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Atmospheric Impacts of Surface Variability

(i) Diumal timescale and ID Feedbacks

(ii) Rainfall Persistence during HAPEX-Sahel

(iii) Synoptic Variability - African Easterly Waves
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Figure 1. As Fig. 5 but lor (a) surface temperature (°Q, (b) temperature at 1.5 m (°Q, (c) boundary-layer depth
(m), and (d) relative hunaiity at 1.5 m (%). Also shown for comparison are July to September mean observations
over two years from a saranna field sate (13.5°N, 2.7°£) of soil temperature at 2 cm depth in (a), of 2 m air

temperature in (b), and of 2 m relative humidity in (d).
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Figure 5. Mean July to September diurnal cycles averaged between 15° W-l 1.25°E, 12.5-15°N: (a) rainfall rate
(mm day" *), (b) probability of rainfall during a three-hour period (%).
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c ELTAHIR: SOIL MOISTURE-RAINFALL FEEDBACK, 1 767
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Figure 2. The proposed hypothesis for relating soil moisture conditions and subsequent rainfall processes.

col Research [Sellers et a/., 1992]) and are presented here to
support the proposed hypothesis. Section 4 describes the rela-
tionship between soil moisture and boundary layer energy.
Section 5 covers the role of clouds in the surface radiation
processes. Section 6 includes a discussion and conclusions.

2. Theory
Here we propose a hypothesis that describes the role of soil

moisture in land-atmosphere interactions. In particular, we
suggest that wet soil moisture conditions enhance the following
related variables: net surface radiation, total heat flux from the
surface into the atmosphere, and moist static energy in the
atmospheric boundary layer. The latter can be quantified using
several variables including wet bulb potential temperature and
equivalent potential temperature. These two variables are im-
portant for the energetics and dynamics of local convective
storm* [Williams and Renno, 1993; Ehahir and Pal, 1996;

S ^ ' 1978; Zawaddd <* d-* 19811 M weU M **
-scale atmospheric circulations in the tropics

^ £ , 1 9 9 4 ; Eltahir, 1996; Eltahir and Gong, 1996],
" pathways for relating soil moisture conditions

_ it rainfall are described in Figure 2. We hypoth-
esizerthatFigurfc 2 describes the dominant pathways for relat-

ing soil moisture and subsequent rainfall. However, this figure
is not designed to describe all possible interactions. The pro-
posed hypothesis is based on considerations of the following:
(1) the relationship between soil moisture conditions and two
basic properties of the land-surface, albedo and Bowen ratio;
(2) the surface radiation balance; (3) the energy balance at the
land-atmosphere boundary; (4) the energy balance of the at-
mospheric boundary layer, and (5) the thennodynamic and
dynamic processes that relate boundary layer conditions and
subsequent rainfall.

2.1. Bask Properties of the Land Surface: The
Relationship Between Soil Moisture Conditions, Surface
Albedo, and Bowen Ratio

The role of soil moisture conditions in regulating surface
albedo and Bowen ratio is the fundamental basis of the pro-
posed hypothesis. Basic radiation physics suggests that water
absorbs significantly more solar radiation than dry soil. As a
result, absorption of solar radiation increases with the relative
fraction of water in any mixture of soil and water. Several
observations confirm these theoretical arguments. Bowers and
Hanks [1965] and Bowker et al. [1985] studied the spectral
reflectance of soil surfaces and confirmed that at all wave
lengths of solar radiation, reflectance decreases with the level
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if large-scale atmospheric processes drive die system at
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forces soil saturation at the end of a gjwen window (Figure 6%
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m the next time window (Figure 5\ soil saturation may, merely
as a direct consequence of this rainfall forcing, also be signtf-
icantty correlated with subsequent precipitation (Figure 4). In
this case, we would expect the rainfall persistence to be greater
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Observational Evidence of Persistent Convective Scale Rainfall Patterns - Taylor and Lebel
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The Southern Super Site in HAPEX-Sahel
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Impact on planetary boundary layer
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Initial results (2-D case)
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FIG. 2. Mean wind fields for the period 23 August-19 September 197* (a) 850 mb (b) 700 mt>.

