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Abstract

Traditional Morse theory deals with real-valued functions / : M —» R and ordinary
homology H*(M). The critical points of a Morse function / generate the Morse-Smale
complex CMS(f) over Z, using the gradient flow to define the differentials. The isomor-
phism H*(CMS(f)) = H*{M) imposes homological restrictions on real valued Morse
functions. There is also a universal coefficient version of the Morse-Smale complex,
involving the universal cover M and the fundamental group ring Z[TTI(M)].

The more recent Morse theory of circle valued functions / : M —> S1 is more
complicated, but shares many features of the real valued theory. The critical points
of a Morse function / generate the Novikov complex CNov(f) over the Novikov ring
Z((z)) of formal power series with integer coefficients, using the gradient flow of the
real valued Morse function / : M = /*R -^Ron the infinite cyclic cover to define the
differentials. The Novikov homology H^OV(M) is the Z((z))-coefficient homology of
M. The isomorphism H*(CNov(f)) 9* H^OV(M) imposes homological restrictions on
circle valued Morse functions.

Chapter 1 reviews real valued Morse theory. Chapters 2,3,4 introduce circle valued
Morse theory and the universal coefficient versions of the Novikov complex and Novikov
homology, which involve the universal cover M and a completion Z[TTI(M)] of Z[TTI(M)].

Chapter 5 formulates an algebraic chain complex model (in the universal coefficient
version) for the relationship between the Z((z))-module Novikov complex CNov(f) of
a circle valued Morse function / : M —> Sl and the Z-module Morse-Smale complex
CMS{fN) of the real valued Morse function fN = J\ : MN = /^[0,1] -> [0,1] on a
fundamental domain of the infinite cyclic cover M.
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1 Introduction

The Morse theory of circle valued functions / : M —» S1 relates the topology of a manifold M
to the critical points of / , generalizing the traditional theory of real valued Morse functions
M —> R. However, the relationship is somewhat more complicated in the circle valued case
than in the real valued case, and the roles of the fundamental group TTI(M) and of the choice
of gradient-like vector field v are more significant (and less well understood).

The Morse-Smale complex C — CMS(M,f,v) is defined geometrically for a real valued
Morse function / : Mm —> R and a suitable choice of gradient-like vector field v : M —>
TM- In general, there is a Z [^-coefficient Morse-Smale complex for each group morphism
TTI(M) —> 7T. In the simplest case TT = {1} the ith chain group d is the f.g. free Z-module
generated by the index i critical points of / . The differentials d : d —> C{-\ are defined by
counting the ^-gradient flow lines: if p G M is a critical point of index i and q G M is a
critical point of index i — 1 the (p, ̂ -coefficient in d is the number n(p, q) of lines from p to
q, with sign chosen according to orientations. The homology of the Morse-Smale complex is
isomorphic to the ordinary homology of M

H*(CMS(MJ,v)) *

so that

(a) the critical points of / can be used to compute

(b) H*(M) provides lower bounds on the number of critical points in any Morse function
/ : M —> R, which must have at least as many critical points of index i as there are
Z-module generators for Hi(M) (Morse inequalities).

Basic real valued Morse theory is reviewed in Chapter 2.

In the last 40 years there has been much interest in the Morse theory of circle valued
functions / : Mm —» 5 1 , starting with the work of Stallings [35], Browder and Levine [3],
Farrell [8] and Siebenmann [34] on the characterization of the maps / which are homotopic
to the projections of fibre bundles over Sl : these are the circle valued Morse functions
without any critical points.

About 20 years ago, Novikov ([16],[17],[18],[19] (pp. 194-199)) was motivated by problems
in physics and dynamical systems to initiate the general Morse theory of closed 1-forms,

.including circle valued functions / : M —> S1 as the most important special case. The new
idea was to use the Novikov ring of formal power series with an infinite number of positive
coefficients and a finite number of negative coefficients

oo

Z((z)) = Z[[z]][z~x] = { ^T rijZj I rij G Z, Uj = 0 for all j < fc, for some k}
j=-oo

as a counting device for the gradient flow lines of the real valued Morse function / : M =
/*R —+ R on the (non-compact) infinite cyclic cover M of M, with the indeterminate z
corresponding to the generating covering translation z : M —» M. For / the number of



2 Circle valued Morse theory

gradient flow lines starting at a critical point p G M i s finite in the generic case. On the
other hand, for / the number of gradient flow lines starting at a critical point p G M may be
infinite in the generic case, so the counting methods for real and circle valued Morse theory
are necessarily different.

