the **abdus salam** international centre for theoretical physics

SMR.1313 - 4

Summer Colloquium on the Physics of Weather and Climate

Workshop on Land-Atmosphere Interactions in Climate Models (28 May - 8 June 2001)

Land-surface Modeling of Intermediate Complexity for NWP and Climate: the ECMWF Experience

Lecture I

Pedro Viterbo European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading RG2 9AX United Kingdom

These are preliminary lecture notes, intended only for distribution to participants

Land-surface modelling of intermediate complexity for NWP and climate: the ECMWF experience

Pedro Viterbo

European Centre for Medium-Range Weather Forecasts

viterbo@ecmwf.int

ECMWF Shinfield Park Reading RG2 9AX UK

Layout

Methodology

- Snippets of plant and soil science
- ECMWF model
- Justification and examples

Layout

- Introduction
- General remarks
- Model development and validation
- The surface energy budget
- Soil heat transfer
- Soil water transfer
- Surface fluxes
- Initial conditions
- Snow
- Conclusions and a look ahead

• Atmospheric general circulation models need boundary conditions for the enthalpy, moisture (and momentum) equations: Fluxes of energy, water (and stress) at the surface.

ERA15 land-averaged values 1979-1993

- Numerical Weather Prediction models need to provide near surface weather parameters (temperature, dew point, wind, low level cloudiness) to their customers.
 - ECMWF model(s) and resolutions

		Length	Horizontal	Vertical	Remarks
			resolution	levels	
٠	Deterministic	10 d	Tl511 (40 km)	L60	
٠	Ensemble prediction	10 d	Tl255 (80 km)	L40	(50+1 models)
٠	Seasonal forecast	6 m	T63 (200 km)	L31	(Ocean coupled)
٠	Assimilation physics	12 h	T159 (115 km)	L60	

Forecast for Trieste

ECMWF deterministic model

Tl511 ~ 40 km

Vertical resolution 60 levels

12 levels below 850 hPa

ICTP, May 2001

- Feedback mechanisms for the other physical processes, e.g.:
 - Surface evaporative fraction¹ (*EF*), impacting on low level cloudiness, impacting on surface radiation, impacting on ...
 - Bowen ratio² (*Bo*), impacting on cloud base, impacting on intensity of convection, impacting on soil water, impacting on ...

(1) *EF* = (Latent heat)/(Net radiation)

(2) Bo = (Sensible heat)/(Latent heat) ICTP, May 2001

- Partitioning between sensible heat and latent heat determines soil wetness, acting as one of the forcings of low frequency variability (e.g. extended drought periods).
- At higher latitudes, soil water only becomes available for evaporation after the ground melts. The soil thermal balance and the timing of snow melt (snow insulates the ground) also controls the seasonal cycle of evaporation.
- The outgoing surface fluxes depend on the albedo, which in turn depends on snow cover, vegetation type and season.
- Surface (skin) temperatures of sufficient accuracy to be used in the assimilation of TOVS satellite radiances (over land there is no measured input field analogous to the sea surface temperature)

Systematic errors 850 hPa T

• A smaller albedo of snow in the boreal forests (1997) reduces dramatically the spring (March-April) error in day 5 temperature at 850 hPa

Layout

- Introduction
- General remarks
- Model development and validation
- The surface energy budget
- Soil heat transfer
- Soil water transfer
- Surface fluxes
- Initial conditions
- Snow
- Conclusions and a look ahead

 Mean surface energy fluxes (Wm⁻²) in the ERA15 atmospheric reanalysis (1979-1993); positive fluxes downward

	R_{S}	\boldsymbol{R}_{T}	H	LE	G	Bo=H/LE
Land	138	-63	-23	-41	0	0.6
Sea	163	-51	-10	-104	-2	0.1

- Land surface
 - The net radiative flux at the surface (R_S+R_T) is downward. Small storage at the surface (G) implies upward sensible and latent heat fluxes.
- Bowen ratio: Land vs Sea
 - Different physical mechanisms controlling the exchanges at the surface
 - Continents: Fast responsive surface; Surface temperature adjusts quickly to maintain zero ground heat flux
 - Oceans: Large thermal inertia; Small variations of surface temperature allowing imbalances on a much longer time scale

Global budgets (2)

- Surface fluxes and the atmosphere
 - Sensible heat (*H*) at the bottom means energy immediately available close to the surface
 - Latent heat (*LE*) means delayed availability through condensation processes, for the whole tropospheric column
 - The net radiative cooling of the whole atmosphere is balanced by condensation and the sensible heat flux at the surface. Land surface processes affect directly (*H*) or indirectly (condensation, radiative cooling, ...) this balance.

