopy equivalence and is called the
Spivak normal fibre space of X. By construction, the collapse map

c : sn+k -> Mn+/7Rn+* -N:= T{y)
together with the Thorn isomorphism $ induces a degree 1 map
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Hn+k(S
n+k; Z) - ^ Hn+k(T(u); Z) *-±- H%(X; Z)

taking a generator [Sn+fc] onto [X]. Conversely, the Spivak normal fibre space is
characterized, up to stable fibre homotopy equivalence, as a spherical fibration
v over X such that 7rn+k{T(v)) contains a map of degree 1.

We now define a degree 1 normal map with target (X, w). This consists of a
degree 1 map / : Mn —>• X where M is a closed n-manifold and f*w = wi(M),
together with a bundle map b: VM —> £ covering / , for some vector bundle
£ over X. Two normal maps (Mi,fi,bi), 2 = 0,1 are normally cobordant
if there is a cobordism Wn+l from Mo to Mi and maps F: W —> X C / ,
B\ Z/JV —> £©1 extending (/;, bi). The set of normal maps with target (X,w) is
denoted T(X, w). Note that from the discussion above, each bundle £ occurring
in a degree 1 normal map must be fibre homotopy equivalent to vx (such a
£ is called a vector bundle reduction of vx)- The elements of T(X,w) are in
bijection with the union of all elements of degree 1 in 7rn+/c(T(£)) as £ varies
over all vector bundle reductions of vx.

A primary obstruction for the existence of any manifold homotopy equivalent
to X is therefore the existence of some reduction of vx. For arbitrary Poincare
complexes X, these need not exist. Assuming that T(X,w) is non-empty, we
seek a procedure for determining when a normal map is normally cobordant
to a homotopy equivalence.

We first notice that the set T(X, w) provides a good way to keep track of
the effect of surgeries. If / : M —> X is a degree 1 map, the main observation
is that the diagram

n[x] \n[X]

commutes. Therefore, in each dimension, /* is split surjective and /* is split

injective. Let K{(f), (respectively Kl(f)) denote the z-dimensional kernel (re-
spectively cokernel) of/* (respectively /*) . Then [M]n induces an isomorphism
of Kn~l(f) onto Ki(f) for all i > 0. Now / is a homotopy equivalence if and
only if it induces an isomorphism on TTI and Ki(f) = 0 for all i > 0.

Furthermore, if b: VM —>• £ is a bundle map covering / and (f>: Sl —> M is an
embedding of a sphere in M with / o 0 ~ *, then (J)*VM — 0*/*(£) is a trivial
bundle. Since the tangent bundle of a sphere is trivial after stabilizing once, we
see that (j)(Sl) has trivial normal bundle in M if i < [n/2]. Therefore, starting
with a degree 1 normal map, we can simplify it by elementary surgeries, to
obtain:

Proposition 7.1. A degree 1 normal map (/, b): Mn —> X is normally cobor-
dant to an [n/2]-connected normal map.
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Proof. By elementary surgeries on 0 and 1 spheres we can assume that /
induces an isomorphism on TTQ and TTI. By induction we assume that / is
z-connected for i + 1 < [n/2]. Then 7ri+i(f) = Ki(f) and any element is
represented by an embedded z-sphere with trivial normal bundle. We perform
an elementary surgery on this class. Since we have used the normal bundle
trivialization arising from an extension of / o </> over D2+1, the bundle map b
extends over the trace of the surgery. •

When we do surgery on an i-sphere, the homology class in Ki(f) carried by
this sphere is eliminated, but a dual class in dimension (n — i — 1) is introduced.
If i < [n/2] the new class is in dimension > [n/2], so progress can be made
easily. It remains to discuss the middle dimensions.

Note that if n = 2k and we do surgery on a trivial Sk~l x Dl+I(i.e. contained
in a 2k-disk in M), the result is to replace M by M#Sk x Sk. Similarly, if
n = 2k + 1 and we surger Sk x Dk+1 C D2k+\ we get M # Sk x Sk+1.

If n — 2k, it is no longer true that every class in Kk(f) is represented by an
embedded sphere with trivial normal bundle. Since L = Kk(f) is the single
non-trivial homology group of the chain complex C*(/) of the mapping case,
it follows that L is a stably-free finitely generated A-module. By surgering
on some trivial (k — l)-spheres, we may assume L is a free n-module. So
is Kk(f) = Hom\(Kk(f),A), where the isomorphism is given by Poincare
duality. This gives a (—l^-hermitian pairing

A: L x L -> A

induced by intersection numbers, which will now be described more geometri-
cally following [47, Chap. 5]. From the discussion, a new algebraic structure
emerges - the notion of a quadratic refinement for the intersection pairing.

According to a theorem of Haefliger, regular homotopy classes of immersions
4>\ Sk —>• M2k correspond bijectively (by the tangent map) to stable homotopy
classes of stable bundle monomorphisms rSk -> (J>*TM- We represent elements
of Kk(f) by immersions equipped with a path in M joining a fixed base point
XQ G M to (f)(po), where po G Sk is a base point. These immersions may
be chosen so that the Euler class of the normal bundle is trivial. Note that
7Ti(M, xo) acts on such an immersed sphere by composing the path with a loop
at xo-

Suppose that 5i and 52 are two immersed A;-spheres in M, meeting trans-
versely in a finite set of points p. To each point P we assign a fundamental
group element gp and an orientation ep = ±1 . The A-valued intersection form
is defined by
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This is related to the ordinary intersection form Ao : L x L -> Z by the formula

\(x,y) =

The same procedure can be used to define the self-intersection of an immersed
sphere Si (in general position). At each intersection point P , after an order of
the branches is chosen, the quantities eP and gP are defined as before. If the
order is interchanged, ePgP becomes (—l)kw(gP)ePgpl = {—l)keP^> (using
the notation introduced before for the anti-involution). Therefore, the self-
intersection defines a map

//: L-+A/Ik .

where Ik := {v - {-l)kT> \ v G A}.

Theorem 7.2. The properties of the quadratic form (L, A, /z) are given by:

(i) For x G L fixed, y —> X(x, y) is a A-homomorphism L -> A.

(ii) A(j/,a:) = (-l)k\(x,y),for_x,y G L.

(iii) X(x, x) — JJL(X) + (—l)k/j,(x), /or x € L.
(iv) //(a: + y) - /x(x)) - /i(y) = A(x,y); /or x,y G L.
(v) fi(xa) = a/jJ(x)a, for x G L ; a G A.

(vi) 7/fc > 3 ; /̂ie c/a55 x 25 represented by an embedding if and only if fi(x) = 0.

The assumption the k > 3 in the last property is critical for the whole the-
ory. M. Freedman's celebrated Field's Medal work on the Disk Theorem for
topological 4-manifolds [15], [16] deals with the case k = 2 for special fun-
damental groups (including finite fundamental groups). Notice that the first
two properties just say that (L, A) is a (—l^-hermitian form. The new alge-
braic ingredient is the quadratic refinement /x. By property (iv) the quadratic
form determines the associated hermitian form. Note that \i takes values in
an abelian group A//^, and that the action a \-> afia is well-defined for a G A,
fi G A/Ik (independent of the choice of lift for JJL. Also the map A/Ik —> A as
in (iii) given by \i f-> fi + (—1)*/2 is computed by taking any lift of \i to A.

The definition of quadratic form (L, A, fj) makes sense for modules over ar-
bitrary rings R with involution. We say that two quadratic forms (L, A, /i) and
(I/, A',//) are isomorpic if there is an isometry / : L —> V of the hermitian
forms A, A' such that JJ! O / = /i. A hyperbolic form in this setting is one that
is isomorphic to H(An) = An 0 An with // vanishing on the direct summands
A n 0 O and ©An.

Note that if R is a field of characteristic not 2, with trivial involution, the
relation A(x, x) — /i(x) + (—l)kfj,(x) shows that a |A(x,x) = /i(x). Therefore,
in the symmetric case the quadratic form is determined by the associated her-
mitian form. On the other hand, if R has characteristic 2, there is a difference
between quadratic and hermitian forms.
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Example 7.3. Let R = F2 and (L, A, //) a non-singular quadratic form on a
free F-modules L. The associated hermitian form A is always hyperbolic: let
{ei, - . . , en; / i , . . . , fn} be a hyperbolic basis for L with A(e2, e7) = A(/^, fj) = 0
and A(ei, /j) = %. The Arf invariant c(L, A, //) G Z/2 is defined by the formula

Theorem 7.4 (Arf). TTie i4r/ invariant is an isometry invariant of the qua-
dratic forms over F2 , and additive under orthogonal direct sums. A form
(L, A, /i) is hyperbolic if and only if c(L, A, /JL) — 0.

D

To relate the algebra of quadratic forms to the problem of eliminating Kk (/),
we make the following two geometric observations.

(i) If (/, b): M —> X is normally cobordant to a homotopy equivalence,
then (L,A,/x) contains a free-direct summand LQ such that Lo = L^
and fi(Lo) = 0. This is called a subkernel. An easy algebraic argument
implies that a quadratic form contains a subkernel if and only if it is iso-
morphic to an orthogonal direct sum of hyperbolic planes (these are free
A-modules of rank 2 with base {x, y}, ji(x) — fi(y) = 0 and \(x, y) = 1).

(ii) A hyperbolic plane can be removed from (L, A,/i) by surgery on one of
the basis elements if k > 3. The picture to keep in mind here is the
"plumbing" of two copies of Sk x Dk, which just Sk x Sk — D2k, and has
boundary S2*"""1.

These points motivate the definition of the even-dimensional surgery ob-
struction group Z/2fc(Z[7TiX], w): the stable isomorphism classes of (—1)^-quadratic
forms (L, A, fi) on free A-modules L, modulo hyperbolic forms. Here "stable
isomorphism" means that the forms become isomorphic after adding hyper-
bolics. Similarly we can define L2k(R,ot) for any ring R with involution a.