The Novikov complex C = CNov(M, f,v) is defined for a circle valued Morse function
/ : M m —> S1 and a suitable choice of gradient-like vector field v : M —> TM- In general, there
is a Z[n]-coefficient Novikov complex for each factorization of /* : TTI(M) —> TT^S1) = Z as
TTI(M) —> II —» Z, with Z[II] a completion of Z[II]. The construction of the Novikov complex
for arbitrary Z[II] is described in Chapter 3. In the simplest case

n = z , z[n] = z^z"1], zjn] - z((*))

the ith chain module d is the f.g. free Z((z))-module generated by the index i critical points
of / . The differentials d : Ci —> C\-\ are defined by counting the ^-gradient flow lines in
M : for a critical point p G M o f index i and a critical point q G M of an index i — 1 the
(p? ^-coefficients in d is

with n(p, zjq) the signed number of ^-gradient flow lines of the real valued Morse function
/ : M —» R from p to the translate zJg of g, and fe = [f(p) — /(?)]• The convention is that
the generating covering translation z : M —> M is to be chosen parallel to the downward
gradient flow v : M —> TM, with

/(zx) = J(x) - 1 G R (z G M) .

In particular, this means that for / = 1 : M = 5 1 —> iS1

Circle valued Morse theory is necessarily more complicated than real valued Morse theory.
The Morse-Smale complex CMS(M,f : M —» R,v) is an absolute object, describing M on
the chain level. This is the algebraic analogue of the fact that every continuous function
/ : M —> R on a compact space attains an absolute minimum and an absolute maximum.
By contrast, the Novikov complex CNov(M,f : M —» S'1,^) is a relative object, measuring
the chain level difference between / and the projection of a fibre bundle (— Morse function
with no critical points). A continuous function / : M —> S1 can just go round and round!
The connection between the geometric properties of / and the algebraic topology of M is
still not yet completely understood, although there has been much progress in the work of
Pajitnov, Farber, the author and others.

The Novikov homology groups of a space M with respect to a cohomology class / G
[M, S1} = H\M) are defined by



The homology groups of the Novikov complex are isomorphic to the Novikov homology
groups

H*(CNov(M,f,v)) <*

By analogy with the real valued case :

(a) the critical points of / can be used to compute H^OV(M, / ) ,

(b) Hj^ov(M, / ) provides lower bounds on the number of critical points in any Morse func-
tion / : M —» 5 1 , which must have at least as many critical points of index i as there
are Z((z))-module generators for H^OV(M, f) (Morse-Novikov inequalities).

Novikov homology is constructed in Chapter 4, for arbitrary Z[II]-coefficients..

Novikov conjectured ([1]) that for a generic class of gradient-like vector fields v G QT(f)
the function j i-» n(p, zjq) has subexponential growth.

Let S C Z[z] be the subring of the polynomials s(z) such that s(0) — 1. Such polynomials
are invertible in Z[[z]]. The localization S~ll\z, z~1} of Z[z, z~1} is identified with the subring

r(z)
of Z((z)) consisting of the quotients —— with r(z) G Z[z, z~l], s(z) G S.

S\Z)

Pajitnov [22],[23] constructed a C°-dense subspace Q€CT{f) C GT(f) of gradient-like
vector fields v for which the differentials in the Novikov complex CNov(M, f,v) are rational

oo

n(P, q) = J2 n(p, zjq)zj e S~lZ[z, z~l] C Z((z)) .
j=-oo

and j H-> n(p, z^q) has polynomial growth. The idea is to cut M along the inverse image
N — f~1(0) (assuming 0 G S1 is a regular value of / ) , giving a fundamental domain

for / : M —> R, and to then use a kind of cellular approximation theorem to give a chain
level, approximation to the gradient flow in

(IN,VN) = (f,v)\ :(MN,fN,vN)^([O,l];{O},{l}).

The mechanism described in Chapter 5 below then gives a chain complex over *S~1Z[z, z~l]
inducing CNov(M, f,v). Hutchings and Lee [10],[11] used a similar method to get enough
information from CNov(M, f,v) for generic v to obtain an estimate on the number of closed
^-gradient flow lines 7 : S1 —> M.