Terrestrial atmosphere time scales

Terrestrial Atmosphere • Atmosphere recycling time scales associated with land reservoir

 - Precipitation
 4.5/107 = 15 days

 - Evaporation
 4.5/71 = 23 days

Surface time scales (memory) (1)

- Diurnal time scale
 - Forcing time scale determined by the quasi-sinusoidal radiation modulated by clouds

ICTP, May 2001

Surface time scales (memory) (2)

- Diurnal/weekly time scale
 - Forcing time scale determined by the "quasi-random" precipitation (synoptic/mesoscale)

ICTP, May 2001

Surface time scales (memory) (3)

- Weekly/monthly time scale
 - Internal time scale determined by the physics of soil water exchanges/transfer

ICTP, May 2001

Surface time scales (memory) (4)

- Weekly/monthly time scale
 - Evaporation time scale determined by the ratio (net radiative forcing)/(available soil water)

```
R_n = 150 \text{ Wm}^{-2} \sim (5 \text{ mm} \text{d}^{-1})
```

```
Soil water=150 mm
```

 $(5 \text{ mm} d^{-1})/(150 \text{ mm}) = 30 \text{ days}$

The hydrological rosette

Layout

- Introduction
- General remarks
- Model development and validation
- The surface energy budget
- Soil heat transfer
- Soil water transfer
- Surface fluxes
- Initial conditions
- Snow
- Conclusions and a look ahead

A diversity of models !!!

Key Model	Number Canopy Layers	Inter- ception Treated	Numbe Include T	r of Laye d for È	rs Roots	Canopy	Rationale for Temperature	Rationale for Soil moisture	Reference
A BATSIE	1	ves	2	3	2	Penman/Monteith	force-restore	Darcy's Law	Dickinson <i>et al</i> (1986, 1993)
B BEST	1	yes	3	2	2	Penman/Monteith	force-restore	Philip-de Vries	Pitman $et al$ (1991)
								I.	Cogley et al (1990)
C BUCKET	0	no	0	1	1	-	instantaneous surface	bucket + variation	Robock et al (1995)
							heat balance		
D CLASS	1	yes	3	3	3	Penman/Monteith	heat diffusion	Darcy's Law	Verseghy (1991)
									Verseghy et al (1993)
E CSIRO	1	yes	3	2	1	aerodynamic	heat diffusion	force-restore	Kowalczyk et al (1991)
F GISS	1	yes	6	6	6	aerodynamic	aerodynamic	Darcy's Law	Abramopoulos et al (1988)
G ISBA	1	yes	2-3	2	1	aerodynamic	force-restore	force-restore	Noilhan and Planton (1989)
H TOPLATS	1	yes	1	2	1	Penman/Monteith	heat diffusion	Philip-de Vries	Famiglietti and Wood (1995)
I LEAF	1	yes	7	7	3	Penman/Monteith	heat diffusion	Darcy's Law	Avissar and Pielke (1989)
J LSX	2	yes	6	6	6	Penman/Monteith	heat diffusion	Philip-de Vries	-
K MAN69	0	no	1	1	1	-	-	bucket	Manabe (1969)
L MILLY	0	no	1	1	1	-	-	bucket	Manabe (1969)
M MIT	0	no	3	3	3	-	heat diffusion	Darcy's Law	Abramopoulos <i>et al</i> (1988) Entekhabi and Eagleson (1989)
N MOSAIC	1	yes	2	3	2	Penman/Monteith	-	Darcy's Law	Koster and Suarez (1992a)
O NMC-MRF	1	yes	1	1	1	lumped with soil	•	-	Pan (1990)
P CAPS	1	yes	2	2	1	Penman/Monteith	heat diffusion	diffusion	Mahrt and Pan (1984)
Q PLACE	1	yes	30	30	2	Ohm's law analogy	force-restore	force-restore	Wetzel and Chang (1988)
R RSTOM	-	no	0	1	1	-	-	bucket + variation	Milly (1992)
S SECHIBA	1	yes	2	2	1	Penman/Monteith	force-restore	Choisnel	Ducoudré et al (1993)
T SSIB	1	yes	2	3	1	Penman/Monteith	force-restore	diffusion	Xue et al (1991)
U UKMO	1	yes	4	1	1	Penman/Monteith	heat diffusion	diffusion	Warrilow et al (1986)
V VIC	1	yes	1	2	1	Penman/Monteith or	heat diffusion	Philip-de Vries	Liang et al (1994)
		-				full energy balance		•	
W BIOME	1	yes	1	1	1	Penman/Monteith	force-restore	-	

