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Abstract

The algebraic theory of surgery gives a necessary and sufficient chain level condition
for a space with n-dimensional Poincare duality to be homotopy equivalent to an n-
dimensional topological manifold. The theory also gives a necessary and sufficient
chain level condition for a simple homotopy equivalence of n-dimensional topological
manifolds to be homotopic to a homeomorphism.

The assembly map A : Hn(X]h0) —> Ln(Z[7Ti(X)]) is a natural transformation from
the generalized homology groups of a space X with coefficients in the 1-connective
simply-connected surgery spectrum L# to the non-simply-connected surgery obstruc-
tion groups Z/*(Z[7ri(X)]). The (Z,X)-category has objects based f.g. free Z-modules
with an X-local structure. The assembly maps A are induced by a functor from the
(Z,X)-category to the category of based f.g. free Z[7Ti(X)]-modules. The generalized
homology groups H*(X]hm) are the cobordism groups of quadratic Poincare complexes
over (Z,X). The relative groups §*(X) in the algebraic surgery exact sequence of X

> Hn(X;h.) -^ Ln(ZMX)]) -> §n(X) -> Hn-!(X;U) - • • •

are the cobordism groups of quadratic Poincare complexes over (Z, X) which assemble
to contractible quadratic Poincare complexes over Z[TTI(X)].

The total surgery obstruction s(X) G Sn(X) of an n-dimensional simple Poincare
complex X is the cobordism class of a quadratic Poincare complex over (Z, X) with
contractible assembly over Z[TTI(X)], which measures the homotopy invariant part of
the failure of the link of each simplex in X to be a homology sphere. The total surgery
obstruction is s{X) = 0 if (and for n > 5 only if) X is simple homotopy equivalent to
an n-dimensional topological manifold.

The Browder-Novikov-Sullivan-Wall surgery exact sequence for an n-dimensional
topological manifold M with n > 5

• • • -v Ln+1(Z[7n(M)]) - §TOP(M) - [M,G/TOP] -> Ln(Z[7n(M)])

is identified with the corresponding portion of the algebraic surgery exact sequence

• • • -> Ln+i(Z[7n(M)]) - Sn+i(M) - Hn(M;U) A Ln(Z[7n(M)]) .

The structure invariant s(h) G E>TOP(M) = Sn+i(M) of a simple homotopy equivalence
of n-dimensional topological manifolds h : N —> M is the cobordism class of an n-
dimensional quadratic Poincare complex in (Z,X) with contractible assembly over
Z[TTI(X)], which measures the homotopy invariant part of the failure of the point
inverses h~l{x) {x G M) to be acyclic. The structure invariant is s{h) = 0 if (and for
n > 5 only if) h is homotopic to a homeomorphism.

Keywords: surgery exact sequence, structure set, total surgery obstruction
AMS numbers: 57R67, 57P10, 57N65
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1 Introduction

The structure set of a differentiable n-dimensional manifold M is the set §°(M) of equiva-
lence classes of pairs (JV, h) with N a differentiable manifold and h : N —> M a simple ho-
motopy equivalence, subject to (JV, h) ~ (iV', h!) if there exist a diffeomorphism f : N —> N'
and a homotopy / ~ / i ' / : iV —> M. The differentiable structure set was first computed for
N = Sn (n > 5), with S°(Sn) = 0 n the Kervaire-Milnor group of exotic spheres. In this
case the structure set is an abelian group, since the connected sum of homotopy equivalences
hi : N\ —» Sn, hi : Ni —» 5 n is a homotopy equivalence

The Browder-Novikov-Sullivan-Wall theory for the classification of manifold structures
within the simple homotopy type of an n-dimensional differentiable manifold M with n > 5
fits §°(M) into an exact sequence of pointed sets

• • • -> Ln+1(Z[7n(M)]) -> S°(M) - [M.G/O] - Ln(Z[7n(M)])

corresponding to the two stages of the obstruction theory for deciding if a simple homotopy
equivalence h : N —• M is homotopic to a diffeomorphism:

(i) The primary obstruction in [M, G/O] to the extension of h to a normal bordism (/, b) :
(W; M, JV) -> M x ([0,1]; {0}, {1}) with f\ = l:M-+M. Here G/O is the classifying
space for fibre homotopy trivialized vector bundles, and [M, G/O] is identified with the
bordism of normal maps M' —> M by the Browder-Novikov transversality construction.