Farber and Ranicki [7] and Ranicki [30] constructed an 'algebraic Novikov complex' in
S~1Z[z, z~l] for any circle Morse valued function / : M —> S1, using any CW structure on
N — f~l{0), the extension to a CW structure on M/v, and a cellular approximation to the
inclusion z~lN —> M/v- The construction is recalled in Chapter 5, including the non simply
connected version. In many cases (e.g. for v G Q(CCT(f)) this algebraic model does actually
coincide with the geometric Novikov complex CNov(M, / , v).
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The Morse-Novikov theory of circle valued functions on finite-dimensional manifolds and
Novikov homology have many applications to symplectic topology, Floer homology, and
Seiberg-Witten theory (Pozniak [26], Van and Ono [36], Hutchings and Lee [10], [11], . . . ) .
Also, circle valued Morse theory on infinite-dimensional manifolds features in the work of
Taubes on Casson's homology 3-sphere invariant and gauge theory. However, these notes
are not a survey of all the applications of circle valued Morse theory and Novikov homology!
They deal exclusively with the basic development in the finite-dimensional case and some of
the applications to the classification of manifolds.

2 Real valued Morse theory

This section reviews the real valued Morse theory, which is a prerequisite for circle valued
Morse theory. The traditional references Milnor [14], [15] remain the best introductions to
real valued Morse theory. Bott [2] gives a beautiful account of the history of Morse theory,
including the development of the modern chain complex point of view inspired by Witten.

Let M be a compact differentiate ra-dimensional manifold. The critical points of a
differentiate function / : M —•> R are the zeros p G M o f the differential V / : TM —> TR. A
Morse function f : M —> R is a differentiate function in which every critical point p G M
is required to be isolated and nondegenerate, meaning that in local coordinates

i m

f(p+(xux2,...,xm)) = f(p) -

with i the index of p. The subspace of Morse functions is C2-dense in the space of all
differentiate functions / : M —> R.

A vector field v : M —* TM is gradient-like for / if there exists a Riemannian metric ( , )
on M such that

(v,w) = V/(W)GR (werM).

Note that ( , ) and V / determine v, and that the zeros of v are the critical points of / .

A v-gradient flow line 7 : K —> M satisfies

i{t) = - v{j{t)) G rM(7(*)) (* e R) .

The minus sign here gives the downward gradient flow, so that f(j(s)) > f{j{t)) if s < t.
The limits

lim 7(t) = p , lim j(t) = qE M
t—>—oo t—+oo

are critical points of / with index(g) = index(p) — 1, f(q) < f(p). For every non-critical
point x G M there is a ^-gradient flow line 7^ : R —> M (which is unique up to scaling) such
that 7x(0) = x G M.

The unstable and stable manifolds of a critical point p G M of index i are the open
manifolds

Wu(p,v) = {xeM\ lim 7a;(t)=p}, Ws(p,v) = {x G M | lim ~fx(t) = p}
t—*—00 t—»oo



which are diffeomorphic to R\ Rm l respectively.

The basic results relating a Morse function / : M m —> R to the topology of M concern
the inverse images

Na = r\a)
of the regular values a G l , which are closed (m — l)-dimensional manifolds, and the cobor-
disms

(Ma,b;Na,Nb) = /^([MMaMfr}) (a < b) .

The results are:

(i) if [a, b] C R contains no critical values the ̂ -gradient flow determines a diffeomorphism

(ii) if [a, b] C R contains a unique critical value f(p) G (a, 6), and p G M is a critical
point of index 2, then iV& is obtained from Na by surgery on a tubular neighbourhood
Si-1 x jjm-i c ^ o f £»-l = j y * ^ v) n Na

with ^ x S™-1-1 C Nb & tubular neighbourhood of S™-*"1 = W s (p^ ) n Nh, and
(Mafr Na, Nb) the trace of the surgery

Ma,6 = 7Va x [0, l ] U D ' x D™-1 .

Let QT(f) denote the set of gradient-like vector fields v on M which satisfy the Morse-
Smale transversality condition that for any critical points p,q G M with index(p) = i,
index(g) = j the submanifolds W^w(p, v)\ Ws(q,v)Tn~j C M m intersect transversely in an
(i — j)-dimensional submanifold Wu(p, v) nWs(q,v) C M. The subspace GT(f) is dense in
the space of gradient-like vector fields for / .

Suppose that the Morse function / : M —> R has Q ( / ) critical points of / of index i, and
that the critical points po,pi,P2i * • * G M are arranged to satisfy

< indexfjpi) < index(p2) < • • • , f{po) < f(pi) < KP2) < • • • •

A choice of v G QT(f) determines a handle decomposition of M

m

M = \J\jD*xD—

with one z-handle hl = Dl x Dm~l for each critical point of index i.