The odd-dimensional case leads to a more complicated situation. Suppose
that (/, b): M2h+l —>• X is a degree 1 normal map with Ki(f) = 0 for i < k.
Choose a set of generators fa: Sh x Dk+1 -> M (each joined by a path to the -
base-point) for Kk(f) as a A-module. These may be assumed to have disjoint
images in M, so let U be the union of the images and Mo = M — U. We
assume further that f(U) = * G X, and X - Xo U D2k+1 where (Xo, dX0) is
a finite Poincare pair. We can then obtain a map of triads

f:(M,M0,U)-±(X,X0,D
2k+l),

leading to the diagram (see [47, Chap. 6]):
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Kk+l(U,dU)

Kk(dU)

Kk+l(M0,dU)

Kk(M0)

Kk(U)

Kk(M)

Now dU w # (5* x Sk)i, so the term Kk(dU) supports a hyperbolic form with
two standard subkernels Kk+i(U, dU) and Kk{U). Furthermore Kk+i(M0, dU)
is also a subkernel in Kk(dU). The main observation is that Kk(M) and
Kk+i(M) are trivial if and only if Kk+i(Mo, <9C/) is a complementary subkernel
to Kk+i(U,dU) for some choice of the {</>i}. In the diagram above, this is
equivalent to r being an isomorphism.

The discussion so far suggests that the relevant data is (H(Ar), Lo, L\) where

H(Ar) is the hyperbolic form (Ar©A*, ( 1) and Lo, LX are two subkernels.

This is correct and the precise definition of this "formation" structure are due
to Ranicki, following earlier work of Mischenko. For our purposes, the original
definition of Wall for L2k+i(Z[KiX},w) is more convenient. It rests on an
algebraic fact:

Lemma 7.5. If LQ^LI are subkernels in a quadratic form (L, A,/i); then any
k-module isomorphism 9: Lo —> L\ extends to an isometry of (L, A,/x).

Let SUr(A) denote the group of isometries of the standard hyperbolic form
H(Ar), and TUr(A) the subgroup leaving the subkernel Ar © 0 invariant. A
detailed analysis of the construction above, shows that there is a well-defined
invariant after allowing for

(i) stabilization: SUr(A) C SUr+1{A) c • • • C SU(A).
(ii) the action of TUr(A) c TUr+1(A) c • • • C TU(A).

(iii) interchanging Ar © 0 and 0 © Ar.

Let a = I k J e 5C7i(A) and let RU{A) be the subgroup of SU(A)

generated by a and TU(A). Then surgery to a homotopy equivalence is pos-
sible, if and only if the automorphism relating Kk+i(U, dU) to Kk+i(M0, dU)
is equivalent to a © a © • • • © a (the automorphism in (iii) above) under the
2-sided action of RU(A). Wall finally proves (with the aid of a remarkable
identity) that RU(A) D [SU{A)JSU{A)} and so

:= SU(A)/RU(A)
is an abelian group.
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The main outcome of this analysis is the surgery exact sequence:

Theorem 7.6 (Browder-Novikov-Sullivan-Wall). If(X,w) is a finite Poincare
complex of formal dimension n > 5; there is an exact sequence (of groups and
pointed sets)

In the further development of geometric surgery, one shows that Ln =
(geometrically this is just crossing a surgery problem with CP2 in domain and
range) and studies the maps in the surgery exact sequence. The set T(X, w)
is related to classifying spaces for topological bundles and spherical fibrations.
The "assembly map" description of the surgery obstruction map A will be
described in the next section.

One variation of the whole setup which is important for the applications is
to take account of Whitehead torsion. This idea is due to S. Cappell. The
definition for Sn(X) is given in terms of homotopy equivalences f:M-+X.
Since a homotopy equivalence has a torsion r ( / ) £ W/I(Z[TTIX]), we could
define S%(X) for subgroups U C W/i(Z[7ri-X"]) by requiring that all torsions lie
in U. Notice that Poincare duality imposes the condition r(f) = (—l)nr(/)
so it is natural to suppose that U is an involution-invariant subgroup. If two
homotopy equivalences /0, f\ are normally cobordant, then r( /0) — r ( / i ) =
v + (-l)nv, for some v G Wh(Z[7Ti(x)].

The definition of the surgery obstruction group must be modified by choosing
bases for our free modules, and then requiring that any isomorphisms which
occur have torsions in U. The special choices U = {0} and U — Wh(Zir) are
denoted Ls and Lh respectively. If U C V are involution-invariant subgroups
of W/I(Z[TT]) then there is a long exact sequence

> # n + 1 ( Z / 2 , V/U) -> L^(ZTT, W) -+ I%(ZTT, W) -+ Hn(Z/2; V/U) ->

8. COMPUTATION OF L-GROUPS

In order to compute the surgery obstruction groups L*(ZG,w) for finite
groups G, we want to take advantage of the fact that the L-groups are al-
gebraically defined, so we have groups L*(R,a) for any ring with involution.
To use this generality effectively, we would first like to establish the methods
already described for X-theory, namely reducing to more tractable rings via
exact sequences arising from pullback squares or the arithmetic square. How-
ever, operations such as change of rings, which are natural algebraically have
no geometric analogue, so it isn't clear that any purely algebraic calculation
can give usable geometric information. The algebraic theory of surgery devel-
oped by Ranicki, based on the work of Wall and Mischenko, answers both of
these objectives.
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The algebraic theory of surgery starts from the notion of an algebraic Poincare
complex. This is a chain complex (C, d) of finitely-generated projective mod-
ules over a ring (i?, a) with involution

cn4cn_1-»---->c14c0,
together with a collection of .R-module maps

^ s: C
n~r+S -> Cr ( s>0)

such that

dp, + ( - l ) V / + ( - l ) n + - 1 ( ^ - i + (-1)ST^_X) = 0

and such that the chain map

is a chain equivalence. Here Cn~* is the dual complex (shifted by n) and T is
the duality involution

T: Hom^C^C, ) ->

The map <̂o induces the Poincare duality isomorphisms Hn~r(C) -> Hr(C),
(pi is a chain homotopy between (po and TVo? a n d s o o n-

If (/, 6): M —> X is a degree 1 normal map, then the kernel complex C(f)
has the structure of an algebraic Poincare complex. Furthermore, the bundle
map b gives in a natural way, a quadratic refinement of this structure (a "qua-
dratic Poincare complex") which determines the surgery obstruction. These
definitions generalize those of forms and formations. For example, an algebraic
Poincare complex of dimension zero is just a non-singular hermit ian form on
the projective module Co, and a quadratic Poincare complex of dimension zero
is just a non-singular quadratic form on CQ.

One of the main results of the algebraic theory is the description of Ln(R, a)
as the cobordism group of algebraic n-dimensional quadratic Poincare com-
plexes. There is no difficulty in replacing projective i?-module chain complexes
by free chain complexes, but we apparently lose the possibility of Whitehead
torsion variant L-groups since the Whitehead group is only defined for group
rings. However if U C Ki(R) := Ki(R)/{±l} is an involution-invariant sub-
group, the groups L^(R, a) are defined as the cobordism groups of complexes
with r((fo) E U. This is consistent with our previous definitions for group
rings. For example, if R = ZG and U = {±Gab}, then

Ls
n(ZG) = I

since Wh(ZG) = K1(ZG)/{±Gab}.
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If we add to our chain complexes the requirement that the Euler charac-
teristic x{C) = 0, then we can define variant L-groups Z/^(i?, a) based on
involution-invariant subgroups U C Ki(R). The extreme cases U = {0} and
U — Ki(R) are denoted Ls and LK respectively. These L-groups are well-
behaved under products and Morita equivalence.

They are related to the previous groups by an exact sequence,

) -> Z/2 -> L^

When jR = ZG and J7 - tfi(jR), L* (ZG) ^ L^(ZG) and

> .

In terms of our original discussion of Lh this means: define L% using forms of
even rank if n = 2fc, and let L*k+1(ZG) = SU(A)/TU(A).

The cobordism description provides a uniform way to derive exact sequences,
which can then be used for calculations. For example, if R -> S is a map of
rings with involution, there is a long exact sequence

y Ln{R) -> Ln(B) -> Ln(R -+ B)

The most important of these is the "Main Exact Sequence" of Wall, which
is obtained from the arithmetic square.

Theorem 8.1 (Wall). Let G be a finite group and X = SKt(ZG) C KX(ZG)
or its image in Ki(ZG). Then there is a long exact sequence

s(QG) > L*(ZG) • L*(ZG) 0 Ls(QG) »- Ls. . .->• Ls
n+1(QG) -> L*(ZG) - • L*(ZG) 0 Ls

n(QG) -»- Ls
n(QG)...

For geometric surgery problems, we must have the freedom to change our A-
bases for Ci(f) by elements g G G. This means that the smallest geometrically
relevant torsion decoration containing X = SKi(ZG) is

Y = SK1(ZG)®{±Gab} .

Then there are natural maps,

so that L^(ZG) is "intermediate", between the two L-groups of most geometric
significance.

It is worth remarking that the L-groups L^(ZG) based on projective A-
module chain complexes also have some geometric use. In fact, if (/,&): Mn —>•
X is a degree 1 normal map and X is a finitely dominated (but not necessar-
ily finite) Poincare complex, then a surgery obstruction A(/, b) is defined in
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LP
U(Z[KIX]). Moreover when n > 5, A(/, b) — 0 if and only if the product nor-

mal map (/, b) x 1: M x S1 -> X x Sl is normally cobordant to a homotopy
equivalence. In addition, the projective L-groups (and their generalizations)
are the natural obstruction groups for surgery on non-compact manifolds. The
version of this setting which incorporates bounded or controlled surgery prob-
lems has been particularly useful (see [37], [14]).

