

the

international atomic energy agency **abdus salam** international centre for theoretical physics

SMR1312/10

# School on High-Dimensional Manifold Topology

(21 May - 8 June 2001)

## Splitting the surgery map under a geometric assumption

## F.T. Farrell

Binghamton University Department of Mathematical Sciences Binghamton, New York 13902-6000 U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

# Splitting the surgery map under a geometric assumption

F.T. Farrell $^{\dagger}$ 

<sup>†</sup> Binghamton University, Department of Mathematical Sciences, Binghamton, New York 13902-6000, USA

Lecture given at the: School on High Dimensional Manifold Topology, Trieste 21 May - 8 June 2001

LNS

## Lecture 2

Throughout this lecture (unless otherwise stated) M (and N) will denote complete (connected) Riemannian manifolds. Furthermore  $\Gamma$  will denote the group of all deck transformations of the universal cover  $\tilde{M} \to M$  and we identify  $\Gamma$  with  $\pi_1(M)$ . If v is a vector tangent to M (i.e.  $v \in TM$  = tangent bundle of M) then

$$\alpha_{v}: \mathbb{R} \to M$$

denotes the unique geodesic such that  $\dot{\alpha}_v(0) = v$ .

Figure 1 The function  $\mathbb{R} \times TM \to TM$  defined by

 $g^t(v) = \overset{\bullet}{\alpha}_v(t)$ 

for  $t \in \mathbb{R}$  and  $v \in TM$ , is a flow on TM; i.e. it is smooth and satisfies the equation

$$g^s(g^t(v)) = g^{s+t}(v)$$

for all  $s, t \in \mathbb{R}$  and  $v \in TM$ . This flow leaves invariant SM = unit sphere bundle of M and its restriction to SM is called the *geodesic flow*. Closely related to the geodesic flow is the *exponential function* Exp :  $TM \to M$  defined by

$$\operatorname{Exp}(v) = \alpha_v(1).$$

It is also a smooth function. If we fix a base point  $x_0 \in M$ , then the restriction of Exp to  $T_{x_0}M$  = tangent space to M at  $x_0$  is also called the exponential function and denoted by

$$\exp_{x_0}: T_{x_0}M \to M.$$

(Or more simply by exp when no ambiguity is possible.) Note that the vector space  $T_{x_0}M$  considered as a smooth manifold  $N = T_{x_0}M$  has a natural complete Riemannian metric; namely, if  $u \in TN$ , then  $|u| = \sqrt{U \cdot U}$  where U is the parallel translate of u to 0.

### Figure 2

We say that M is non-positively curved (resp. negatively curved) if all its sectional curvatures are  $\leq 0$  (resp. < 0). And a negatively curved manifold is pinched negatively curved if its sectional curvatures are bounded away from 0 and  $-\infty$ . Note that a closed negatively curved manifold is pinched negatively curved.

**Definition.** A smooth map  $f: M \to N$  is called (weakly) *expanding* if

$$|df(v)| \ge |v|$$

for all vectors  $v \in TM$ .

There is the following important result relative to these definitions.

**Theorem.** (Cartan) Let M be non-positively curved and  $x_0 \in M$  be a base point. Then  $\exp: T_{x_0}M \to M$  is an expanding map. Furthermore it is a covering projection and hence a diffeomorphism when  $\pi_1(M) = 0$ .

Because of Cartan's theorem a non-positively curved (Riemannian) manifold  $M^m$  is aspherical since its universal cover  $\tilde{M}$  is diffeomorphic to  $\mathbb{R}^m$ . It also leads to the following useful alternate description of TM as the bundle with fiber  $\tilde{M}$  associated to the principal  $\Gamma$ -bundle  $\tilde{M} \to M$ ; namely

 $\tilde{M} \times_{\Gamma} \tilde{M} \to M.$ 

In fact this bundle is indentified with  $TM \to M$  as  $\text{Diff}(\mathbb{R}^m)$ -bundles via the  $\Gamma$ -equivariant diffeomorphism

$$TM \to M \times M$$

which sends  $v \in T\tilde{M}$  to  $(\alpha_v(0), \alpha_v(1))$ . The 0-section of TM corresponds (under this identification) with the image of the diagonal  $\Delta$  of  $\tilde{M} \times \tilde{M}$  in  $\tilde{M} \times_{\Gamma} \tilde{M}$ .