(ii) The secondary obstruction <r*(/, b) G Ln+i(Z[7Ti(M)]) to performing surgery on (/, 6)
to make (/, 6) a simple homotopy equivalence, which depends on the choice of solution
in (i). Here, it is necessary to use the version of the L-groups L*(Z[TTI(X)]) in which
modules are based and isomorphisms are simple, in order to take advantage of the
5-cobordism theorem.

The Whitney sum of vector bundles makes G/O an i7-space (in fact an infinite loop space), so
that [M, G/O] is an abelian group. However, the surgery obstruction function [M, G/O] —>
Ln(Z[7Ti(M)]) is not a morphism of groups, and in general the differentiable structure set
S°(M) does not have a group structure (or at least is not known to have), abelian or
otherwise.

The 1960's development of surgery theory culminated in the work of Kirby and Sieben-
mann [3] on high-dimensional topological manifolds, which revealed both a striking similar-
ity and a striking difference between the differentiable and topological catgeories. Define
the structure set of a topological n-dimensional manifold M exactly as before, to be the set
§ r o p ( M ) of equivalence classes of pairs (iV, h) with N a topological manifold and h : N —> M
a simple homotopy equivalence, subject to (iV, h) ~ (iV', hf) if there exist a homeomorphism
/ : N —* N1'. The similarity is that again there is a surgery exact sequence for n > 5

• • • - Ln+1(Z[7n(M)]) - §T O P(M) -> [M, G/TOP) -> L
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corresponding to a two-stage obstruction theory for deciding if a simple homotopy equivalence
is homotopic to a homeomorphism, with G/TOP the classifying space for fibre homotopy
trivialized topological block bundles. The difference is that the topological structure set
ST O P(M) has an abelian group structure and G/TOP has an infinite loop space structure
with respect to which (*) is an exact sequence of abelian groups. Another difference is given
by the computation $TOP(Sn) = 0, which is just a restatement of the generalized Poincare
conjecture in the topological category : for n > 5 every homotopy equivalence h : Mn —> Sn

is homotopic to a homeomorphism.

Originally, the abelian group structure on (*) was suggested by the characteristic vari-
ety theorem of Sullivan [10] on the homotopy type of G/TOP, including the computation
TT*(G/TOP) = L*(Z). Next, Quinn [4] proposed that the surgery obstruction function should
be factored as the composite

[M, G/TOP] = H°(M; G/TOP) ^ Hn(M; G/TOP) A Ln(Z[7Ti(M)])

with G/TOP the simply-connected surgery spectrum with Oth space G/TOP, identifying the
topological structure sequence with the homotopy exact sequence of a geometrically defined
spectrum-level assembly map. This was all done in Ranicki [5], [6], but with algebra instead
of geometry.

The algebraic theory of surgery was used in [6] to define the algebraic surgery exact
sequence of abelian groups for any space X

• • • -> Hn(X;U) ^ Ln(Z[7n(X)]) -> §n(X) -» #„_! (* ;L . ) - > . . . . (**)

The expression of the L-groups L*(Z[TTI(X)]) as the cobordism groups of quadratic Poincare
complexes over Z[TTI(X)] (recalled in the notes on the foundations of algebraic surgery)
was extended to H*(X;1L.) and §*(X), using quadratic Poincare complexes in categories
containing much more of the topology of X than just the fundamental group TTI(X). The
topological surgery exact sequence of an n-dimensional manifold M with n > 5 was shown
to be in bijective correspondence with the corresponding portion of the algebraic surgery
sequence, including an explicit bijection

s : §TOP(M) -> Sn+i(M) ; h «-» s(h) .

The structure invariant s(h) G Sn+i(M) of a simple homotopy equivalance h : N —> M
.measures the chain level cobordism failure of the point inverses h~1(x) C N (x G M) to be
points.

The Browder-Novikov-Sulivan-Wall surgery theory deals both with the existence and
uniqueness of manifolds in the simple homotopy type of a geometric simple n-dimensional
Poincare complex X with n > 5. Again, this was first done for differentiate manifolds, and
then extended to topological manifolds, with a two-stage obstruction :

(i) The primary obstruction in [X, B(G/TOP)] to the existence of a normal map (/, b) :
M —> X, with b : VM —*VX& bundle map from the stable normal bundle VM of M to a
topological reduction vx • X —* BTOP of the Spivak normal fibration vx ' X —» BG.



(ii) The secondary obstruction cr*(/, b) G Ln(Z[7Ti(M)]) to performing surgery to make
(/, b) a simple homotopy equivalence, which depends on the choice of solution in (i).

