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Atmospheric Impacts of Surface Variability

(1) Diurnal timescale and 1D Feedbacks
(i) Rainfall Persistence during HAPEX-Sahel

(iii))  Synoptic Variability — African Easterly Waves
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Figure 2. The proposed hypothesas for relating soil moisture conditions and subsequent rainfall processes.

cal Research (Sellers et al., 1992]) and are presented here to
<upport the proposed hypothesis. Section 4 describes the rela-
-donship between soil moisture and boundary layer energy.
Section 5 covers the role of clouds in the surface radiation
processes. Section 6 includes a discussion and conclusions,

2. Theory

‘Here we propose a hypothesis that describes the role of soil
moisture in land-atmosphere interactions. In particular, ‘we

* suggest that wet soil moisture conditions enhance the following
related variables: net surface radiation, total heat flux from the
surface into the atmosphere, and moist static energy in the
atmospheric boundary layer. The latter can be quantified using
several variables including wet bulb potential temperature and
equivalent potential temperature. These two variables are im-
portant for the energetics and dynamics of local convective

- Storms. (Williams and Renno, 1993; Eltahir and Pal, 1996;
'ZamdzkzandRo 1978; Zawadzki et al., 1981] as well as the
mamics of large-scale atmospheric circulations in the tropics
_h;._al -1994; Eltahir, 1996; Eltahir and Gong, 1996).
Iuﬁé‘ = proposed pathways for relating soil moisture conditions
‘and’subsequent rainfall are described in Figure 2. We hypoth-
esxze MF'S“TC 2 dwcn'ba the dominant pathways for relat-

I £ AN '

ing soil moisture and subsequent rainfall. However, this figure
is not designed to describe all possible interactions. The pro-
posed hypothesis is based on considerations of the following:
(1) the relationship between soil moisture conditions and two
basic properties of the land-surface, albedo and Bowen ratio;
(2) the surface radiation balance; (3) the energy balance at the
land-atmosphere boundary; (4) the energy balance of the at-
mospheric boundary layer; and (5) the thermodynamic and
dynamic processes that relate boundary layer conditions and
subsequent rainfall..

2.1. Basic Properties of the Land Sarface: The
RelaﬁonskipnetweenSoilMoismreCondiﬁons,Surhce
Albedo, and Bowen Ratio-

The role of soil moisture conditions in regulatmg surface
albedo and Bowen ratio is the fundainental basis of the pro-
posed hypothesis. Basic radiation physics suggests that water
absorbs significantly more. solar radiation than dry soil. As a
result, absorption of solar radiation increases with the relative
fraction of water in any mixture. of soil and water. Several

_observations confirm these theoretical arguments. Bowers and

Hanks {1965} and Bowker-et al. [1985] studied the spectral
reflectance of soil surfaces and confirmed that at all wave
lengths of solar radiation, reflectance decreases with the level
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Figare 7. Comparison of smeothed limes of the correlation between

windows (top)

adjacent precipitation
top 10 cm, (middic) top 50 cm, and (bottom) top 90 cm) (solid line, from Figure 5) and of the corretation

variability will go down as the imverse of the leagth of the
averaging window. All Figures 4a—4c show the daily 7° is stroa-
ger during the summer than the rest of the year, though there
#s a local peak during April, as well. At dee shallower deptis
the fimcar correlation stays above the 10% level of significance
lze from the end of May to carly August and for much of
April. During the rest of the year the correlation between soil
moistare and subsequent precipitaticn is aot significant.

We find three possible explanatioas foc these results showing
¢that there is a significant lincar relation between sodl saturation
period. First, it is possible that the relationship is due to a
persistent farge-scale atmospheric forcing that sustains or ea-
hances a persistence in rainfall between adjaceat time periods,
and through the correlation between coacurrent rainfall and
soil saturation, results in the observed cocrefation between soil
saturation and subsequent rainfall. Seccad, the correlation

m(wmmmq

could be a reflection of a feedback process in which initial sod
moisture affects rainfall, which then affects sod moisture, esc.
F'nnlly nmmmﬂeracoﬂnmof&e&emm
nésms.

if large-scale atmospberic processes drive the system at
hand, peesistence in atmospheric coaditions would first be re-
flected in rainfall persistence, as shown in Fignre 5. Here
persistence in rainfall is measured by the correlation between
the total precipitation in adjacent 21-day windows. Figure 6
then shows the correlation between a 21-day rainfall window
and soil saturation at the ead of the window. If precipitation
torces sofl saturation at the end of 2 given window (Figare 6), .
and if precipitation is akso tincarly correlated with precipitation
in the next time window (Figure 5), soil saturation may, merely
as a direct consequence of this rainfall forcing, atso be signif-
icandy correlated with subsequent precipitation (Figure 4). In
this case, we would expect the rainfall persistence to be greater