The Morse-Smale complex CMS(M, f,v) is defined for a Morse-Smale pair ( / : M —>
R, v G QT{f)) and a regular cover M of M with group of covering translations TT, to be the
based f.g. free Z[7r]-module chain complex with

d : CMS(MJ,v)i - Z[7r]Ci(/) -> CM 5(M,/ ,v) i_i - Z[7r]Ci"l(/) ; p ^
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with n(p,q) G Z the finite signed number of ^-gradient flow lines 7 : R —» M which start at
a critical point p G M o f / : M — > R with index i and terminate at a critical point i? G M
of index z — 1. Choose an arbitrary lift of each critical point p G M of / to a critical point
p G M of / , obtaining a basis for CMS(M, f,v). The Morse-Smale complex is the cellular
chain complex

CMS{MJ,v) = C{M)

of the CW structure on M in which the i-cells are the lifts of the i-handles hl. In particular,
the homology of the Morse-Smale complex is the ordinary homology of M

If (f,v) : M —> R is modified to (/', v') : M —• R by adding a pair of critical points p, g
of index i,i — \ with n(p, 9, t>) = 1 the Morse-Smale complex CMS(M, / ' , t/) is obtained from
CMS(M,f,v) by attaching an elementary chain complex

E : > 0 -> Ei = Z[?r] ^ ^ i _ i - Z[TT] ~> 0 -> . . . ,

with an exact sequence

0 -> CM 5(M, / , v) -> CM 5(M, / ; , v')->E^0.

Conversely, if m > 5 then the Whitney trick applies to realize the elementary moves of
Whitehead torsion theory by cancellation of pairs of critical points (or equivalently, handles).
This cancellation is the basis of the proofs of the h- and s-cobordism theorems.

The identity CMS(M, f,v) = C(M) (for M = M) gives the Morse inequalities

with
bi{M) = dimz(Hi(M)/toTsionzHl(M)) ,

the Betti numbers of M, where # means the minimum number of generators. Smale used
the cancellation of critical points to prove that these inequalities are sharp for TT\{M) = {1},
m > 5: there exists (/, v) : M —> R with the minimum possible number of critical points

The method is to start with an arbitrary Morse function / : M —> R, and to systematically
cancel pairs of critical points until this is no longer possible.

The Morse-Smale complex CMS(M, f,v) is also defined for a Morse function on an m-
dimensional cobordism / : (M; JV, Nf) -> ([0,1]; {0}, {1}) with v G GT(f). In this case there
is a relative handle decomposition

m

M = N x [0,1] U |J |J D*x

and CMS(M, / , v) = C(M, iV). The s-cobordism theorem states that for a Morse function /
on an /i-cobordism T(CMS(M, / , V ) ) = 0 6 Wh(iri(M)) if (and for m > 6 only if) the critical
points of / can be stably cancelled in pairs.



3 The Novikov complex

Morse functions / : M —> 51 , gradient-like vector field v, critical points, index, Q ( / ) , are
defined in the same way as for the real valued case in Chapter 1. Again, the subspace of
Morse functions is C2-dense in the space of all functions / : M —» Sl. But it is harder to
decide which pairs of critical points can be cancelled.

A Morse function / : M —> S1 lifts to a Z-equivariant Morse function / : M = /*R —> R
on the infinite cyclic cover. Let z : M —> M be the generating covering translation parallel
to the ^-gradient flow, so that (dz, v) > 0. Let QT(f) be the space of gradient-like vector
fields v : M —> TM such that a lift v : M —» TJJ satisfies the Morse-Smale transversality
condition. The Novikov complex of a circle valued Morse function is defined by analogy with
the Morse-Smale complex of a real valued function, as follows.

Given a ring A and an automorphism a : A —> A let z be an indeterminate over A with

az = za(a) (a £ A) .

The a-twisted Laurent polynomial extension of A is the localization of Aa[z]

S±a[Z,Z J — Jia[Z\[Z \ ,

oo
the ring of polynomials ^ a^ {CLJ G A) such that {j G Z | â  7̂  0} is finite.

j=-oo

The a-twisted Novikov ring of A is the completion+localization of Aa[z]

Aa((z)) = Aa[[z]][z- l l

the ring of power series ^ a j z < 7 (aj ^ ^ ) s110'1 that {j < 0 | a,j ^ 0} is finite.
j=—oo

Given / : M —> 5 1 let M be a regular cover of M, with group of covering translations
ix. Only the case of connected M, M, M will be considered. Let II be the group of covering
translations of M over M, so that there is defined a group extension

{1} -> 7T -> n -> Z -> {1}

with a lift of 1 G Z to an element z G II such that the covering translation z : M —> M
induces z : M —> M on M = M/TT. Thus

n = 7TXQZ , z[n] = z ^ y ^ z " 1 ] .