For n > 5 X is simple homotopy equivalent to a topological manifold if and only if there
exists a topological reduction vx for which the corresponding normal map (/, b) : M —> X has
surgery obstruction cr*(f,b) = 0. The algebraic surgery exact sequence (**) unites the two
stages into a single invariant, the total surgery obstruction s(X) G Sn(X), which measures
the chain level cobordism failure of the points x G X to have Euclidean neighbourhoods.

2 Geometric Poincare assembly

This section describes the assembly for geometric Poincare bordism, setting the scene for
the use of quadratic Poincare bordism in the assembly map in algebraic L-theory. In both
cases assembly is the passage from objects with local Poincare duality to objects with global
Poincare duality.

Given a space X let Q^(X) be the bordism group of maps f : Q —* X from n-dimensional
geometric Poincare complexes Q. The functor X K-> Qf (X) is homotopy invariant. If
X = Xi Uy X2 it is not in general possible to make / : Q —» X Poincare transverse at
Y C X, i.e. f~l(Y) C Q will not be an (n — l)-dimensional geometric Poincare complex.
Thus X h-» fif (X) does not have Mayer-Vietoris sequences, and is not a generalized homology
theory. The general theory of Weiss and Williams [13] provides a generalized homology theory
X H-» H*(X] Qf) with an assembly map A : H*(X] Of) —•> fif (X). The coefficient spectrum
fif is such that

7T,(fif) = fif({pt.}) ,

and may be constructed using geometric Poincare n-ads. From the geometric point of view
Hn(X; fif) is the bordism group of Poincare transverse maps / : Q —> X from n-dimensional
Poincare complexes Q, and A forgets the transversality.

In order to give a precise geometric description of Hn(X; Qf) it is convenient to assume
that X is the polyhedron of a finite simplicial complex (also denoted X). The dual cell of a
simplex a G X is the subcomplex of the barycentric subdivision X'

D(a, X) = {croai... an \ a < cr0 < G\ < • • • < crn} C X1 ,

with boundary the subcomplex

= \jD(r,X) = {TQT1...Tn\a<T0<T1 < • • • < rn} c
T><7

Every map / : M —± X from an n-manifold M can be made transverse across the dual cells,
meaning that for each a G X

(M(a),dM(a)) = f-\D(a,X),dD(a,X))

is an (n — |a|)-dimensional manifold with boundary. (Better still, for an n-dimensional PL
manifold M every simplicial map / : M —» X1 is already transverse in this sense, by a result
of Marshall Cohen).
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A map / : Q —> X is n-dimensional Poincare transverse if for each a G X

(Q(a),dQ(v)) = f \

is an (n — |a|)-dimensional geometric Poincare pair.

Proposition. Hn(X;£lp) is the bordism group of Poincare transverse maps Q —> X from
n-dimensional geometric Poincare complexes. •

It is worth noting that

(i) The identity 1 : X —> X is n-dimensional Poincare transverse if and only if X is an
n-dimensional homology manifold.

(ii) If a map / : Q —> X is n-dimensional Poincare transverse then Q is an n-dimensional
geometric Poincare complex. The global Poincare duality of Q is assembled from the
local Poincare dualities of (Q(<r), dQ(a)). For f = l:Q = X-±X this is the essence
of Poincare's original proof of his duality for a homology manifold.

The Poincare structure group E>P(X) is the relative group in the geometric Poincare
surgery exact sequence

which is the cobordism group of maps (/, df) : (Q, dQ) —» X from n-dimensional Poincare
pairs (Q, dQ) with df : <9Q —> X Poincare transverse. The total Poincare surgery obstruction
of an n-dimensional geometric Poincare complex X is the image sp(X) G S%(X) of (1 : X —>
X) G O^(X), with sp(X) = 0 if and only if there exists an Qp-coefficient fundamental class
[X]P e Hn{x-np.) with A([X]P) = (i-.X^X)e ttP(X).

In fact, it follows from the Levitt-Jones-Quinn-Hausmann-Vogel Poincare bordism theory
that S%(X) = Sn(X) for n > 5, and that sp(X) = 0 if and only if X is homotopy equivalent
to an n-dimensional topological manifold. The geometric Poincare bordism approach to the
structure sets and total surgery obstruction is intuitive, and has the virtue(?) of dispensing
with the algebra altogether. (Maybe, it even applies in the low dimensions n = 3,4.)
However, at present my understanding of the Poincare bordism theory is not good enough
to use it for definition purposes. So back to the algebra!