The projective L-groups can also be studied by an arithmetic sequence. If
L^(ZG) denotes the L-groups with the added condition x — 0, then

Let G be a finite group. Then there is an exact squence

•••-». Z£+1(QG) -> LftZG) - • L«(ZG) © L*(QG) -> L*(QG) - + . . .

The arithmetic exact sequences relate the computation of surgery obstruc-
tion groups to the L-theory of rings with much better algebraic properties.
For example, QG — \\Mni{Di) where the D2 are skew fields (Wedderburn's
theorem) and

by invariance under products and Morita equivalence. The terms L^(DZ, az)
must be interpreted with some care: our involution a on QG, induces an
involution n the centre of each invariant factor A{ — Mn . (A), however in the
transition from forms over A{ to forms over Di a change of symmetry can occur.
Nevertheless the product decomposition formula suggests that we should use
the rational representation theory of G in a systematic way to organize and
simplify the calculation.

The basic building blocks for character theory are the p-hyperelementary
groups: extensions

1 -> C -> G -> P -> 1

where C is cyclic of order prime to p and P is a p-group.

Theorem 8.2 (Dress Induction). Let G be a finite group and U C Ki(ZG)
an involution-invariant subgroup. Then L^(ZG) can be computed in terms of
{L%(ZH) \H CG is 2-hyperelementary}.

This result means in particular that the sum of all the restricton maps
L^(ZG) —> L^(ZH) to the 2-hyperelementary subgroups is an injection. There-
fore to decide whether a surgery obstruction is zero it is sufficient to restrict to
these groups. Notice that for a normal map, restriction to a proper subgroup
is given geometrically by taking a finite covering of the normal map. Dress
induction exploits the Mackey functor structure on the L-groups modelled on
classical induction and restriction of representations. This additional structure
is a powerful tool for calculations.

Even with the help of character theory, the group L^(QG) is not easy to
study. For example, Ljf (QG) is not finitely-generated! A classical remedy is
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the "local-global" comparison or "Hasse principle". This can be incorporated
into our formulation by setting

CL^(QG) = l £ ( Q G -> QG 0 RG)
for U C ATi(QG), and rewriting the arithmetic sequences for example as

0 Ls
n(RG) -> CLs

n(QG)...

The computation of the CL^(D) for D a division algebra (with involution) is
the deepest part of the theory, and involves methods from Galois cohomology
(see Kneser's Tata Institute notes).

Let us consider now the other terms in the arithmetic sequence. For L^(MG)
we have an immediate expression (via character theory) in terms of the most
classical calculations in quadratic forms, namely forms over R, C and (the
quaternions) H. For these cases, the signature, discriminant (and Pfaffian for
Ls) give a complete list of invariants.

The term L^(ZpG) also reduces to quadratic forms over fields, since the
LK-groups have the property that

LK
n{ZvG) = L«(ZPG/JPG)

where JPG C ZPG is the Jacobson radical. The quotient ring is finite and semi-
simple, so we reduce via Morita equivalence to the Lx-groups of finite fields.
In odd characteristic, the discriminant and Pfaffian are sufficient invariants; in
characteristic 2 we must add in the Arf invariant. We remark that for finite
fields with non-trivial involution, the L^-groups are zero in characteristic 2
and the L5-groups are all zero.

The corresponding term L^(ZPG) in is also easy when p ^ 2. For p odd,

L*(ZPG) - Ls
n(ZpG) ^ Ls

n(ZpG/JpG)
and we have L^-groups of finite fields. If p — 2, there is an exact sequence

-> Hn+1(K1(Z2G)/X) -> L*(Z2G) -> L%(Z2G) -> . . .

so the new difficulty is the left-hand term and determining the maps in the
exact sequence (see [23] for more information).

Even if we completely understand the terms L^(ZG) or L^(ZG), a problem
still remains. If p divides |G|, the map

L«(ZPG) -> Ll(QPG)^
in the arithmetic sequence is badly behaved, since QPG splits into more factors
than ZPG and the image spreads over these factors in a complicated way. To
control this problem, we introduce our final improvement in the arihmetic
sequences. Let G = Z/m xi a be a 2-hyperelementary group, where m is
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odd and a is a 2-group. The extension is given by a homomorphism t: a -»
Aut(Z/m). For each d | ra, let

R(d) =
and S(d) = i*(d) 0 Q, T(d) = R(d) <g> R.

Theorem 8.3 (Hambleton-Madsen). There is a natural direct sum splitting

Lp
n(ZG) = 0 Li(ZG)(d)

d\m

such that
(i) Lp

i{ZG){d) is mapped isomorphically to L^(Z[Z/d x <r])(d) by the restric-
tion map, and L£(ZG)(d) = L^{ZG)(d) for d > 1.

(ii) There is an exact sequence for each d \ m

The improvement that has been made here is in the local term. Now if p \ 2d
and G = Z/d » <r, the map

Lk
n(Rp(d))^L«(Sp(d))

splits according to the rational representations of G which are faithful on Z/d.
The remaining problem occurs for p = 2, in determining the map

Lk
n{%

but we refer to [23] for further details.
There is also an analogue of this splitting theorem for L^(ZG)(d), and again

the only remaining "spreading" occurs at p = 2.
This concludes our brief outline of the techniques for the calculation of

L*(ZG), developed (for the most part) by C. T. C. Wall over a 10 year period.
The answers for specific groups G are likely to be complicated. Here are two
nice cases.

Example 8.4. Kervaire and Milnor calculated the L-groups of the trivial
group

Ls
n(Z) - 8Z, 0, Z/2,0 for n = 0,1, 2,3mod4 ,

where the non-zero groups are detected by the signature or Arf invariant, and
the notation 8Z means that the signature can take on any value = 0mod8.
More geometrically, the generator in dimension 4/c > 8 is represented by the
Milnor manifold surgery problem (/, b): MAk -> SAk. Here M4k = W4k(Es) U
D4k is the closed topological manifold obtained by adjoining a disk DAk to the
boundary of the smooth plumbing manifold WAk(E$) (see [24]). The boundary
dWAk(E$) is a homotopy sphere of dimension 4k — 1, and is homeomorphic
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to SAk~l by the generalized Poincare conjecture (proved by S. Smale). Alter-
nately, W4k(Es) is the Brieskorn variety given by the points z = (zo, z\,..., z2k)
in C2k satisfying the two equations

z\ + z\ + • • • + z\k = 6

for a fixed small e > 0, and

The generator of L2(Z) = Z/2 in dimension Ak + 2 > 6 is represented by
the Kervaire manifold surgery problem (/, b): K4h+2 —» Sf4/c+2, where if 4/c+2 =
W^+ 2(A2) u L>4A:+2 and W4*+2(A2) also has a plumbing description, or as the
Brieskorn variety

Zo + Zx + Z2 + • • ' + ^ e

for a fixed small e > 0, and

The simply connected surgery obstruction in Z/4fc(Z) = 8Z is defined for any
degree 1 normal map (/, b): M4k —>- X4/c, by the formula

Index(/) = Index(M) - Index(X),

where Index(M) is the signature of the intersection form on H2k(M] Z). •

A. Bak made extensive computations of L-groups. One result which has
been very useful in topological applications is:

Theorem 8.5 (Bak). Let G be a finite group of odd order. Then L\k+l(7iG) =
0 for ? = s, h or p.

A much more complete survey and more results in particular cases can be
found in [23].

9. TOPOLOGICAL 4-MANIFOLDS WITH FINITE FUNDAMENTAL GROUP

M. Freedman [15] proved that the surgery exact sequence is valid for topo-
logical 4-manifolds with finite fundamental groups (and more generally for
polycyclic-by-finite fundamental groups). In particular, Freedman proved the
5-dimensional s-cobordism theorem in this setting. At the same time, S. Don-
aldson showed how the Yang-Mills gauge theory could give new information
about smooth 4-manifolds, and demonstrated that smooth 5-dimensional s-
cobordisms need not be products. The combination of these two dramatic
developments led to an exciting period of discovery, in which many of the
long-standing open problems in the topology of 4-manifolds were settled. In
this section, we will stick to applications of surgery theory and topological
4-manifolds.
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Theorem 9.1 (Freedman). Let X be a closed, simply connected, topological
A-manifold. Then X is classified up to homeomorphism by the intersection
form on H2(X; Z) and the Kirby-Siebenmann invariant.

The Kirby-Siebenmann invariant (in Z/2) is the obstruction to finding a
PL-structure on a closed topological 4-manifold. Freedman's classification can
be generalized by geometric "cancellation" techniques, based on the unitary
analogue of cancellation for modules, for 4-manifolds with finite fundamental
groups.

We say that two closed topological 4-manifolds X and Fare stably homeo-
morphic if there exists a homeomorphism

h:X$r(S2 xS2)^Y$r(S2xS2)

for some integer r. The cancellation problem is to remove copies of S2 x S2,
or in other words to determine the minimum r for which the two sides are
homeomorphic. There is also a version of this problem for smooth manifolds
(about which almost nothing is known !).

Theorem 9.2 (Hambleton-Kreck). Let X andY be closed, oriented topologi-
cal ^.-manifolds with finite fundamental group. Suppose that the connected sum
X Jt r(S2 x S2) is homeomorphic to Y $ r(S2 xS2). IfX = X0% (S2 x S2), then
X is homeomorphic to Y.

Note that the assumption that X splits off one S2 x S2 cannot be omitted
in general. There are, for example, even simply-connected closed topological
4-manifolds which are stably homeomorphic but not homeomorphic because
they have non-isometric intersection forms.

There is now a fairly clear two part strategy for classifying 4-manifolds. First
we try to classify up to stable homeomphism, and then we apply cancellation.
For the first part, there are fairly explicit results, but complete answers for the
second part are available only for special fundamental groups (e.g. TTI cyclic).

The following notation is useful for keeping track of the second Stiefel-
Whitney data of a manifold X. We say that X has w2--type:

(I) i
(II) i

(Ill) if w2{X) = 0 and w2(X) ^ 0.