Write the a-twisted Novikov ring as

z[n] = Z[TT]Q((Z)) .

Choose a lift of each critical point p G M of / to a critical point p G M of / .
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_ _ Novikov complex CNov(MJ,v) of (/ : M -> S\v G <?T(/)) is the based f.g. free
Z[n]-module chain complex with

d :

with n(p, g) G Z the finite signed number of ̂ -gradient flow lines 7 : IR —> M which start at
a critical point p e M of / : M —> R with index i and terminate at a critical point q G M
of index i — 1.

The original definition of Novikov [16],[17] is in the special case M = M, TT = {1}, II = Z,

a = 1, ZJn] = Z((z)), whe i^C^^M, f,v) is a based f.g. free Z(0))-module chain complex.
The convention that z : M —> M is parallel to the ^-gradient flow ensures that for any
critical

Take M to be the universal cover of M and n — TTI(M), a : TT —> TT the automorphism
induced by a generating covering translation z : M —± M, II = TTI(M) = TT x a Z. This case

gives the based f.g. free Z[7Ti(M)]-module Novikov complex CNov(M,f,v) of Pajitnov [21].

There is only one class of Morse functions / : M —> S1 for which the Novikov complex is
easy to compute:

Example. Let M be the mapping torus of a diffeomorphism h : TV —> AT of a closed (m — 1)-
dimensional manifold

M =

The fibre bundle projection

has no critical points, so that CNov{M, f,v) = 0 for any v G QT{f). D

4 Novikov homology

The Novikov homology H^OV(M, / ; Z[n]) is denned for a space M with a map f : M ^ S1

•and a factorization of /* : TTI(M) —* ^(S1) through a group IT. The relevance of the Novikov
complex CNov(M, f,v) to the Morse theory of a Morse map / : M —»• S1 is immediately
obvious. The relevance of the Novikov homology is rather less obvious, even though there
are isomorphisms H*(CNov(MJ,v)) ^ #fo t >(M,/;Z[Il]) !

The .R-coefncient homology of a space M is denned for any ring morphism Z[TTI(M)] —> R

H,(M;R) = H*(C{M-R))

using any free Z[7Ti(M)]-module chain complex C(M) (e.g. cellular, if M is a CW complex)
and C(M; R) = R ® Z M M ) ] C{M).



Given a group TT and an automorphism a : TT —> TT let TT x a Z be the group with elements
pzJ (p G 7T, j G Z), and multiplication by #z = a(g)z, so that

Z[7TXaZ] = Z M a ^ Z " 1 ] .

For any map f : M —> Sl with M connected the infinite cyclic cover M — /*R is connected
if and only if /* : TTI(M) —» TT^S1) = Z is onto, in which case

7Ti(M) = 7Ti(M)xaAf Z

with aM • TTI(M) —» TTI(M) the automorphism induced by a generating covering translation
z : M -+ M.

Suppose given a connected space M with a cohomology class / G [M, S1} = Hl(M) such
that M = /*R is connected. Given a factorization of the surjection /* : TTI(M) —> ^(AS1)

/* : TTI(M) - 7 n ( M ) x a M Z - > n - ^ Z

let 7T = ker(II —> Z), so that II = TT x a Z for some automorphism a : TT —> TT. The Z[Ill-
coefficient Novikov homology of (M, / ) is

In the original case M = M, TT = {1}7 II = Z, ZJlT| - Z((z)), and H?OV(M, / ; Zp] ) may
be written as H?OV(M, / ) , or even just H?OV(M).

Example 1. The Z((z))-coefficient cellular chain complex of AS1 is

and 1 - z e Z((z)) is a unit, so H^iS1) = 0. •

Example 2. The mapping torus T(2) of the double covering map 2 : Sl —• 5 1 has Z((z))-
coefficient cellular chain complex

( ) ) : • • • - 0

with respect to the appropriate choice of z : T(2) —> T(2). The Novikov homology of T(2)
is the 2-adic field

H"m(T(2)) = Z((*))/(2 - ^) = Z2[l/2] = Q2 ^ 0

(Example 23.25 of Hughes and Ranicki [9]). The inverse of n = 2a(2b + 1) G Z is
1 2 2 33 z) . •

Theorem. (Novikov [16], [17] for TT = {1}, Pajitnov [20])

The Novikov complex CNov(M,f,v) is Z[n]-module chain equivalent to C(M;Z[U}), with
isomorphisms

H*(CNov(MJ,v)) * H?°v(MJ;Z\n}). •
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The chain equivalence CNov(M, / , v) ~ C(M; Z[fi]) will be described in Chapter 4 below.