3 The algebraic surgery exact sequence

This section constructs the quadratic L-theory assembly map A and the algebraic surgery
exact sequence

• - • - #n(X;L.) ^ L n (ZMX)]) -> Sn(X) -> Hn^(X;L.) -> . . . (**)

for a finite simplicial complex X. A '(Z, X)-module' is a based f.g. free Z-module in which
every basis element is associated to a simplex of X. The construction of (**) makes use of
a chain complex duality on the (Z, X)-module category A(Z, X).



The quadratic L-spectrum L# is required to be 1-connective, with connected Oth space
Lo ~ G/TOP and

{Z if n = 0(mod 4) (signature)/8

Z2 if n = 2(mod 4) (Arf invariant)

0 otherwise

for n > 1. From the algebraic point of view it is easier to start with the 0-connective
quadratic L-spectrum L# = L.(Z), such that

- JLn(Z) i f n > 0
10 if n < — 1

with disconnected Oth space Lo ^ £0(Z) x G/TOP. The two spectra are related by a
fibration sequence L# —> L# —> K(L0(Z)) with K(L0(Z)) the Eilenberg-MacLane spectrum
ofLo(Z).

The algebraic surgery exact sequence was constructed in Ranicki [6] using the (Z, X)-
module category of Ranicki and Weiss [8]. (This is a rudimentary version of controlled
topology, cf. Ranicki [7]).

A (Z, X)-module is a direct sum of based f.g. free Z-modules

B =

A (Z, X)-module morphism / : B —> C is a Z-module morphism such that

T><7

so that the matrix of / is upper triangular. A (Z, X)-module chain map / : B —> C is a
chain equivalence if and only if each f(a, a) : B(a) —» C(o*) (a* G X) is a Z-module chain
equivalence. The universal covering projection p : X —> X is used to define the (Z, X)-
module assembly functor

A : A(Z,X) -+ A(Z[7n(X)]) ; 5 h-

with A(Z, X) the category of (Z, X)-modules and A(Z[TTI(X)]) the category of based f.g.
free Z[7Ti(X)]-modules.

The involution g v->~g — g~l on Z[TTI(X)] extends in the usual way to a duality involution
on A(Z[TTIP0] ) , sending a based f.g. free Z[7Ti(X)]-module F to the dual f.g. free Z[TTI(X)]-

module F* — Homz^^x)]^, Z[TTI(X)]). Unfortunately, it is not possible to define a duality
involution on A(Z, X) (since the transpose of an upper triangular matrix is a lower triangular
matrix). See Chapter 5 of Ranicki [6] for the construction of a 'chain duality' on A(Z, X)
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and of the L-groups L*(A(Z, X)). The chain duality associates to a chain complex C in
A(Z, X) a chain complex TC in A(Z, X) with

TC(a)r = ^ H o m z ( C _ w _ r ( r ) , Z ) .
T>0"

Example. The simplicial chain complex C(X') is a (Z, X)-module chain complex, with
assembly A(C(X')) Z[7Ti(X)]-module chain equivalent to C(X). The chain dual TC(Xf) is
(Z, X)-module chain equivalent to the simplicial cochain complex D = Homz(C(X),Z)~*,
with assembly A(D) which is Z[7Ti(X)]-module chain equivalent to C(X)~*. D

The quadratic L-group Ln(A(Z, X)) is the cobordism group of n-dimensional quadratic
Poincare complexes (C,rp) in A(Z, X).

Proposition. The functor X i—> L*(A(Z, X)) is a generalized homology theory

L*(,4(Z,X)) = #*(X;L#(Z)) . •

The coefficient spectrum L. = L,(Z) is the special case R — Z of a general construction.
For any ring with involution R there is a O-connective spectrum L#(i?) such that

TT,(L.(/2)) - L*(R) ,

which may be constructed using quadratic Poincare n-ads over R.