 Table 3.1
 Characteristics of several land surface parametrization schemes

Pitman et al 1993, with modifications

,

Model development methodology (1)

- Operational model results vs. observations
 - screen level T,q, low level cloudiness of 3D runs

Europe FC errors for March 2001

72 H FC verifying at 12 UTC

<u>وم</u>

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

-140

-150

-160

-170

-180

-190

9-200

8.5

8 8.5

Averaged over Germany stations 26 April 2001

Model development methodology (1)

- Operational model results vs. observations
 - screen level T,q, low level cloudiness of 3D runs
 - Basin averaged surface hydrological budget of 3D runs
- Identification of missing/misrepresented physical mechanisms
- Changing the model formulation
- Identification of potential validation data sets and methodology for controlled validation
- Testing in "controlled" mode (ie, cutting most feedbacks)
 - 1-column 1-2 day integrations
 - Surface only integrations, 1 month to several years, forced to obs
 - 1-column integrations with data assimilation emulation, months/years
 - 3D relaxation integrations: A cheap proxy for data assimilation

Model development methodology (2)

- 3D testing with model and model/assimilation
- 3D testing with idealised configurations for further identification of feedback mechanisms

Evaluation of the new scheme

- offline, using 7 different datasets:
 - Cabauw 1987
 - Hapex-MOBILHY 1986
 - FIFE 1987-1989
 - BOREAS 1994-1996
 - ARME (tropical forest) 1983-1985
 - Garderen (Dutch pine forest) 1989
 - SEBEX (Sahel) 1989-1990
- in relaxation experiments (forcing upper model fields to analyses: useful for shallow boundary layers)
- in reanalysis test suite (1987-1988)

ECMWF surface model: milestones

. . .

 Vegetation based evaporation 	1989
• CY48 (4 layers +)	1993 / ERA15
 Initial conditions for soil water 	1994
 Stable BL/soil water freezing 	1996
 Albedo of snow forests 	1996
 OI increments of soil water 	1999
• TESSEL, new snow and sea ice	2000 / ERA40

ECMWF model and validation

Model Description

Viterbo and Beljaars, 1995. J. Climate, 2716-2748.

van den Hurk et al, 2000. EC Tech Memo 295.

• 1D validation

– Cabauw

Beljaars and Viterbo, 1994. BLM, 71, 135-149. Viterbo and Beljaars, 1995. J. Climate.

– FIFE

Viterbo and Beljaars, 1995. J. Climate. Betts et al. 1996. JGR, 101D, 7209-7225. Betts et al., 1998. Mon. Wea. Rev., 126, 186-198. Douville et al, 2000: MWR, 128, 1733-1756.

– ARME

Viterbo and Beljaars, 1995. J. Climate.

- SEBEX

Beljaars and Viterbo, 1999. Cambridge Univ Press.

van den Hurk et al, 2000.

 All the above + HAPEX-MOBIHLY+BOREAS

van den Hurk et al, 2000.

• US Summer 1993

Beljaars et al. 1996. MWR, 124, 362-383. Betts et al. 1996. JGR, 101D, 7209-7225. Viterbo and Betts, 1999: JGR, 104D, 19,361-19,366.

• Soil water initial conditions Viterbo, 1996. Douville et al, 2000.

• Soil freezing Viterbo et al., 1999. QJRMS, 125,2401-2426.

• Snow forest albedo

Viterbo and Betts, 1999. JGR, 104D, 27,803-27,810.

Mississippi river basins Betts et al., 1998. J. Climate, 11, 2881-2897. Betts et al., 1999. JGR, 104D,19,293-19,306.

• Mackenzie river basin

Betts and Viterbo, 2000: J. Hydrometeor, 1, 47-60.

• Impact of land on weather Viterbo and Beljaars, 2001: Springer, to appear.

Figure 7

Water and energy processes at the Earth surface in the presence of vegetation.

Verstraete and Dickinson 1986

TESSEL scheme in a nutshell

• Tiled ECMWF Scheme for Surface Exchanges over Land