The Novikov ring Z((z)) is a principal ideal domain, and H^OV(M, f) is the homology
of a f.g. free Z((z))-module chain complex. Thus each H^OV(M, / ) is a f.g. Z((z))-module,
which splits as free0torsion, by the structure theorem for f.g. modules over a principal ideal
domain.

The Novikov numbers of any finite CW complex M and / G Hl(M) are the Betti numbers
of Novikov homology

) = dimZ(W) (#f™(M, /)/torsionz((2))) ,

where # means the minimum number of generators, and torsion means

{x 6 i f f OT(M, / ) | ax = 0 for some a ^ 0 e

The Morse-Novikov inequalities ([16])

are an immediate consequence of the isomorphisms H*(CNov(M, f,v)) = H^OV(M, / ) , since
for any f.g. free chain complex C over a principal ideal domain R

> bi{C)

with
= dim i?(i/ i(C)/torsion^) , qi(C) = # ( to r s ion^ , (C) ) .

Farber [5] proved that the Morse-Novikov inequalities are sharp for TTI(M) = Z, m > 6 :
for any such manifold there exists a Morse function f : M —± S1 representing 1 G [M, 51] =
Hl(M) with the minimum possible numbers of critical points

, f) + q?™{M, f) + qf_r(M, f) .

Again, the method is to start with an arbitrary Morse function / : M —> S1 in the homotopy
class, and to systematically cancel pairs of critical points until this is no longer possible.

When does the Novikov homology vanish?

Proposition (Ranicki [28]) Let A be a ring with an automorphism a : A —> A. A finite f.g.
free Aa[z, z~1]-module chain complex C is such that

H4Aa((z))®Aa[z,z-i]C) = H*{A<*{{z-l))®Aa{z,z-i]C) = 0

if and only if C is A-module chain equivalent to a finite f.g. projective yl-module chain
complex. •

Note that for an algebraic Poincare complex (C, <fi) H*(Aa((z)) ®ACX[Z,Z-1} C) = 0 if and
only if H^Aa^z'1)) ®AOC[Z,Z-1) C) = 0, so the two Novikov homology vanishing conditions
can be replaced by just one.

Recall that a space X is finitely dominated if there exist a finite CW complex and maps
i : X -> K, j : K -> X such that ji ~ 1 : X -> X. Wall [37] proved that a finite CW



11

complex X is finitely dominated if and only if TTI(X) is finitely presented and the cellular
chain complex C(X) of the universal cover X is chain equivalent to a finite f.g. projective
Z[7Ti(X)]-module chain complex.

In the simply-connected case TTI(M) = {1} the following conditions on a map / : Mm —>
S1 are equivalent :

(i) M is finitely dominated,

(ii) M is homotopy equivalent to a finite CW complex,

(iii) #

(iv) b?

(v) C(M) is chain equivalent to a finite f.g. free Z-module chain complex,

(vi) the homology groups H*(M) are f.g. Z-modules.

Browder and Levine [3] used handle exchanges (= the ambient surgery version of the can-
cellation of adjacent critical points) to prove that (vi) holds if (and for m > 6 only if)
/ : M —> S1 is homotopic to the projection of a fibre bundle.

Farrell [8] and Siebenmann [34] defined a Whitehead torsion obstruction $(M, / ) G
VWI(TTI(M)) for a map / : Mm -» S1 with finitely dominated M = /*R, such that $(M, / ) =
0 if (and for m > 6 only if) / is homotopic to the projection of a fibre bundle.

Theorem (Ranicki [28]) _
(i) For any map / : M —» S1 on a manifold M the infinite cyclic cover M = /*R of M is

finitely dominated if and only if TTI(M) is finitely presented and_i7f^(M, / ; Z [ T ^ ( M ) ] ) = 0.
(ii) For any Morse map / : M —* S1 with finitely dominated M the torsion of the Novikov

complex r(CNov(MJ,v)) G K^Z^M)])/1 determines and is determined by the Farrell-

Siebenmann fibering obstruction $ ( M , / ) G W7&(TTI(M)), where / C KI(Z[TTI(M)]) is the
subgroup generated by ±TTI(M) and r ( l — z/i) for square matrices h over Z[TTI(M)]. Thus
T(CNOV(M, / , v)) G / if (and for m > 6 only if) / is homotopic to a fibre bundle. •

See Chapter 22 of Hughes and Ranicki [9] and Chapter 15 of Ranicki [29] for more
detailed accounts of the relationship between the torsion of the Novikov complex and the
Farrell-Siebenmann fibering obstruction.