The assembly functor A : A(Z, X) —> A(Z[TTI(X)]) induces assembly maps in the quadratic
L-groups, which fit into the l^-periodic algebraic surgery exact sequence

> Hn(X;L.) A Ln(Z[7n(X)]) -> §n(X) -+ Hn-^X-X.) -> . . .

with the J^-periodic algebraic structure setE>n(X) the cobordism group of (n— l)-dimensional
quadratic Poincare complexes (C,ip) in A(Z, X) such that the assembly A(C) is a simple
contractible based f.g. free Z[7Ti(X)]-module chain complex. (See section 4.5 for the ge-
ometric interpretation). A priori, an element of the relative group Sn(X) = 7rn(A) is an
n-dimensional quadratic Z[7Ti(X)]-Poincare pair [C —> D, (Sip, ip)) in A(Z, X). Using this
as data for algebraic surgery results in an (n — l)-dimensional quadratic Poincare complex
(C',ip') in A(Z, X) such that the assembly A(Cl) is a simple contractible based f.g._ free
Z[7Ti(X)]-module chain complex.

Killing TTO(L#) = Lo(Z) in L. results in the 1-connective spectrum L#, and the algebraic
surgery exact sequence

• • • - Hn(X;h.) 4 . Ln(Z[7n(X)]) ^ Sn(X) - . ^ . ^ X j L . ) - , . . . (**)

with §n(X) the algebraic structure set The two types of structure set are related by an
exact sequence

• • • -> Hn(X;L0(Z)) - §



4 The structure set and the total surgery obstruction

This chapter states the results in Chapters 16,17,18 of Ranicki [6] on the L-theory orientation
of topology, the total surgery obstruction and the structure set.

The algebraic theory of surgery fits the category of topological manifolds into a fibre
square of categories of Poincare complexes

{topological manifolds} >• {local algebraic Poincare complexes}

{geometric Poincare complexes} >• {global algebraic Poincare complexes}

where local means A(Z, X) and global means A(Z[TTI(X)]).

4.1 The L-theory orientation of topological block bundles

The topological /c-block bundles of Rourke and Sanderson [9] are topological analogues of
vector bundles. By analogy with the classifying spaces BO(k), BO for vector bundles there
are classifying spaces BTOP(k) for topological block bundles, and a stable classifying space
BTOP. It is known from the work of Sullivan [10] and Kirby-Siebenmann [3] that the
classifying space for fibre homotopy trivialized topological block bundles

G/TOP = homotopy fibre(STOP -> BG)

has homotopy groups TT* (G/TOP) = L*(Z). A map Sn —> G/TOP classifies a topological
block bundle rj : Sn —• BTOP(k) with a fibre homotopy trivialization Jrj ~ {*} : Sn —>
BG(k) {k > 3). The isomorphism 7rn(G/TOP) -> Ln(Z) is defined by sending Sn -> G/TOP
to the surgery obstruction <r*(/, 6) of the corresponding normal map (/, b) : M —> Sn from
a topological n-dimensional manifold M, with b : VM —> ^sn © V- Sullivan [10] proved that
G/TOP and BO have the same homotopy type localized away from 2

G/TOP[l/2] ~ BO[l/2] .

(The localization Z[l/2] is the subring {£/2m | £ G Z, m > 0} C Q obtained from Z by
, inverting 2. The localization X[l/2] of a space X is a space such that

- 7T»(X)®ZZ[l/2] .

Thus X i—> X[l/2] kills all the 2-primary torsion in T

Let L* = L(Z)# be the symmetric L-spectrum of Z, with homotopy groups

if n = 0(mod4) (signature)

7rn(L
#) - Ln(Z) = {Z2 if n = l(mod 4) (deRham invariant)

otherwise .
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The O-connective spectrum

L# - cofibre(l + T : L . - > L # )

is such that
fZ ifn = O

,- Z8 if n = O(mod 4) and n > 0
7Tn(JL ) = <

V y | Z 2 ifn = 2,3(mod4)

0̂ if n = I(mod4)
and fits into a (co)fibration sequence of spectra

> h. ^ > L* -> L# -> EL. -+ . . . .

An h-orientation of a spherical fibration i/ : X —> BG(k) with respect to a ring spectrum
h is an /i-coefficient Thom class in the reduced /i-cohomology U G hk(T(v)) of the Thom
space T(i/), i.e. a /i-cohomology class which restricts to 1 G hh(Sk) = TTO(/I) over each x E l .
Theorem ([6], 16.1) (i) The Oth space Lo of L# is homotopy equivalent to G/TOP

Lo ~ G/TOP .