There is also a natural geodesic ray compactification  $\overline{M}$  of  $\widetilde{M}$  due to Eberlein and O'Neill such that  $(\overline{M}, \widetilde{M})$  is homeomorphic to  $(\mathbb{D}^m, \text{Int } \mathbb{D}^m)$  where

$$\mathbb{D}^m = \{ v \in \mathbb{R}^m \mid |v| \le 1 \}.$$

Let  $M(\infty) = \overline{M} - \widetilde{M}$  denote the points added; called *ideal points*. Each ideal point is an asymptoty class of geodesic rays in  $\widetilde{M}$ . A *geodesic ray* is a subset of  $\widetilde{M}$  of the form

$$\{\alpha_v(t) \mid t \in [0, +\infty)\}$$

for some  $v \in SM$ . Two rays  $R_1$  and  $R_2$  are *asymptotic* if there exists a positive number b such that each point of  $R_1$  is within distance b of some point of  $R_2$  and vice-versa.

#### Figure 3

The deck transformation action of  $\Gamma$  on M extends to an action on  $\overline{M}$  since  $\Gamma$  acts via isometries on  $\tilde{M}$  and isometries preserve both geodesic rays and the relation of being asymptotic.

W.C. Hsiang and I abstracted an additional key property possessed by the geodesic ray compactification in the following definition. (For the rest of this lecture M denotes a closed topological manifold and not necessarily a Riemannian manifold.)

**Definition.** A closed manifold  $M^m$  satisfies condition (\*) provided there exists an action of  $\Gamma = \pi_1(M^m)$  on  $\mathbb{D}^m$  with the following two properties.

- 1. The restriction of this action to  $\operatorname{Int}(\mathbb{D}^m)$  is equivalent via a  $\Gamma$ -equivariant homeomorphism to the action of  $\Gamma$  by deck transformations on the universal cover  $\tilde{M}$  of  $M^m$ .
- 2. Given any compact subset K of  $\operatorname{Int}(\mathbb{D}^m)$  and any  $\epsilon > 0$ , there exists a real number  $\delta > 0$  such that the following is true for every  $\gamma \in \Gamma$ . If the distance between  $\gamma K$  and  $S^{m-1} = \partial \mathbb{D}^m$  is less than  $\delta$ , then the diameter of  $\gamma K$  is less than  $\epsilon$ .

Figure 4 The above picture illustrates property 2 of condition (\*).

**Remark 1.** Hsiang and I showed that every closed (connected) non-positively curved Riemannian manifold M satisfies condition (\*) by using its geodesic ray compactification.

**Remark 2.** Any manifold satisfying condition (\*) is obviously aspherical. It was conceivable 20 years ago, when this condition was formulated, that every closed aspherical manifold  $M^m$  satisfies condition (\*). But then Mike Davis constructed closed aspherical manifolds  $M^m$  where  $\tilde{M} \neq \mathbb{R}^m$  contradicting property 1 of condition (\*).

On the other hand,  $M^m \times S^1$  satisfies property 1 of condition (\*) whenever  $\tilde{M} = \mathbb{R}^m$ . This is seen as follows. Let  $\mathbb{Z}$  denote the additive group of integers. Its natural action by translations on  $\mathbb{R}$  extends to an action on  $[-\infty, +\infty)$  where each group element fixes  $-\infty$ . We hence have a product action of  $\pi_1(M \times S^1) = \pi_1(M) \times \mathbb{Z}$  on

$$\tilde{M} \times [-\infty, +\infty) = \mathbb{R}^m \times [0, +\infty)$$

which extends to its one point compactification  $\mathbb{D}^{m+1}$ . If we let this be the action posited in the above Definition, then it satisfies property 1 of condition (\*) but *not* property 2.

We also note that the universal cover X of  $M^m \times S^1$  is  $\mathbb{R}^{m+1}$  for any closed aspherical manifold  $M^m$  where  $m \geq 5$  because X is contractible and simply connected at  $\infty$ . This is a result of Newman (1966).

**Theorem.** (Farrell-Hsiang 1981) Let  $M^m$  be a closed manifold satisfying condition (\*). Then the map in the (simple) surgery sequence

$$\mathcal{S}^{s}(M^{m} \times \mathbb{D}^{n}, \partial) \to [M^{m} \times \mathbb{D}^{n}, \partial; G/\mathrm{Top}]$$

is identically zero when  $n \ge 1$  and  $n + m \ge 6$ .