See Latour [12] and Pajitnov [21] for direct proofs that if m > 6, M is finitely dominated
and r(CNov(M, / , v)) G / then it is possible to pairwise cancel all the critical points of / .

5 The algebraic model for circle valued Morse theory

In many cases the Novikov complex CNov(M, / , a) of a circle valued Morse function / : M —>
S1 can be constructed from an algebraic model for the ̂ -gradient flow in a fundamental
domain of the infinite cyclic cover M.
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An algebraic fundamental domain (D, E, F, g, h) consists of finite based f.g. free A-module
chain complexes D, E and chain maps g : D —> E, h : z~lD —> E of the form

dE =

h = Ch
Define the algebraic Novikov complex F to be the based f.g. free ^4a((z))-module chain
complex with

dp = dp + zhp(l — zhn)~xc

as in Farber and Ranicki [7] and Ranicki [30]. The Aa((2:))-module chain map

</> = 9-zh = (^IzfF
D) • Da((z)) - Ea((z))

is a split injection in each degree (since 1 — zhp is an isomorphism), and the inclusions
Fi —> Ei determine a canonical isomorphism of based f.g. free Aa[z, z~1]-module chain
complexes

F ^ coker(0) .

Here is how algebraic fundamental domains and the algebraic Novikov complex arise in
topology.

Let / : M —> S1 be a Morse function with regular value 0 G S1. Cut M along Af™"1 =
/~1(0) C M to obtain a geometric fundamental domain

for the infinite cyclic cover

j=-oo

The restriction
/iv = 71 : (M^N^-iN) ->

is a real valued Morse function with vjy = v\ G QT(fjsf). For any CW structure on iV use
the handlebody decomposition

MN = i V x /
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with one z-handle for each index i critical point of / . Given a CW structure on N with
Ci(N) i-cells use the handlebody structure on M^ to define a CW structure on MN with
Ci(N) + Ci(f) z-cells. A regular cover M of M with group of covering translations TT is a
regular cover of M with group of covering translations II = TT x a Z (as before), with

zpn] = z[x]a[z,z-1] , z[n] = z[n]Q((z)).

Use a cellular approximation h : z~lN —> Mjy to the inclusion to define an algebraic funda-
mental domain (D, E, F, g, h) over A = Z[TT]

Z? = C(JV) , £7 = C(MN) , F - CMS(MNJN,vN) = C(MN,N) .

The mapping cylinder of h \ N —> M/v is a CW complex M^ with two copies of N as
subcomplexes. Identifying these copies there is obtained a CW complex structure on M
with Z[n]-coefficient cellular chain complex

C(M-

the algebraic mapping cone of the Z[n]-module chain map

<f> = g-zh : Da((z)) ^ Ea((z)) ,

with

The algebraic Novikov complex F = coker(0) is a based f.g. free Z[II]-module chain complex
such that

In many cases F = CNov(M, f,v), and in even more cases F is simple isomorphic to
CNov(M, f,v). The philosophy here is that C{<j>) counts the ^-gradient flow lines of / :
M -> R as follows:

(i) the (z~lp, g)-coefficient of hp : z~lDi —> D; counts the number of portions in MN of
the iJ-gradient flow lines which start in z~1M^^ enter Myv at z~lp G z~lN, exit at
q £ N and end in

(ii) the (z"1^, g)-coefficient of hp : z~1Di —> F» counts the number of portions in MJV of
the ^-gradient flow lines which start in z~lM^, enter M/v at z - 1p G z^iV and end at
qe

(iii) the (p, g)-coefficient of c : F̂  —> .D^! counts the number of portions in Mjv of the
^-gradient flow lines which start at p G M^, exit at q G JV, and end in
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Then for j = 1, 2, 3 , . . . the (p, z-7 ̂ -coefficient of hF(hD)j~lc : F* —» zJi<i is the number of
the ^-gradient flow lines which start at p € MAT and end at z^q G zj MJV, crossing the walls
JV, ziV,... , zi~lN. If such is the case, i.e. if the chain map h is gradient-like in the terminol-
ogy of Ranicki [30], this is just the (p, z-7 ̂ -coefficient of dCNov^Mjv^ so F = CNov(M, / , a) .
Pajitnov [23] constructed a C°-dense subspace G<£CT(f) C QT{f) of gradient-like vector
fields T; for which there exist a CW structure N and a gradient-like chain map h.