(ii) Every topological fc-block bundle i/ : X —> BTOP(k) has a canonical L*-orientation

(iii) Every (k — l)-spherical fibration v : X —> BG(k) has a canonical L*-orientation

with fl" denoting reduced cohomology. The topological reducibility obstruction

t{y) = 5 ( ^ ) G ^ + 1 ( T ( ^ ) ; L # )

is such that t(u) = 0 if and only if z/ admits a topological block bundle reduction V : X

BTOP(k). Here, 5 is the connecting map in the exact sequence

• • • -* Hk(T(v);U) -* ^ ^

.The topological block bundle reductions of u are in one-one correspondence with lifts of Uv

to a L'-orientation £/„ e Hk(T(u); L*). D

Example. Rationally, the symmetric L-theory orientation of ^ : X —»• BTOP(k) is the
£-genus

J f c ; L # ) ® Q = #4*(X;Q). D

Example. Localized away from 2, the symmetric L-theory orientation of v : X —>• BTOP(k)
is the KO[l/2]-orientation of Sullivan [10]



4.2 The total surgery obstruction

The total surgery obstruction s(X) G §n(X) of an n-dimensional geometric Poincare complex
X is the cobordism class of the Z[7Ti(X)]-contractible (n — l)-dimensional quadratic Poincare
complex (C, ip) in A(Z, X) with C = C([X] n - : C(X)n"* -> C(X'))*+i, using the dual cells
in the barycentric subdivision X7 to regard the simplicial chain complex C(X') as a chain
complex in A(Z, X).

Theorem ([6], 17.4) The total surgery obstruction is such that s(X) = 0 G Sn(X) if (and for
n > 5 only if) X is homotopy equivalent to an n-dimensional topological manifold.
Proof k regular neighbourhood (W, <9W) of an embedding X C £n+/c (k large) gives a Spivak
normal fibration

S1*-1 ->dW ->W ~ X

with Thorn space T{y) = W/dW S-dual to X+. The total surgery obstruction s(X) G §n(X)
has image the topological reducibility obstruction

Thus s(X) has image t{y) = 0 G i?n_i(X;L#) if and only if i/ admits a topological block
bundle reduction v : X —> BTOP(k)1 in which case the topological version of the Browder-
Novikov transversality construction applied to the degree 1 map p : Sn+k —> T(V) gives a nor-
mal map (/,&) = p\ : M = f~l{X) -> X. The surgery obstruction (7*(/,&) G Ln(Z[7Ti(X)])
has image

The total surgery obstruction is s(X) = 0 if and only if there exists a reduction v with
*>(/,&) =0 . D
Example. For a simply-connected space X the assembly map A : i7*(X;L#) —> L*(Z) are
onto, so that

§n(X) - ker(A:ffn.i(A:;L.)^Ln-i(Z)) - Hn^{X;h.) ,

with i7 denoting reduced homology. The total surgery obstruction s(X) G Sn(X) of a
simply-connected n-dimensional geometric Poincare complex X is just the obstruction to
the topological reducibility of the Spivak normal fibration vx • X —> £?G. •

There are also relative and rel d versions of the total surgery obstruction.
For any pair of spaces (X,Y C X) let §n(X, Y) be the relative groups in the exact

sequence

• • • -> Hn(X,Y;U) ± Ln(Z[7n(Y)] -> Z[TTI(X)]) ^ §n(X,y) ^ tf^X, Y;L.) - > . . . .

The relative total surgery obstruction s(X,Y) G Sn(X, Y) of an n-dimensional geometric
Poincare pair is such that s(X,Y) = 0 if (and for n > 6 only if) (X,Y) is homotopy
equivalent to an n-dimensional topological manifold with boundary (M, dM). In the special
case TTI(X) = 7Ti(y)

s(X,y) G §n(X,y) = #n_!(X, Y;L.)
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is just the obstruction to the topological reducibility of the Spivak normal fibration vx •
X —> BG, which is the TT-TT theorem of Chapter 4 of Wall [11].

The rel d total surgery obstruction SQ(X,Y) G Sn(X) of an n-dimensional geometric
Poincare pair (X, Y) with manifold boundary Y is such that Sd(X, Y) — 0 if (and for n > 5
only if) (X, Y) is homotopy equivalent rel d to an n-dimensional manifold with boundary.

4.3 The L-theory orientation of topological manifolds

An n-dimensional geometric Poincare complex X determines a symmetric Z[7Ti(X)]-Poincare
complex (C(X'),(f)) in A(Z,X), with assembly the usual symmetric Poinacare complex
(C(X),4>(X)) representing the symmetric signature cr*(X) G Ln(Z[7Ti(X)]).