Theorem 9.3 (Hambleton-Kreck). Let X be a closed, oriented ^-manifold
with finite cyclic fundamental group. Then X is classified up to homeomor-
phism by the fundamental group, the intersection form on H2(X] Z)/Tors, the
w2-type, and the Kirby-Siebenmann invariant. Moreover, any isometry of the
intersection form can be realized by a homeomorphism. The invariants can all
be realized independently, except in the case of w2-type II, where the Kirby-
Siebenmann invariant is determined by the intersection form.
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Note that we do not assume any stability condition here, so the proof requires
a sharper version of the cancellation theorem. In the remainder of the section,
we will describe M. Kreck's approach to the stable classification. Further
details about proofs of the above results can be found in [22].

There is a close analogy between the stable classification of homotopy types
of 2-complexes (as discussed in Section 5) and stable homeomorphism types of
4-manifolds. Consider the thickening functor from finite 2-complexes to closed
4-manifolds, obtained by embedding a 2-complex K as polyhedron in R5 and
taking the boundary of a smooth regular neighborhood. If two 2-complexes
are simply homotopy equivalent the corresponding 4-manifolds are s-cobordant
(implying homeomorphic, if the fundamental groups are poly-(finite or cyclic)
[16]) and we denote the corresponding s-cobordism class by M(K). If we re-
place the 2-complex by its 1-point union with £2, the corresponding 4-manifold
changes by connected sum with S2 x S2. This indicates the analogy of stable
equivalence classes of 2-complexes with the following notation for 4-manifolds.

Since the smooth stable s-cobordism theorem (implying that two s-cobordant
4-manifolds are stably diffeomorphic) holds, the stable diffeomorphism class of
M(K) is determined by the stable simple homotopy class of K and so, (see

However, the stable classification of 4-manifolds (in contrast to the situation
for 2-complexes) needs more invariants than the fundamental group and the
Euler characteristic. For example, we must include the orientation, signature,
and existence of a spin-structure. To obtain a complete answer we express the
stable classification as a bordism problem and compute the bordism groups by
the Atiyah-Hirzebruch spectral sequence.

Let c: X —> K(TT, 1) be the classifying map of the universal covering X,
where TT := TTI(X, XO). The Kirby-Siebenmann invariant of X will be denoted
KS(X). There is an isomorphism c*: Hl{ir\ Z/2) -> H1(X; Z/2) and an exact
sequence

0 -> H2{TT; Z/2) A H2(X- Z/2) -> H2(X; Z/2) .

Thus we can always pull back Wi(X) by c from a class denoted w\ G H1(-K\ Z/2),
and we can pull back w2(X) from a class denoted w2 G H2(TT] Z/2), if w2(X) =
0.

For a smooth 4-manifold X, the normal 1-typeof X is afibrationp: B(TT,WI,W2) ->"
BO. If w2(X) / 0, then B(TT, WUW2) = K(ir, 1) x BSO and p is given by the
composition

p: K(TT, 1) x BSO ^BOxBO^ BO,

wherer E: K(TT, 1) —> BO is the classifying map of the stable line bundle given
by tui, i: BSO —> BO is the inclusion, and and 0 is the if-space structure on
BO given by the Whitney sum.
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If W2 ^ oo we define the normal 1-type as the fibration p : JB(TT, W\, W2)
BO given by the following pullback square

S(TT, W\, W2) ^ K(TT, 1)

IW1XW2

BO W1XW2> K(Z/2,1) x K{Z/2,2)

where Wi := Wi(EO) are the Stiefel-Whitney classes of the universal bundle
and we interpret Wi as maps to K(Z/2,i).

If w\ — 0, JB(TT, 0,1^2) factorizes over BS'O and we choose one of the possible
lifts. To deal with the oriented case {w\ — 0) and the non-oriented case
simultaneously we write p: B(ir,Wi,W2) —> B(S)O.

For topological manifolds one can make the obvious changes (replace the
linear normal bundle by the topological normal bundle given by a map v: X —>
B(S)Top) the normal 1-type p: B(ir,wuw2) —> B(S)Top.

Given any fibration B —> B(S)O, abbreviated for short as J3, we consider
the S-bordism group Qn(B) consisting of bordism classes of closed smooth n-
manifolds, which are oriented if the fibration is over BSO, together with a lift
v over B of the classifying map v\ X —> B(S)O for the stable normal bundle
of X. Such a lift is called a normal 1-smoothing if v is a 2-equivalence. By
construction, X admits a normal 1-smoothing in B{TS,VJ\,W*I). Similarly for
topological manifolds one starts with a fibration B -> B(S)Top, and introduces
the analogous bordism group of topological manifolds denoted Q^op(B).

Theorem 9.4 (Kreck). Two smooth (topological) J^-manifolds X$ andX\ with
the same normal 1-type JB(TT, wi,!/^) are stably diffeomorphic (homeomorphic)
if and only if:

(i) they have the same Euler characteristic, and
(ii) they admit normal 1-smoothings VQ and v\ such that (XQ, &O) and (Xi, v\)

represent the same bordism class in Q^B^, wi, W2)) (in Q^B70?^, w\, W2

A computation of the bordism groups now gives:

Theorem 9.5 (Kreck). Two oriented smooth (topological) l^-mani]eolds Xo and
X\ with the same fundamental group and with W2(Xi) ^ 0 are stably diffeomor-
phic (homeomorphic), if and only if they have the same Euler characteristic
and signature, if C*[XQ] = c*[Xi] G H^(K(7Tjl)]Z)/Out(7r) and, in the topo-
logical case, KS(X0) - KS{Xi).

10. SURGERY OBSTRUCTION ON CLOSED MANIFOLDS

The surgery exact sequence

Ln+1{Z[^X],w) ->• Sn(X) -1+ T(X,w) -±> LniZfaXlw)
provides a good framework for classifying manifolds, but to obtain concrete
results in particular cases we must know how to compute the maps in the
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sequence. In this section we will consider only the oriented case (w = 1) and
suppose that X is a closed oriented topological manifold of dimension n > 5,
with finite fundamental group TT := 7TI(X,XQ). Then Sn(X) is just the set of
manifolds homotopy equivalent to X modulo /i-cobordism.

Suppose that (/,&): M —> TV is a degree 1 normal map of closed mani-
folds, or in other words, a closed manifold surgery problem. It turns out that
the closed manifold surgery obstructions are very restricted, related to the
low dimensional group homology if*(Z7r;Z/2), while L^(ZTT) is usually large.
We will actually obtain results about the weakly simple surgery obstructions
in Z/n(Z7r) := I^(ZTT), where U = SK^ZTT) 0 {±7ra6}. The natural map
L^(ZTT) -» L^(ZTT) shows that these results also hold for Lh.

One way to obtain closed manifold surgery problems form the cartesian
product of a simply connected surgery problem with a closed manifold P in
domain and range. The standard simply connected connected surgery prob-
lems are the Milnor problem and the Kervaire problem (8.4).

Theorem 10.1 ([17]). Let Pk be a closed, oriented, topological manifold with
7Ti(P) finite, and let (/, b): Mn —>• Nn be a simply connected closed manifold
surgery problem, with n + k > 5. Then the product normal map

(f xid.bxid): MxP-^NxP

is normally cobordant to a weakly simple homotopy equivalence either

(i) for n = 2(mod4) and k = 0(mod4); if the Euler characteristic of P is
even, or

(ii) for n = 0(mod4) if Index(P) = 0.

The most complete result is for odd dimensional surgery problems. Recall
that if 7f is a subquotient of TT (that is, ft = p/po where po < P Q ?r) there is
a "transfer-projection" homomorphism L'n(Zir) —> Z/n(Z7f) induced geometri-
cally by surgery on a covering normal map. Let C(2) denote the cyclic group
of order 2, and Q(2k) the generalized quaternion group of order 2k.

Theorem 10.2 ([17]). Let Nn be a closed oriented topological manifold with
TTI (N) finite and n > 5 odd. Then a closed manifold surgery problem (/, b): M —>
N is normally cobordant to a weakly simple homotopy equivalence if and only

if:
(i) n = I(mod4) and A(/, b) maps to zero under transfer-projection to all

quaternionic subquotients Q(2k) ofTTi(N), or
(ii) n = 3(mod4) and A(/, b) maps to zero under transfer-projection to all

C(2) quotients ofiri(N).

A closed manifold X provides a base point for the homotopy theoretic de-
scription T(X) = [X^G/TOP], due to Sullivan and Kirby-Siebenmann, for
the set of degree 1 normal maps. The right-hand side has an abelian group
structure (since G/TOP is an if-space), and the surgery obstruction gives a
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homomorphism

which can be understood in terms of a "universal" family of homomorphisms

depending only on the fundamental group.
The definition of the {KJ} depends on the 2-local splitting G/TOP^) =

EL>o K(Z(2), 4A:) x if (Z/2,4k — 2) given by the cohomology classes £ = {£**} G
H** (G/TOP, Z(2)) and k = {/c4*+2 e H**+2 (G/TOP, Z/2) of Morgan-Sullivan,
Rourke-Sullivan, and Milgram.

The next major ingredient is the fact that a closed topological n-manifold
satisfies an enriched form of Poincare duality, namely,

n [X]u : [X,G/TOP] ** H\X-U) - ^ Hn(X;U)

where Lo is the Quinn-Ranicki connective L-spectrum with O-th space G/TOP
(see [39]). Note that the generalized homology functor on the right-hand side
can be applied to any space, not just to n-manifolds. Let c: X —> if (TT, 1) be
the classifying map of the universal covering space X.

Theorem 10.3 (Quinn, Ranicki). For any group ir, and any integer n, there
exists an assembly map

functorial in TT. Furthermore, if X is a closed, oriented topological n-manifold,
the surgery obstruction homomorphism crx(f) = Ar ° ^(ax(f) H [X]L0) ; for

all maps f: X ^ G/TOP.