The projection

p : C(M; ZJII]) = C(<£) -> cokei(cf)) ^ F

is a chain equivalence of based f.g. free Z[II]-module chain complexes, with torsion

r(p) =
2=0

If h is a gradient-like chain map the torsion of p is a measure of the number of closed orbits of
the ^-gradient flow in M, i.e. the closed flow lines 7 : S1 —> M (Hutchings and Lee [10],[11],
Pajitnov [23],[25], Schiitz [31],[32]).

The algebraic surgery treatment of high-dimensional knot theory in Ranicki [29] gives
the following algebraic model for circle valued Morse theory on a knot complement.

Example. Let k : Sn C Sn+2 be a knot with 7ri(Sn+2\/c(S'n)) = Z. The complement of a
tubular neighbourhood k(Sn) x D2 C Sn+2 is an (n + 2)-dimensional manifold with boundary

(M,dM) = (cl(Sn+2\(k{Sn) x D2)),k(Sn) x S1)

with
7n(M) = Z , 7n(M) = {1} , H,(M) = H^S1) .

Let / : {M,dM) ->• 5 1 be a map representing 1 G ^ ( M ) = Z, with f\ : dM -> 5 1

the projection. Making / transverse regular at 0 G 5 1 there is obtained a Seifert surface
#n+i = / - i (o) c M for fc, with dN = k(Sn). As before, cut_M along N to obtain a
fundamental domain (M^; N, z~*N) for the infinite cyclic cover M = f*M. of M. For any
CW structures on TV, M^ write the reduced chain complexes as

C(N) = C(/V,{pt.}) , C(MN) = C(MN, {pt.}).

The inclusions G : N -+ M/v, H \ z~lN —> M/v induce Z-module chain maps

G : C(iV) -> C(MN) , ,ff : z^C^N) -» C(MN)

such that G — H : C(N) —> C(Mjy) is a chain equivalence. The chain map

is a generalization of the Seifert matrix, such that there are defined a Z-module chain ho-
motopy

1-e - -(G-H)-lH : C(N) -> C(N)



15

and a Z[z, z^j-module chain equivalence

C(M,R) ~ C(e + z{l-e):C{N)[z,z-1]^C(N)[z,z-1}) .

The short exact sequences of Z((z))-modules

0 -* Ht(N)((z)) ^ ^ HiWdz)) -> H^(MJ) -> 0

can be used to express the Novikov numbers of the knot complement in terms of the Alexan-
der polynomials

Ai(z) = det(e + z(l - e) : Hi(N)[z, z~l] -> Hi(N)[z, z~1]) G Z[z, z~l) (1 < i < n) ,

generalizing the case n = 1 due to Lazarev [13]. Let W = cl.(iV\Z)n+1), for any embedding
Dn+1 C N\dN. For any handlebody decomposition of the (n + l)-dimensional cobordism
(W]k(Sn),Sn) with a(N) i-handles

n

W = k(Sn) x [0,1] U |J |J Dlx

there exists a Morse function / : M —> 5 1 in the homotopy class 1 G [M, 51] = ^(M) = Z
with

critical points of index i. In this case the algebraic model for CNov(M, f,v) has

D = C(N) = Z © D , A - ZCiW ,

F = CMS(MNJN,vN) = C(e:t)^D),

c = (0 1

hD = 0 :

with algebraic Novikov complex

oo

dp = dF+*TlzihF(hDy-1c

D

There is also a more refined version of the algebraic model for circle valued Morse theory,
using the noncommutative Cohn localization £-1.Aa[,z, z"1] of Aa[z, z~x] inverting the set E
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of square matrices of the form 1 — zh for a square matrix h over A. Indeed, the formula for
the differentials in the algebraic Novikov complex

dp = dp + zhp(l — zho) c

is already defined in Yl~
1Aa[z, z~1]. See Farber and Ranicki [7] and Ranicki [30] for further

details of the construction. Farber [6] applied the refinement to obtain improvements of the
Morse-Novikov inequalities, using homology with coefficients in flat line bundles instead of
Novikov homology. It should be noted that the natural morphism Y>~lAa[z, z~l] —> Aa((z))
is injective for commutative A with a = 1, but it is not injective in general (Sheiham [33]).
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