Example. For n - 4k a*(M) G L4fc(Z[TTi(M)]) has image

signature(X) - signature(#2fc(X;Q), U) G L4fc(Z) = Z . •

A triangulated n-dimensional manifold M determines a symmetric Poincare complex
(C(Mf), (/)) in A(Z, M). The symmetric L-theory orientation of M is the L*-coefficient class

[M]L = (C(M') ,0)€L n (A(Z,M)) = Hn(M;f)

with assembly
A([M]L) - (T*(M) G Ln(Z[7n(M)]) .

Example. Rationally, the symmetric L-theory orientation is the Poincare dual of the £-genus

[M]L = £ ( M ) n [M]QeHn(M;L*)®Q - F n _ 4

Thus ^4([M]L) = cr*(M) G Ln(Z[7Ti(M)]) is a 7Ti(M)-equivariant generalization of the Hirze-
bruch signature theorem for a 4/c-dimensional manifold

signature(M) = (£(vM), [M]) G L4k{Z) = Z . •

Example. Localized away from 2, the symmetric L-theory orientation is the KO[l/2]-
orientation A(M) of Sullivan [10]

[M]L®Z[l/2] = A(M) G# n (M;L # ) [ l /2] - i^On(M)[1/2] . •

See Chapter 16 of [6] for the detailed definition of the visible symmetric L-groups VL*(X)
of a space X, with the following properties :

(i) VLn(X) is the cobordism group of n-dimensional symmetric complexes (C, (j)) in A(Z, X)
such that the assembly A(C, <f>) is an n-dimensional symmetric Poincare complex in
A(Z[TTI(X)]), and such that each (C(a), <t>{o)) (c G X^) is a 0-dimensional symmetric
Poincare complex in A(Z).

(ii) The (covariant) functor X H-> VL*(X) is homotopy invariant.
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(iii) The visible symmetric L-groups VL*(K(TT, 1)) of an Eilenberg-MacLane space K(TT, 1)
of a group 7T are the visible symmetric L-groups VL*(Z[TT]) of Weiss [12].

(iv) The F L-groups fit into a commutative braid of exact sequences

Hn+1(X;t')

(v) Every n-dimensional simple Poincare complex X has a visible symmetric signature
<r*(X) G VLn(X) with image the total surgery obstruction s(X) G §n(

An h-orientation of an n-dimensional Poincare complex X with respect to ring spectrum
h is an /i-homology class [X]h G hn(X) which corresponds under the 5-duality isomorphism
hn(X) ^ hk+l(T(v)) to an /^-coefficient Thorn class Uh G hh(T(v)) of the Spivak normal
fibration u:X^ BG{k) {k large, X C 5n+fc).

Theorem (Ranicki [6], 16.16) Every n-dimensional topological manifold M has a canonical
L*-orientation [M]L G F n(M;L #) with assembly

A([M]h) - G VLn(M) . •
If M is triangulated by a simplicial complex K then

[M]L = (C ,0 )e#

is the cobordism class of an n-dimensional symmetric Poincare complex (C, 4>) in A(Z, if)
with C = C(K').

Example. The canonical L*-homology class of an n-dimensional manifold M is given ratio-
nally by the Poincare dual of the £(M)-genus C(M) e if4*(M; Q)

[M]L ® Q = D

Theorem (Ranicki [6], pp. 190-191) For n > 5 an n-dimensional simple Poincare complex X
is simple homotopy equivalent to an n-dimensional topological manifold if and only if there
exists a symmetric L-theory fundamental class [X]^ G Hn{X\'L') with assembly

A([X\L) = a\X) G VLn(X) . D

In the simply-connected case Ki(X) = {1} with n = Ak this is just :

Example. For k > 2 a simply-connected 4A:-dimensional Poincare complex X is homotopy
equivalent to a 4A:-dimensional topological manifold if and only if the Spivak normal fibration



12 The structure set

vx • X —> £?G admits a topological reduction T>x • X —* BTOP for which the Hirzebruch
signature formula

signature(X) = (£(?x) , [ I])GL4 f c(Z) - Z

holds. The if part is the topological version of the original result of Browder [1] on the con-
verse of the Hirzebruch signature theorem for the homotopy types of differentiate manifolds.

•

4.4 The structure set

The structure invariant of a homotopy equivalence h : N —* M of n-dimensional topological
manifolds is is the rel d total surgery obstruction

s(h) = sd(W,MUN)e$n+i(W) = Sn+i(M)

of the (n + l)-dimensional geometric Poincare pair with manifold boundary (W, M U N)
defined by the mapping cylinder W of h.