The //-spectrum has a 2-local splitting as above into Eilenberg-Maclane
spectra, so that

#n_4fc(7r;Z(2)) x Hn^k_2{
k>0

and the corresponding splitting of the assembly map An restricted to one of
the Z/2-homology summands gives df for j = n — 4k — 2. It isn't obvious (but
true) that another pair (n', k1) with the same value j = v! — 4k! — 2 leads to the
same homomorphism KJ , after identifying Ln = Ln+±(k-k') by the periodicity
isomorphism (note that n' = n + 4(k — k')).

Let Vx denote the total Wu class of the stable normal bundle vx-> and for
any map / : X -> G/TOP let

ARF,(/) = {(V* U /*(*)) n [X]} e H^X- Z/2)

be the j-dimensional component of the indicated homology class. We let
ARF(/) and Index(/) denote the ordinary (simply-connected) Arf invariant
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and index of the surgery problem given by / (considered as elements in L*(Z)).
Finally, let

sr: #2r+2(X;Z/2) -> H4(X;Z/2)
for r > 0 be the Horn-dual of the iterated squaring maps in cohomology.

Theorem 10.4 ([17]). Let X be a closed, oriented topological n-manifold with
finite fundamental group ir. Let U C Wh(Z7r) be an involution invariant sub-
group containing Im(SKi(Zp) —> SKI(ZTT)), where p C TT is a 2-Sylow sub-
group. For any surgery problem f: X —> G/TOP of closed manifolds, the
surgery obstruction &x{f) £ L^(ZTT) is equal to:

(i) Index(f) + K%{c*(ARF2(f))} for n = 0(mod4).
(ii) ^{c,(ARF3(f))} for n = I(mod4).

(hi) ARF(f) + ^{c,(Zr>0Sr(ARF2r^(f)))} for n = 2(mod4).
(iv) ^{c,{ARF1{f))} for n = 3(mod4).

This result and the applications above are proved by factoring the ft-homomorphisms
through a more computable form of L-theory, and then using the arithmetic
square techniques (see [17] for more details).

11. T H E SPHERICAL SPACE FORM PROBLEM

The classification of orthogonal spherical space forms up to isometry [48]
was first proposed by Killing in 1891, and the problem attracted the atten-
tion of famous mathematicians of the time, such as Clifford, Hopf, Klein, and
Poincare. In 1925, H. Hopf s proved [25]:

Theorem 11.1 (Hopf). The following is a list of all finite fixed-point free sub-
groups of SO (A):

(a) The cyclic group C(n), the generalized quaternion group Q(4n), the binary
tetrahedral group T*(24); the binary octahedral group O*(48); and the
binary icosahedral group /*(120).

(b) The semidirect product C(2n + 1) x C(2k) of an odd order cyclic group
with a cyclic 2-group. More explicitly C(2n + 1) x C(2k) is given by the
presentation {A,B : A2* = B2n+1 = l,ABA~l = B'1} where k > 2,n >
1.

(c) A semidirect product Q(8) x C(3k) of the quaternion group Q(8) with a
cyclic 3-group. More explicitly, Q(8) x C(3h) is given by the presentation
{P,Q,X : P2 = (PQ)2 = Q2, X3" - 1, XPX-1 = Q, XQX~l = PQ}
where k > 1. For k — 1, this is the binary tetrahedral group T*(24).

(d) The product of any of the above groups with a cyclic group of coprime
order.

At first glance, the above list may appear to be random. In the forties and
fifties, efforts were made to interpret Hopf's list using group cohomology [9]
and it was discovered that all these groups have periodic Tate cohomology of
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period four. In general, a finite group has periodic cohomology if and only if it
satisfies the p2-conditions ("any subgroup of order p2 is cyclic") for all primes p.
From the viewpoint of group theory, this condition means that the odd Sylow
subgroup is cyclic and the 2-Sylow subgroup is cyclic or generalized quaternion.
If the cohomology has period four then, in addition, the pg-conditions hold
("every subgroup of order pq is cyclic") for p and q distinct odd primes.

The necessity of the 2g-conditions was established by J. Milnor [32] in 1957,
when he showed that the dihedral group of order 2q cannot operate freely on
any Z/2-homology sphere despite the fact that it has periodic cohomology of
period 4. In [32] Milnor also compiled the following list of all finite groups,
not in Hopf's list ( l l . l .a)-(l l . l .d), but satisfying the restrictions known at the
time on fundamental groups of 3-manifolds.

Theorem 11.2 (Milnor). The following are the finite groups with periodic co-
homology of period 4, containing no dihedral subgroups.

(a) The semidirect product Q(8n, A;, /) of the odd cyclic group C(kl) with
the generalized quaternion group Q(8n). More explicitly, Q(8n, &,/) has
the presentation: {X,Y,Z : X2 = Y2n = ( I F ) 2 , Zkl = 1, XZX~l =
Z r , YZY = Z~1}. Here n, k,l are all odd integers and relatively prime
to each other, n > k > I > 1, and r satisfies r = — 1 (mod fc), r = 1
(mod I). If 1 = 1, we set Q(8n, k) = Q(n,k,l).

(b) The group Q(Sn,kJ) with the same presentation as (1.5), but with n
even.

(c) An extension 0(48; S*"1,/) of the odd order cyclic group C(3k~ll), 3 \l,
by the binary octahedral group O*(48). More precisely, O(48]3k~1J) has
five generators X, P, <2, i?, A and the following relations:

X*k =P* = Al = l,P2 = Q2 = R2, PQP~l = Q-1

XPX~l = Q, XQX-1 = PQ, RXR-1 = X~\ RPR~l - QP
RQR-1 = Q~\ AP = PA, AQ = QA, RAR~l = A'1.

(d) The product of any of the above groups with a cyclic group of coprime
order.

Thus Hopf's problem is to prove that groups in the above list (11.2.a)-
(11.2.d) do not act freely on homotopy 3-spheres.

In the late sixties, C. T. C. Wall asked whether Milnor's result could be
interpreted using the new theory of nonsimply connected surgery. Ronnie
Lee [27] answered this question in 1973 by defining a "semicharacteristic"
obstruction for the problem. As well as recovering the previous result of Milnor,
the semicharacteristic rules out the family of groups Q(8n, £;, /), n even, in
(11.2.b). Later C. B. Thomas observed that this also eliminates the family of
groups 0(48,3k~ lJ) in (11.2.c) because groups of this type always contain a
subgroup isomorphic to Q(16, S^"1,1). These results leave undecided only the
groups Q(8n, k, /), n odd, in (11.2.a) and their products with cyclic groups of
coprime order in (11.2.d) from Milnor's original list.
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The remaining part of Hopf 's problem is to prove that for any distinct odd
primes p, </, the group Q(8p,q) does not operate freely on any homotopy 3-
sphere. Notice that a group Q(8n, A;, /) in the family (11.2.a) always contains a
subgroup of the form Q(8p, q). Hence ruling out the groups Q(8p, q) would also
eliminate the family (11.2.c) in Milnor's list and the corresponding products
in (11.2.d).

In contrast with the 3-dimensional case, the analogous spherical space form
problem in higher dimensions has been almost completely resolved. The goal
is the topological (smooth) classification of finite group actions (E2 n - 1 ,G) on
(homotopy) spheres E 2 n - 1 of dimension 2n — 1, n > 3. This problem was
both a motivation and an important test case for the techniques of algebraic
and geometric topology developed in the period 1960-1985. P. A. Smith had
already shown in 1944 that the p2 conditions were necessary for a G-action on
any homology sphere. Conversely, Swan [43] proved:

Theorem 11.3 ([43]). Every group with periodic cohomology acts freely and
simplicially on a CW complex homotopy equivalent to a sphere.

Given a group G with periodic cohomology of period 2d, Swan's contruction
produces finitely dominated Poincare complexes X with TTI(X, XO) = G, and
X ~ S2n~l, for some multiple n of d. We call these Swan complexes for short.
The chain complex C*(X) gives an exact sequence (or periodic resolution) of
the form

0 -* Z -> P2n-i -> > Pi -> Po -> Z -+ 0

where the d are finitely generated projective ZG-modules. Two such se-
quences C* and C^ are isomorphic if there is a chain map f: C —> C inducing
the identity on the homology groups Ho = H2n-i = Z, and the homotopy
types of X are in bijective correspondence with the isomorphism classes of the
periodic resolutions. The Wall finiteness obstruction is just

and Swan discovered a beautiful formula for the difference 6\y(X) — 0\y(Xf) if
X, X' are two Swan complexes of the same dimension.

Any two periodic resolutions can be compared by a chain map:

0 "̂ Z ^ P271-1 ^ * • * ^ Pi ^ Po ^ Z ^ 0

0 — - z — > P L - i — >P{—>Po—*z—-0
inducing a map of degree r. Equivalently, if X and Y are Swan complexes of
the same dimension, there is a map / : X —> Y of degree r between them. We
let (r, N) C ZG denote the ideal generated by the integer r and the group ring
element N = ^2{g \ g e G}
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Theorem 11.4 ([43]). Let X and Y be Swan complexes for G of the same
dimension. Then 9W(Y) = 9W(X) + [(r, N)] G K0(ZG).

The existence and classification of Swan complexes opened the way for a
systematic attack on the problem using surgery theory. Throughout the 1970's
remarkable progress was made on the higher dimensional space form problem,
culminating in the paper of Madsen, Thomas and Wall [29].

Theorem 11.5 ([29]). Any finite group G satisfying the p2 and2p conditions
(for all primes p) acts freely and smoothly on a homotopy sphere of some odd
dimension 2n — 1 > 3.

The precise dimensional bounds were not determined, although for G of
period 2d they show that n = 2d is always realizable (n = d is best possible).