The results of the spectral analysis at 850 mb are
displayed in Fig. 3. The isopleths depict the ampli-
tude of the meridional wind component in the fre-
quency band 0.2-0.4 cpd (cycles per day) (periods
between 2.5 and 5 days). The amplitude was ob-
tained by taking the square root of twice the power
(variance) in that frequency band. The most promi-
nent feature of the diagram is the dumbbell-shaped
area of large amplitude with centers of maximum
amplitude located near the Greenwich meridian and
the coast. From the shape of the pattern we conclude
that the disturbances experienced their main growth
between 10T2 and 0% weakened somewhat between
0° and 10°W, and then rcintensined near the coast
In conformity with the description given in pre-GATE
studies employing synoptic and satellite data (Cad-

son, 1969b), the feturbances diminished rapidly in
strength after tearing the coastal waters.

The analysis Ins been extended to the GATE ship
array in order t* show how the amplitudes in the
A/B-scale netwoft, where the disturbances have been
thoroughly docmented (Thompson et al^ 1979),
compare with those over the upstream continental
area. Spectra for the ships and the two stations in
the Cape Verde islands (locations shown in Fig. 1)
are based on 21 * y s of data (30 August-19 Septem-
ber, inclusive) ntber than on the 28 days available
for land station. Because of the slight difference
in periods, the wpleths do not exactly mesh at the
coastline. Calcsktkms of the land spectra based on
the shorter 21-*y period revealed only slight dif-
ferences from Aose based o® the fuD period. The



lite geographical distribution of the amplitude in
the 2^5-5 day band and character of the spectral
peaks for the meridional wind component at 700 mb
are shown in Fig. 7. The main features of the am-
plitude distribution resemble those at 850 mb except
for a general southward shift of the regions of larger
amplitude. The major increase in amplitude again

The direction of phase propagation and coherence
squares at 700 mb are shown in Fig. 8. Along the
line extending from Dakar (61641) to Djibouti
(63125) and Aden (40597) the phase propagation is
everywhere westward or neutral and coherence
squares remain large as far east as 20°E. Conse-
quently, it seems worthwhile to seek further evidence
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Flo. 7. Amplitude of meridional wind oscillation in 0.2-0.4 cpd frequency bajid at 700 mb. See Fig. 3 for further explanation.
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Constructing a composite African Easterly
Wave
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Composite Wave from GCM

based on time of passage of maximum
northerly wind at 700 hPa
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Surface flux variability across
\L wave I A
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PBL Budget Calculations

Estimate PBL heating and moistening rates
due to surface flux variability
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considers the direct effect of the diabatic heating on wave growin ai me icvci oi me ^ ^ . .
on both the heating profile and the phase of the wave where the heating occurs. If the heating reinforced
the temperature structure depicted in Figure 9 then the wave would be expected to grow. If it opposed the

Pressure

Jet
Level

850mb

Longitude

Figure 9. Schematic showing pressure-longitude section of relative vorticity anomalies and associated temperature :..;omalies in an
idealised easterly wave. Maximum amplitudes are assumed at the level of the AEJ and the sign of the relative vorticity anomaly is
given by a +• and a — sign. The sign of the temperature anomalies is consistent with thermal wind balance. The observed zonal
wavelength (see Reed el «/., 1977), given here by the distance between the two negative anomalcs. typically varies between about

20° and 40°

© 1998 Royal Meteorological Society Int. J. Climatol. 18: I MS-1323 (1998)



Surface flux variability makes substantial
contribution to low level heat and
moisture variability across wave

How might this affect wave?

0
Temperature anomalies beneath
African Easterly Jet enhanced -
this may strengthen waves at jet
level

Surface moistening may influence
timing of convection associated
with wave
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