So as not to obscure the argument, we sketch the proof of this Theorem under the extra assumptions that M is triangulable and n = 1. Set

$$E^{2m} = \tilde{M} \times_{\Gamma} \tilde{M}$$

and let  $p: E^{2m} \to M$  denote the bundle projection. Then the following square commutes:

$$\begin{array}{c|c} \mathcal{S}^{s}(\mathbb{D}^{1} \times M, \partial) \longrightarrow [\mathbb{D}^{1} \times M, \partial; G/\mathrm{Top}] \\ & & & \downarrow (\mathrm{id} \times p)^{*} \\ \mathcal{S}(\mathbb{D}^{1} \times E, \partial) \longrightarrow [\mathbb{D}^{1} \times E, \partial; G/\mathrm{Top}] \end{array}$$

where  $\alpha$  is the transfer map defined as follows. Let the simple homotopy equivalence

$$h: (W, \partial W) \to (\mathbb{D}^1 \times M, \partial)$$

represent an element  $b \in \mathcal{S}^{s}(\mathbb{D}^{1} \times M, \partial)$ . Then the proper homotopy equivalence

$$\hat{h}: (\mathcal{W}, \partial W) \to (\mathbb{D}^1 \times E, \partial)$$

represents  $\alpha(b) \in \mathcal{S}(\mathbb{D}^1 \times E, \partial)$  where

$$\mathcal{W} = \{ (x, y) \in W \times (\mathbb{D}^1 \times E) \mid h(x) = \mathrm{id} \times p(y) \}$$

and  $\hat{h}(x, y) = y$ . Since p is a homotopy equivalence,  $(id \times p)^*$  is an isomorphism. Hence the Theorem is a consequence of the following:

**Assertion.** The map  $\alpha$  is identically zero.

We proceed to verify this. Note first that W is an s-cobordism and hence a cylinder because of the s-cobordism theorem. We may therefore assume that  $W = [0, 1] \times M$  and that h is a homotopy between  $\mathrm{id}_M$  and a self-homeomorphism  $f: M \to M$ . Furthermore, if f is pseudo-isotopic to  $\mathrm{id}_M$  via a pseudo-isotopy homotopic to h rel  $\partial$ , then b = 0.

Let  $\tilde{h}$  be the unique lift of h to  $[0,1] \times \tilde{M}$  such that  $\tilde{h}$  is a proper homotopy between  $\mathrm{id}_{\tilde{M}}$ and a self-homeomorphism  $\tilde{f} : \tilde{M} \to \tilde{M}$ , which is a lift of f. Then  $\tilde{h} \times \mathrm{id}_{\tilde{M}}$  determines a proper homotopy

$$k: [0,1] \times E \rightarrow [0,1] \times E$$

between  $\mathrm{id}_E$  and a self-homeomorphism  $g: E \to E$  (which is also determined by  $\tilde{f} \times \mathrm{id}_{\tilde{M}}$ ). Since

$$h: (\mathcal{W}, \partial W) \to (\mathbb{D}^1 \times E, \partial)$$

can be identified with

$$k: ([0,1] \times E, \partial) \to ([0,1] \times E, \partial),$$

the Assertion is an immediate consequence of the following.

**Lemma.** g is pseudo-isotopic to  $id_E$  via a pseudo-isotopy which is properly homotopic to k rel  $\partial$ .

We now use our assumption that  $M^m$  satisfies condition (\*) to prove this lemma. Identify  $\tilde{M}$  with  $\mathbb{D}^m$  and define a manifold  $\bar{E}$  by

$$\bar{E} = \mathbb{D}^m \times_{\Gamma} \tilde{M}.$$

Then  $E = \text{Int}(\overline{E})$  and property 2 of condition (\*) implies that  $\tilde{f}$  extends to a  $\Gamma$ -equivariant homeomorphism

$$\bar{f}:\mathbb{D}^m\to\mathbb{D}^m$$

by setting  $\bar{f}|_{S^{m-1}} = \mathrm{id}_{S^{m-1}}$ . Consequently  $\bar{f} \times \mathrm{id}_{\tilde{M}}$  determines a self-homeomorphism

 $\bar{g}:\bar{E}\to\bar{E}$ 

which extends  $g: E \to E$  and satisfies  $\bar{g}|_{\partial \bar{E}} = \mathrm{id}_{\partial \bar{E}}$ . We proceed to construct a pseudoisotopy

$$\phi: E \times [0,1] \to E \times [0,1]$$

satisfying

1. 
$$\phi|_{\bar{E}\times 0} = \bar{g};$$

$$2. \ \phi|_{\bar{E}\times 1} = \mathrm{id}_{\bar{E}\times 1};$$

3.  $\phi|_{(\partial \bar{E}) \times [0,1]} = \mathrm{id}_{(\partial \bar{E}) \times [0,1]}.$ 

Properties (1-3) define  $\phi$  on  $\partial(\bar{E} \times [0,1])$ . To construct  $\phi$  over  $\text{Int}(\bar{E} \times [0,1])$  consider the natural fiber bundle

 $\bar{E} \times [0,1] \xrightarrow{a} M$ 

with fiber  $\mathbb{D}^m \times [0, 1]$ . And note the following. If  $\Delta$  is an *n*-simplex in M, then  $q^{-1}(\Delta)$  can be identified with  $\mathbb{D}^{n+m+1}$ .