The next big step forward was the explicit calculation by Milgram [31] in
1979 of the finiteness obstruction for some of the period 4 groups G = Q(8p, </),
following the method of [46]. Tensoring a periodic resolution for G with the
adele ring Q allows one to define an "idelic" Reidemeister torsion invariant

A(X)eK1{QG)

whose image under the boundary map d: Ki(QG) -» KQ(ZG) gives the for-
mula

dA(X) = Ow(X)
Now the arithmetic square techniques can be applied to compute the finiteness
obstruction in terms of units in algebraic number fields. In particular, Milgram
showed that some of the groups in Milnor's list are not fundamental groups of
spherical space forms in any dimension (including dimension 3).

After this followed a sequence of papers by Milgram (see the survey in [12]),
and independently by Madsen [30], aiming at the calculation of the relevant
surgery obstruction. Here the problem is to determine which of the groups
Q(8p,q) act freely on E8/c+3, for k > 0, since they act linearly on Ssk+7 for all
k > 0. It turned out that the answer is computable in principle, but depends
sporadically on the number theory of the primes p, q. Note that the vanishing
of the high-dimensional obstruction is equivalent to the existence of a free
action of the corresponding group Q(8p,q) on an integral homology 3-sphere.

12. BOUNDED K AND L-THEORY

The next two sections give an introduction to "bounded" topology, and gen-
eralize algebraic if-theory to this setting. This algebra has many applications
in topology, including the problem discussed in Section 14 of these notes.

Let M be a metric space. Assume there is a group G acting on M by
eventual Lipschitz maps [36]. Recall an eventual Lipschitz map g : M —> M
is a map so there exists A:, / G R+ so that d(gx, gy) < k • d(x, y) + I. We want
k and / to be independent of g.
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Example 12.1. Let M be a finitely generated group exhibited with the word
metric, and G C M a subgroup. Then the action of G on M by conjugation
is by eventual Lipschitz equivalences. Specifically if g G G has length I then

l, gyg~l) = d(gxy-lg~l, e) < 2/ + d(x, y)

Example 12.2. Let (V, G) be an orthogonal representation. Then G acts by
isometries on V hence clearly by eventual Lipschitz maps.

Given M and G as above, and a commutative ring with unit i?, we define a
category GM,G(R)

 a s follows:

Definition 12.3. An object A is a right .RG-module together with a map
/ : A -> F(M), where F(M) is the set of finite subsets of M, satisfying

(i) / is G-equivariant.
(ii) Ax — {a G A\f(a) C {x}} is a finitely generated iZG^-module, free as an

i?-module.
(iii) As an i?-module A — @xeMAx.
( iv) / (a + 6 ) C / ( a ) U / ( 6 ) .
(v) For each ball B C M, the subset {x G B\AX ^ 0} is finite, and relatively

G-compact.
A morphism 0 : A -> B is a morphism of i?G-modules, satisfying the following
condition: there exists k so that the components <j>™ : Am -> 5 n (which are
i?-module morphisms) are zero when d(m,n) > k. The category QM,G(R)

 ls

an additive category in an obvious way.

Remark 12.4. When M has more than one point it follows from these condi-
tions that f(a) = 0 if and only if a = 0. When M is precisely one point,
this has to be added as an extra assumption. It follows easily from the
conditions that / measures exactly where an element has components. In
other words, if xi,.. ,xn G M are different points and a* G AXi, a$ 7̂  0 then

. . . + an) =

Given an object A, an i?-module homomorphism (f> : A -+ R is said to
be locally finite if the set of x G M for which </>(Ax) ^ 0 is finite. Define
4̂* = Homl

i/'(.A,i2), as the set of locally finite i?-homomorphisms. We want
to make * a functor from GM,G{R) to itself to make GM,G(R) a category with
involution. We define /* : A* -> FM by f *(</>) = {x\(f>(Ax) ^ 0} which is finite
by assumption. The dual module A* has an obvious left action of G, turning
it into a left RG module via the formula <j>g{a) — <f>(ga)i and /* is equivariant
with respect to the left action on M given by xg = g~lx. To make * an
endofunctor of GM,G(R)

 w e n e e d to replace the left action by a right action.
As is usual in surgery theory, this may be done in various ways, the standard
one being to let g act on the right by letting g~l act on the left. However
given a homomorphism w : G —>>{±l},we may let g act on the right of A* by
w(g) ' 9~l o n the left.
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Proposition 12.5. (GM,G(R)I*) ^S an additive category with involution.

For many purposes we are more interested in the subcategory of GM,G(R)

for which all objects are free RG modules.

Definition 12.6. The subcategory of GM,G{R) where the modules are required
to be free RG modules is denoted by CM,G{R)-

It is easy to see that * induces a functor on CM,G(R)J SO that CM,G{R) is a
subcategory with involution.

Example 12.7. If G acts trivially on M and G is finite, then CM,G(R) is natu-
rally equivalent to CM{RG) where RG is the category of free finitely generated
based RG modules. We can also give a nice expression for the lower algebraic
K-theory functors defined by Bass: K^(ZG) = #i(CRi+i(ZG)) for i > 0.

Example 12.8. If G is finitely generated and \G\ denotes the metric space
with the same underlying set as G, and the word metric, then C\G\,G(R) is
naturally equivalent to Cpt(RG) (as categories with involution). Notice it does
not matter which generating set we choose for G since 2 different generating
sets will give eventual Lipschitz equivalent metrics. In case G is finite, this
means C\G\,G(R) is equivalent to Cpt,G(R) which is equivalent to Cpt(RG).

Using the algebraic L-theory of additive categories with involution, as de-
veloped by Ranicki, we immediately have defined functors L^(CM,G(R)) where
K is some * invariant subgroup of ^ ( C M , G ( ^ ) ) ? i = 0,1. Here KI(CM,G(R)) —
#i(Cw ,G(i2))/{±l} and K0(CM,G(R)) = (K0(CM,G(R))A)/K0(CM,G(R)), where
A denotes idempotent completion.

Let N be a sub metric space of the metric space M. In the equivariant case,
we suppose that N is an invariant subspace.

Definition 12.9. The category C^N
G(R) of germs away from JV, has the same

objects as CM,G(R)J
 a n d morphisms are germs of morphism away from N:

two morphisms are identified if there exists k so that they only differ in a
^-neighborhood of N.

Consider the metric space M x E. where G acts trivially on the M-factor.
Inside we have the metric space MUJVx[0 , oo). It follows immediately from
the methods of [36], see also [1] for a more formalized description, that the
natural functor

induces an isomorphism on if-theory, and it follows from the proofs of [40],
that it induces an isomorphism in L-theory (Eilenberg swindle is allowed in
L-theory).

Theorem 12.10 ([36]). There is a long exact sequence

. ..K*(CN>G(R)) —> K.(CM,G{R)) —v N
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Here it should be noted that we are using the non-connective deloopings of
[36] to define if-theory in negative dimensions.

Theorem 12.11. There is a ^-periodic long exact sequence

. . . Lh
n(C{N,G)(R)) -»• Lh

n(C{M,G)(R)) -+ L«(C>£G)(R)) -+ Lh
n_x{C{N,G){R))...

Where K = ^ ^

The formulation in [40] is using CMUATX[O,OO) instead of C^N. We saw in
example 12.7 that trivial group action corresponds to RG coefficients. This is
part of a more general phenomenon motivating the following definition

Definition 12.12. Suppose G is acting on the metric space M with invariant
subspace N. We say that the set of subgroups {Ha} of G is the effective
fundamental group for (M, G) away from N if the following is satisfied: For
every k > 0 the set {x G M \ dmm(Ha • x) < k} is not contained in a bounded
neighborhood of N.

Example 12.13. let (V, G) be a representation. Then the effective fundamen-
tal group away from 0 is the set of isotropy subgroups of the representation.

On the geometric side we need the following result from [13]. A map X —>
M from a space to a metric space is eventually continuous if there exist a
covering {Ua} of X so that diam(p£/a) is uniformly bounded, and the inverse
image of a bounded set is precompact. When the metric space is a cone, an
eventually continuous map may always be replaced by a continuous map which
is only a bounded distance away.

Theorem 12.14. Let X be a free G—CW complex together with a G-equivariant,
eventually continuous map X —> M such that X —> M is boundedly simply con-
nected, and X satisfies Poincare duality with respect to some homomorphism
w: G -> Z/2, in the category CM,G{^), dim(X) > 5. Let W —> X be a de-
gree one normal map. Then W is normally cobordant to a bounded homotopy
equivalence if and only if an invariant in L^CM.GC^*)) vanishes.

The concept boundedly simply connected is defined in [13, 2.7] . As in
standard surgery theory, normal invariants corresponds to lifts of the Spivak
normal fibre space X —» BF to BTOP. If we fix a lift (defining a basepoint)
then [13]:

Theorem 12.15. There is a long exact sequence of surgery

...-»> Lh
n+1CM,G(Z)) ^Sb( T ) -> [X/G, F/TOP] -+ Lh

n{CM,G{Z))

Tensor product defines a pairing

C\G\,G(R) x GM,G(R)
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whenever R is a commutative ring with unit. When \G\ is finite, this means
we may replace C\GiG(R) by Cpt(RG) and C\G\XM,G{R) by CM,G(R), SO for finite
G we have a pairing

Cpt(RG) x £ M , G ( # ) —> CM,G(R)

Using the fact that (A® B)* = A* ® B* for finitely generated i?-modules, it
follows that this commutes with the pairings, so it follows from [40] that there
is a pairing

Ln(RG) ® Lk(gM,G(R)) —> Ln+k(CM,G(R))

geometrically corresponding to the twisted product.