Here is a more direct description of the structure invariant, in terms of the point inverses
h~l(x) C N (x G M). Choose a simplicial complex K with a homotopy equivalence g :
M —> K such that g and gh : N -+ K are topologically transverse across the dual cells
D(a, K) C K1. (For triangulated M take K = M). Then s(/i) is the cobordism class

= §n+1(M)

of a Z[7Ti(M)]-contractible n-dimensional quadratic Poincare complex (C, /0) in A(Z, if) with

C = C(h: C(N) -

Theorem ([6], 18.3, 18.5) (i) The structure invariant is such that s(/i) = 0G Sn+i(M) if (and
for n > 5 only if) h is homotopic to a homeomorphism.
(ii) The Sullivan-Wall surgery sequence of an n-dimensional topological manifold M with
n > 5 is in one-one correspondence with a portion of the algebraic surgery exact sequence,
by a bijection

Ln+1(Z[7n(M)]) §T O P(M) [M, G/TOP] Ln(Z[7n(M)])r

>Ln+1(Z[7n(M)]) — §n+1(M) >Hn(M;h.) -^Ln(Z[7n(M)])

The higher structure groups are the rel d structure sets

of homotopy equivalences (h,dh) : {N,dN) -+ (M x Dk, M x S1"1) with5/i : ON -
a homeomorphism. D
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Example. For a simply-connected space M the assembly maps A : i/*(M;L#) —» L*(Z) are
onto. Thus for a simply-connected n-dimensional manifold M

§T O P(M) = §n+1(M)

= ker(a* : [M,G/TOP]

with a* the surgery obstruction map. The structure invariant s(h) G §T O P(M) of a homotopy
equivalence h : N -* M is given modulo 2-primary torsion by the difference of the canonical
L*-orientations

s(h)[l/2] = (K[N]L-[M]u0)eHn(M-h9)[l/2] = Hn{M;L.)[1/2] 0 Hn(M)[1/2] .

Rationally, this is just the difference of the Poincare duals of the £-genera

s(h)®Q = K(C{N)n[N}Q)-C(M)n

G§n(M)®Q = Hn(M;L.)®

D

Here are three consequences of the Theorem in the non-simply-connected case, subject
to the canonical restriction n > 5 :

(i) For any finitely presented group TT the image of the assembly map

A : B

is the subgroup consisting of the surgery obstructions (J*(/, b) of normal maps (/, b) :
N —> M of closed n-dimensional manifolds with TTI(M) — 7r.

(ii) The Novikov conjecture for a group TT is that the higher signatures for any manifold
M With 7Ti(M) = 7T

<7X(M) = (zU£(M),[M]> GQ (xGF*(i^(7r,l);Q))

are homotopy invariant. The conjecture holds for TT if and only if the rational assembly
maps

are injective.

(iii) The topological Borel rigidity conjecture for an n-dimensional aspherical manifold
M — K(TT,1) is that every simple homotopy equivalence of manifolds h : N -* M
is homotopic to a homeomeorphism, i.e. §TOP(M) = {*}, and more generally that

§TOP(MxDk,MxSk~1) = {*} (fc>l).

The conjecture holds for TT if and only if the assembly map

A : Hn+k(K(7T,l);h.) - Ln,

is injective for k — 0 and an isomorphism for k > 1.
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4.5 Homology manifolds

An n-dimensional Poincare complex X has a l^-'periodic total surgery obstruction ~s(X) G
Sn(X) such that s(X) = 0 if (and for n > 6 only if) X is simple homotopy equivalent to
a compact ANR homology manifold (Bryant, Ferry, Mio and Weinberger [2]). The S- and
S-groups are related by an exact sequence

0 $n+i{X) -> Hn{X; L0(Z)) Sn(X) -> 0

The total surgery obstruction s(M) G Sn(M) of an n-dimensional homology manifold M
is the image of the Quinn resolution obstruction i(M) G ifn(M;Lo(Z)). The homology
manifold surgery sequence of M with n > 6 is in one-one correspondence with a portion of
the 4-periodic algebraic surgery exact sequence, by a bijection

Ln+1(ZMM)]) [M, L0(Z) x G/TOP]

= s

Ln+i(Z[7n(M)]) •Ln(Z[7n(M)])

with §H(M) the structure set of simple homotopy equivalences h : N —> M of n-dimensional
homology manifolds, up to s-cobordism. See Chapter 25 of Ranicki [6] for a more detailed
account of the algebraic surgery classification of homology manifolds.
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