The construction of  $\phi$  proceeds by induction over the skeleta of M via a standard obstruction theory argument. And the obstructions encountered in extending  $\phi$  from over the (n-1)-skeleton to over the *n*-skeleton are the problem of extending a self-homeomorphism of  $S^{n+m}$  to one of  $\mathbb{D}^{n+m+1}$ . But these obstructions all vanish because of the Alexander Trick. Recall that this Trick asserts that any self-homeomorphism  $\eta$  of  $S^n$  extends to a self-homeomorphism  $\bar{\eta}$  of  $\mathbb{D}^{n+1}$ . In fact

$$\bar{\eta}(tx) = t\eta(x)$$

where  $x \in S^n$  and  $t \in [0, 1]$  is an explicit extension.

#### Figure 6

Now  $\psi = \phi|_{E \times [0,1]}$  is the pseudo-isotopy from g to  $\mathrm{id}_E$  posited in the Lemma. And a similar argument, which we omit, shows that  $\psi$  is properly homotopic to k rel  $\partial$ . Q.E.D.

**Remark 3.** It follows from results of Davis and Januszkiewicz that PL non-positively curved closed manifolds also satisfy condition (\*). And Bizhong Hu showed that every non-positive curved finite complex K is a retract of such a manifold. Hu (1995) deduced from this, using Ranicki's algebraic formulation of surgery theory, that the assembly map is split monic for such a K. Ferry-Weinberger and Carlsson-Pedersen also obtained this in addition to many further results on the split injectivity of  $\sigma$ .

**Corollary.** Let  $f : N \to M$  be a homotopy equivalence between closed smooth manifolds such that M supports a non-positively curved Riemannian metric. Then N and M are stably homeomorphic; i.e.

$$f \times \mathrm{id} : N \times \mathbb{R}^{m+4} \to M \times \mathbb{R}^{m+4}$$

is homotopic to a homeomorphism where  $m = \dim(M)$ .

*Proof.* Let  $\phi: N \times S^1 \to M \times S^1 \times \mathbb{R}^{m+3}$  be an embedding homotopic to the composition

$$N \times S^{1} \xrightarrow{f \times \mathrm{Id}_{S^{1}}} M \times S^{1} \times 0 \subseteq M \times S^{1} \times \mathbb{R}^{m+3}.$$

Note that  $\phi$  exists because of the Whitney Embedding Theorem. And let v denote the normal bundle to  $\phi$ . We proceed to show that v is topologically trivial. Now Kwan and Szczarba showed that  $f \times \operatorname{id}_{S^1}$  is a simple homotopy equivalence and hence represents an element in  $S^s(M \times S^1)$ . This element maps to 0 in  $[M \times S^1; G/\operatorname{Top}]$  because of the Theorem and the 4-fold (semi) periodicity of the topological surgery exact sequence. But v (equipped with a specific homotopy trivialization) is this image element; in particular, v is topologically trivial.

Since the region outside an open tubular neighborhood of  $\operatorname{image}(\phi)$  is a (half open) *h*-cobordism, we can use the *h*-cobordism theorem to show that the total space E of v is diffeomorphic to  $M \times S^1 \times \mathbb{R}^{m+3}$ . But E can also be topologically identified with  $N \times S^1 \times \mathbb{R}^{m+3}$ since v is topologically trivial. Hence there is a homeomorphism

$$\psi: N \times S^1 \times \mathbb{R}^{m+3} \to M \times S^1 \times \mathbb{R}^{m+3}$$

such that  $\psi_{\#}(\pi_1 N) = \pi_1(M)$ . The homeomorphism posited to exist in the Corollary is obtained by lifting  $\psi$  to the infinite cyclic covering spaces corresponding to  $\pi_1(N)$  and  $\pi_1(M)$ , respectively.

¢

Lecture 2 figures





Figure 2.



P. 1

Lecture 2 figures

尿= セッ

Figure 6.



「(~)=ナリ(~)