13. MACKEY PROPERTIES

Let M be a metric space and G a finite group acting on M by eventual Lip-
schitz maps, R a commutative ring with unit. Consider the category CM,G(R)-

Given two subgroups G\ C G2 C G we have G\ and G2 acting on M by
restriction and there are restriction functors CM,G2 {R) ~~̂  CM,GI (R) a n d induc-
tion functors CM,GI{R) -> CM,G2(R)- The restriction functor is obtained just
by restriction of the group action, and the induction functor sends an object
A to RG2 ®RGI A. The required map from RG2 ®RGI A to the finite subsets of
M is extended from the map of A to the finite subsets of M by equivariance:
let f{g®a) = g- f(a). Clearly restriction and induction are functors. We need

Lemma 13.1. Restriction and induction are functors of categories with invo-
lution.

Proof The involution is given by A* = Horn*'f'(A, R) turned into a right RG-
module as described above, and it does not matter whether we restrict before
or after applying Horn*'^. Also

-(RG2 ®RGI A, R) = Uom(RG2, UomLf(A, R))

•
Given two functors between additive categories with involution, we may

form anew functor, the direct sum of the two functors. It is easy to see that

Lemma 13.2. A functor between additive categories with involution induces
a map of L-groups. The sum of two functors induces the sum of the two maps.

Proof. Direct from the definitions since L-groups are defined as a bordism
theory where direct sum is turned into addition [38]. •

Consider the category A(G) defined as follows. The objects are the sub-
groups of G, and the Hom(i7i,iif2) is the Grothendieck construction applied
to the collection of finite "free bi-sets" ( these are just finite sets Z with free
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left B.2 action and free right ifi-action) where the addition is disjoint union.
The balanced product

(H3ZH2)
 XH2 (H2YHX)

is a free biset and can be easily shown to induce a composition Hom(ifi, if2) x
Hom(if2, H%) ~> Horn (Hi, H$) which is bilinear. The set H as an H — H biset
is the identity element for Horn (if, if).
There is a functor Gr(G) -> A(G) from the category of subgroups of G (mor-
phisms are Maps(ifi,if2) = {g G G\gHig~l C #2})- It is the identity on the
objects and sends g G Maps(ifi, H2) to the equivalence class of if2 considered
as a left if2 set in the obvious manner, and Z ^ i = h2gh\g~l for all hi G ifi,
and all /12 G H2. As noted in [21, 4.1], this is a Mackey functor and any functor
out of A(G) to an additive category yields a Mackey functor by composition.
It follows that

Theorem 13.3. Given a finite group G and a metric space M as above, then
CM,?(R) is a Mackey functor, and hence LU(CM,?(R)) i>s a Mackey functor.

Remark 13.4. We suppress the upper index in the L-groups in the above
statement. The point is that the upper index has to be a subgroup of a K-
theoretic group which is in itself a Mackey functor e.g. the whole group or the
trivial subgroup, but also naturally defined image groups will work.

Proof Given an if 1 — if2 biset Z then sending A to RZ ®RH2 A and extending
the reference map by equivariance defines a functor from CX,H2 (R) to Cx,Hi (R)-

D

14. NON-LINEAR SIMILARITY

Let G be a finite group and V, V finite dimensional real orthogonal repre-
sentations of G. Then V is said to be topologically equivalent to V (denoted
V rsjt V') if there exists a homeomorphism h: V —> V which is G-equivariant.
If V, V are topologically equivalent, but not linearly isomorphic, then such
a homeomorphism is called a non-linear similarity. These notions were intro-
duced and studied by de Rham [41], [42], and developed extensively in [4], [5],
[26], [28], and [8].

Recently, Erik Pedersen and I have completed de Rham's program by show-
ing that Reidemeister torsion invariants and number theory determine non-
linear similarity for finite cyclic groups. I will describe some of our results in
this section. The new ingredient is the use of "bounded surgery" techniques.

A G-representation is called free if each element I / 3 G G fixes only the
zero vector. Every representation of a finite cyclic group has a unique maximal
free subrepresentation.

Theorem 14.1 (Hambleton-Pedersen). Let G be a finite cyclic group andVi,
V2 be free G-representations. For any G-representation W, the existence of a
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non-linear similarity V\ 0 W ~t V2 © W is entirely determined by explicit con-
gruences in the weights of the free summands V\, V2, and the ratio A(Vi)/A(Vr

2)
of their Reidemeister torsions, up to an algebraically described indeterminacy.

This is just a general formulation, intended to give an overview of the answer.
Precise statements of our results are given in [20]. For example, for cyclic
groups of 2-power order, we obtain a complete classification of non-linear sim-
ilarities.

Two fundamental result on the problem were proved in the 1980's by Cappell-
Shaneson [4], Hsiang-Pardon [26], and Madsen-Rothenberg [28].

Theorem 14.2 (Cappell-Shaneson). Non-linear similarities V ~t V exist for
cyclic groups G — C(4q) of every order 4q ^ 8.

Theorem 14.3 (Hsiang-Pardon, Madsen-Rothenberg). If G — C(q) or G —
C{2q), for q odd, topological equivalence of G-representations implies linear
equivalence.

This is called the Odd Order Theorem (the missing case G — C(4) is trivial).
Since linear G-equivalence for general finite groups G is detected by restriction
to cyclic subgroups, it is reasonable to study this case first. For the rest of this
section, unless otherwise mentioned, G denotes a finite cyclic group.

Further positive results can be obtained by imposing assumptions on the
isotropy subgroups allowed in V and V. For example, de Rham [41] proved
in 1935 that piecewise linear similarity implies linear equivalence for free G-
representations, by using Reidemeister torsion and the Franz Independence
Lemma. Topological invariance of Whitehead torsion shows that his method
also rules out non-linear similarity in this case. In [19, Thm.A] we studied
"first-time" similarities, where Res# V = Res# V for all proper subgroups
K ^ G, and showed that topological equivalence implies linear equivalence if
V, V have no isotropy subgroup of index 2. This result is an application of
bounded surgery theory (see [18], [19, §4]), and provides a more conceptual
proof of the Odd Order Theorem. These techniques are extended in [20] to
provide a necessary and sufficient condition for non-linear similarity in terms
of the vanishing of a bounded transfer map. This gives a new approach to
de Rham's problem. The main work of [20] is to establish methods for effec-
tive calculation of the bounded transfer in the presence of isotropy groups of
arbitrary index.

An interesting question in non-linear similarity concerns the minimum pos-
sible dimension for examples. It is easy to see that the existence of a non-linear
similarity V ~t V' implies d imF = diml/ ' ^ 5. Cappell, Shaneson, Stein-
berger and West proved:

Theorem 14.4 ([8]). Non-linear similarity starts in dimension 6 for G =
C(2r), with r ^ 4.
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A 1981 Cappell-Shaneson preprint (now published [7]) shows that 5-dimensional
similarities do not exist for any finite group.

In [5], Cappell and Shaneson initiated the study of stable topological equva-
lence for (^-representations. We say that V\ and V2 are stably topologically
similar (Vi « t V2) if there exists a G-representation W such that Vj. © W ~t

V2 © W. Let RToP{G) = R(G)/Rt(G) denote the quotient group of the real
representation ring of G by the subgroup Rt(G) = {[Vi] — [V2] | Vi ~* ̂ } -
In [5], i?Top(G?) <g> Z[l/2] was computed, and the torsion subgroup was shown
to be 2-primary. As an application of our general results, we determine the
structure of the torsion in -Ribp(G), for G any cyclic group. In Theorem 14.11
we give the calculation of RTOP(G) for G = C(2r). This is the first complete
calculation of RTOP(G) for any group that admits non-linear similarities.

In order to state a sample of the results from [20] precisely, we need some
notation. Let G = G(4g), where q > 1, and let H = C(2q) denote the subgroup
of index 2 in G. The maximal odd order subgroup of G is denoted Godd. We
fix a generator G = (t) and a primitive 4qth-root of unity £ = exp 2iri/4q. The
group G has both a trivial 1-dimensional real representation, denoted R+, and
a non-trivial 1-dimensional real representation, denoted R_.

A free G-representation is a sum of faithful 1-dimensional complex represen-
tations. Let ifl, a G Z, denote the complex numbers C with action t • z = C^z
for all z G C. This representation is free if and only if (a, 4g) = 1, and
the coefficient a is well-defined only modulo 4q. Since ta = t~a as real G-
representations, we can always choose the weights a = Imod4. This will be
assumed unless otherwise mentioned.

Now suppose that Vi = tai + • • • + tak is a free G-representation. The
Reidemeister torsion invariant of Vi is defined as

Let V2 = tbl + • • • + tbk be another free representation, such that 5(Vi) and
S(V2) are G-homotopy equivalent. This just means that the products of the
weights Ylai = n ^ m 0 ( ^ 4 g . Then the Whitehead torsion of any G-homotopy
equivalence is determined by the element

since Wh(ZG) -^ Wh(QG) is monic [35, p. 14]. When there exists a G-
homotopy equivalence / : S(V2) —> 5(Vi) which is normally cobordant to
the identity map on 5(Vi), we say that S'(Vi) and S(V2) are normally cobor-
dant. More generally, we say that S(Vi) and S(V2) are s-normally cobordant if
S(Vi(BU) and S(V2®U) are normally cobordant for all free G-representations
U. This is a necessary condition for non-linear similarity, which can be decided
by explicit congruences in the weights.
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This quantity, A(Vi)/A(V^) is the basic invariant determining non-linear
similarity. It represents a unit in the group ring ZG, explicitly described for
G — C(2r) by Cappell and Shaneson in [6, §1] using a pull-back square of rings.
To state concrete results we need to evaluate this invariant modulo suitable
indeterminacy.

The involution t i—> t~l induces the identity on Wh(ZG), so we get an
element

where we use Hl(A) to denote the Tate cohomology Hl(Z/2;A) of Z/2 with
coefficients in A.

Let Wh(ZG") denote the Whitehead group Wh(ZG) together with the in-
volution induced by 11-> — t~l. Then for r(t) = UA*I^, we compute

which is clearly induced from Wh(ZH). Hence we also get a well defined
element

G H\W\i(ZG-)/Wh{ZH)) .