N Rowfa) Rosidone  HAPEX ~Sabk

————

|29y | | [ 45T

14

14

latitude (degrees)
tatitude (degrees)

\ . I
13 : " '
2 3 2 - Nso davn SvsruSS)l

longitude (degrees) ‘ longitude (degress)
® ®)

“conomal et hfals

felerones : Too\we\— al 1333
| Tangev + Leloel 1939
’);O\w 2000




Spatial variability of rainfall
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- tendency of rain within squa
that have been recently wetted

- suggests a positive feedback between soil moisture and
rainfall at scales of 10-15 km
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The Southern Super Site in HAPEX-Sahel
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Impact on planetary boundary layer
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Initial results (2-D case)

pre-storm specific humidity (g/kg)
dry wet dry

1000 2 Soil moisture profiles:
_ £  Wet patch:
E £ 10mm rain 6 hours prior to
5 5007 T  storm
2 8
ol
* | TN : Dry patch:
, j . no rain for 4 days
' |

-30 -15 0 15 30
distance (km)

Average rainfall: wet patch 15.8mm
dry patch 9.3mm
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displayed in Fig. 3. The isopleths depict the ampli-
tude of the meridional wind component in the fre-
quency band 0.2-0.4 cpd (cycles per day) (periods

son, 1969b), meﬁsturbanées diminished rapidly in

“strength after leaving the coastal waters.

between 2.5 and 5 days). The amplitude was ob-

tained by taking the square root of twice the power
(variance) in that frequency band. The most promi-
nent feature of the diagram is the dumbbell-shaped
area of large amplitude with centers of maximum
amplitude located near the Greenwich meridian and
the coast. From the shape of the pattern we conclude
that the disturbances experienced their main growth
between 10°E and (P, weakened somewhat between
° and 10°W, and then reintensified near the coast.

" In conformity with the description given in pre-GATE

studies employing synoptic and satellite data (Carl-

SEE s L bE

The analysis has been extended to the GATE ship
array in order t» show how. the amplitodes in the
A/B-scale network, where the disturbances bave been
thoroughly docamented (Thompson ef al., 1979),

> with those over the upstream cominmtal

area. Spectra for the ships and the two stations in -

the Cape Verde Blands (locations shown in Fig. 1)
are based on 21 days of data (30 August— 19 Septem-
ber, inclusive) sather than on the 28 days available
for land statioms. Because of the slight difference

" in periods, the Bopleths do not exactly mesh at the

coastline. Calcaiitions of the land spectra based on
the shorter 21-&xy period revealed only slight dif-

ferences from ®ose based on the full period. The

|GATE

st



1ne geographical distribution of the amplitude in The direction of phase propagation and coherénce
the 2,5-5 day band and character of the spectral squares at 700 mb are shown in Fig. 8. Along the
peaks for the meridional wind component at 700 mb line extending from Dakar (61641) to Dijibouti
are shown in Fig. 7. The main features of the am- (63125) and Aden (40597) the pliase propagation is
plitude distribution resemble those at 850 mb except everywhere westward or neutral and coherence
for a general southward shift of the regions of larger squares rémain large as far east as 20°E. Conse-
amplitude. The major-increase in amplitude again quently, it seems worthwhile to seek further evidence
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F16. 7. Amplitude of meridional wind oscillation in 0.2-0.4 cpd frequency bagd at 700 mb. See Fig. 3 for further explanation.
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Constructing a composite African Easterly
Wave
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Time series at a grid point in GCM
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Composite Wave from GCM

* based on time of passage of maximum
northerly wind at 700 hPa
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Surface flux variability across
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rate of change (K/day)

PBL Budget Calculations

Estimate PBL heating and moistening rates
due to surface flux variability

Potential Temperature Equivalent Potential Temperature
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considers the direct effect of the diabatic heating on wave growtn i ui€ ivel 01 wic Mas. s s - e
on both the heating profile and the phase of the wave where the heating occurs. If the heating rcmforccd
the temperature structure depicted in Figure 9 then the wave would be expected to grow. If it opposed the
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Figure 9. Schematic showing pressure-loagitude section of relative vorticity anomalies and associated temperatuce :..omalics in an

idealised easterly wave. Maximum araplitudes are assumed at the level of the AES and the sign of the relative vorticity anomaly is

given by a + and a — sign. The sign of the temperature anomalies is consistent with thermal wind balance. The observed zonal

wavelength (see Reed e1 ul., 1977), given here by the distance between the two negative anomal es. typically varies betweea about
20° and 40°
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Surface flux variability makes substantial
contribution to low level heat and
moisture variability across wave

How might this affect wave?
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Temperature anomalies beneath Surface moistening may influence
African Easterly Jet enhanced - timing of convection associated
this may strengthen waves at jet with wave -~
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