This calculation takes place over the ring A2q = Z[t]/(1 +1 2 -\ h tAq~2), but
the result holds over ZG via the involution-invariant pull-back square

ZG -» A2q

I I
Z[Z/2] -+ Z/2q[Z/2]

Consider the exact sequence of modules with involution:

(14.5) KX{ZH) -> Ki(ZG) -> K^ZH^ZG) -> K0(Zi/) -> K0(ZG)
and define Wh(Zff -^ ZG) = ifi(Zff ^ ZG)/{±G} . We then have a short
exact sequence

0 -> Wh(ZG)/ Wh(ZJyr) -> Wh(ZH->ZG) -> k -^ 0

where k = ker(i^0(Zi/) —> JK'Q(ZG)). Such an exact sequence of Z/2-modules
induces a long exact sequence in Tate cohomology. In particular, we have a
coboundary map

6: H°(k) -> Hl(Wh{ZG-)/ Wh(Zif)) .

Our first result deals with isotropy groups of index 2, as is the case for the
non-linear similarities constructed in [4].

Theorem 14.6 ([20, Thm. A]). Let Vx = tai +• • - + tak and V2 = tbl +• • - + tbh

be free G-representations, with a* = bi = Imod4. There exists a topological
similarity V\ © R_ ~t V2 © R - i/ and on/y i/

(i) Y\ai = l\
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(ii) Res# Vi = Res# V2, and
(iii) the element (A(Vr

1)/A(F2)} G F1(Wh(ZG")/Wh(Zif)) s* in toe t
0/toe coboundaryd: H°(k) -> ^ ( W h f z G " ) / W h ( Z # ) ) .

Remark 14.7. More general isotropy is handled in the other results of [20].
Theorem 14.6 should be compared with [4, Cor.l], where more explicit condi-
tions are given for "first-time" similarities of this kind under the assumption
that q is odd, or a 2-power, or 4q is a "tempered" number.

The case dim V\ — dim V2 = 4 gives a reduction to number theory for the
existence of 5-dimensional similarities.

We turn now to results on the structure of RTOP(G). There is a filtration

(14.8) Rt(G) C Rn(G) C Rh(G) C R(G)

on the real representation ring -R(G), inducing a filtration on

= R(G)/Rt(G) .

Here Rh(G) consists of those virtual elements with no homotopy obstruction to
similarity, and Rn(G) the virtual elements with no normal invariant obstruc-
tion to similarity Note that R(G) has the nice basis {f, 5, e \ 1 ^ i ^ 2q — 1},
where 5 = [R_] and e = [R+].

Let Rfree(G) = {ta I (a,4g) = 1} C R(G) be the subgroup generated by the
free representations. To complete the definition, we let Rfree(C(2)) = {R_}
and Rfree(e) = {R+}. Then

KCG

and this direct sum splitting can be intersected with the nitration above to
define R{ree(G), Rf

n
ree(G) and R(ree(G). In addition, we can divide out R{T"(G)

and obtain subgroups Bfi^G) and Rf
n^op(G) of i ^ ' ( G ) = R""(G)/R(r"(G)-

By induction on the order of G, we see that it suffices to study the summand

Let Rfree(G) = ker(Res: Rfree{G) -> RfTee{Godd)), and then project into
RTOP{G) to define

Theorem 14.9 ( [20]). The torsion subgroup of R^^(G) is precisely R^

and the subquotient Rfn^op(G) = R^"(G)/R(ree(G) always has exponent two.

Here is a specific computation.

Theorem 14.10 ([20, Thm. D]). Let G = C(4q), with q > 1 odd, and sup-
pose that the fields Q(Q) have odd class number for alld \ Aq. Then
Z/4 generated by (t - t1+2q).
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For any cyclic group G, both Rfree{G)/Rf
h
ree(G) and Rf

h
ree(G)/Rf

n
ree(G) are

torsion groups which can be explicitly determined by congruences in the weights.
We conclude this list of sample results with a calculation of RTQP(G) for

cyclic 2-groups.

Theorem 14.11 ([20, Thm. E]). Let G = G(2 r) ; with r ^ 4. Then

i , a 2 j . . . , a r - 2 , A , f t , • • •, A-3>

subject to the relations 2sas = 0 for 1 ^ 5 ^ r — 2; and 25~1(a5 + /?s) = 0 for
2 ^ 5 ^ r - 3 ; together with 2(c*i + ft) = 0.

The generators for r ^ 4 are given by the elements
r9T-5-2,

and fis = t5-t5

We remark that #££(£(8)) = z / 4 generated by t - t5.

Our approach to the non-linear similarity problem starts with an elementary
observation about topological equivalences for cyclic groups.

Lemma 14.12. IfV\@W ~$ V2®W, whereV\, V2 are free G-representations,
and W and W have no free summands, then there is a G-homeomorphism
h: Vi 0 W -> V2 0 W such that

h\ |J WH

is the identity.

Proof Let h be the homeomorphism. We will successively change /i, stratum
by stratum. For every subgroup K of G, consider the homeomorphism of
if-fixed sets

This is a homeomorphism of G/K, hence of G-representations. As G-representations
we can split

v2 e w' = u e w/K ~t u e wK = v2 e w"
where the similarity uses the product of the identity and (fK)~l. Notice that
the composition of / with this similarity is the identity on the if-fixed set.
Rename W" as W and repeat this successively for all subgroups. We end up
with W — W and a homeomorphism as claimed. D

One consequence is

Lemma 14.13. / / V\ 0 W ~t V2 © W then there exists a G-homotopy equiv-
alence S{V2) -» 5(Vi).
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Proof. If we 1-point compactify h we obtain a G-homeomorphism

h+: S(Vi 0 W e R)-> S(V2® W@R).

After an isotopy, the image of the free G-sphere S(Vi) may be assumed to
lie in the complement S(V2 © W © R) - S(W © R) of S(W © R) which is
G-homotopy equivalent to S(V2). •

Any homotopy equivalence / : S(V2)/G —> S(Vi)/G defines an element [/]
in the structure set Sh(S(Vi)/G). We may assume that dirnVJ ^ 4. This
element must be non-trivial: otherwise S(V2)/G would be topologically h-
cobordant to S(Vi)/G, and Stallings infinite repetition of /i-cobordisms trick
would produce a homeomorphism V\ —> V2 contradicting [2], since V\ and
V2 are free representations. More precisely, we use Wall's extension of the
Atiyah-Singer equivariant index formula to the topological locally linear case
[47]. If dim V\ — 4, we can cross with CP 2 to avoid low-dimensional difficulties.
Crossing with W and parameterising by projection on W defines a map from
the classical surgery sequence to the bounded surgery exact sequence

Lh
n(ZG) > 5h(5(VL)/G) [5(VL)/G, F/Top]

(14.14)
/ S(V1)xW/G\

J/r — [S(V{) xGW,F/Top]
\ W/G J

The L-groups in the upper row are the ordinary surgery obstruction groups for
oriented manifolds and surgery up to homotopy equivalence. In the lower row,
we have bounded L-groups corresponding to an orthogonal action pw: G —»
O(W), with orientation character given by det(pw)- Our main criterion for
non-linear similarities is:

Theorem 14.15. Let V\ and V2 be free G-representations with dimVj ^ 2,
and suppose that f: S(V2) —> 5(Vi) is a G-homotopy equivalence. Then, there
is a topological equivalence V\ © W ~t V2 © W if and only if the element
[/] G Sh(S(Vi)/G) is in the kernel of the bounded transfer map

trfw: S

Proof. For necessity, we refer the reader to [19] where this is proved using a
version of equivariant engulfing. For sufficiency, we notice that crossing with R
gives an isomorphism of the bounded surgery exact sequences parameterized
by W to simple bounded surgery exact sequence parameterized by W x R.
By the bounded s-cobordism theorem, this means that the vanishing of the
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bounded transfer implies that

S{V2) xWxK - ^ S(VX) x W x R

WxR

is within a bounded distance of an equivariant homeomorphism /i, where dis-
tances are measured in W x R. We can obviously complete / x 1 to the
map

/ * 1: S(V2) * S(W x R) -> 5(1^) * S(W x R)

and since bounded in W x R means small near the subset

S(W x R) c S(Vi) * 5(VF x R) - S(Vi 0 ^ e R ) ,

we can complete h by the identity to get a homeomorphism

s(v2 e i f e R ) ^ s{v± ©w^eR)

and taking a point out we have a homeomorphisms V2 x W -> V2 x W D

By comparing the ordinary and bounded surgery exact sequences (14.14),
and noting that the bounded transfer induces the identity on the normal in-
variant term, we see that a necessary condition for the existence of any stable
similarity / : V2 &t V\ is that / : S(V2) —» S(Vi) has s-normal invariant zero.
Assuming this, under the natural map

Lh
n(ZG)^Sh(S(V1)/G),

where n = dim Vi, the element [/] is the image of a(f) G Ljj(ZG), obtained
as the surgery obstruction (relative to the boundary) of a normal cobor-
dism from / to the identity. The element a(f) is well-defined in L^(ZG) =
Coker(L^(Z) —> L^(ZG)). Since the image of the normal invariants

x I, SW/G x dl, F/Top] -^ Lh
n(ZG)

factors through L^(Z) (see [17, Thm.A, 7.4] for the image of the assembly
map), we may apply the criterion of 14.15 to any lift cr(/) of [/]. This reduces
the evaluation of the bounded transfer on structure sets to a bounded L-theory
calculation.

Theorem 14.16. Let V\ and V2 be free G-representations with dimVi ^ 2;

and suppose that / : S(V2) —> S(V\) is a G-homotopy equivalence which is
G-normally cobordant to the identity. Then, there is a topological equivalence
Vi@W ~tV2@W if and only if trfw(a(f)) = 0, where trfw: L*(ZG) ->

^ is the bounded transfer.
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