united nations ducational, scientific and cultural organization () unternational atomic energy agency the **abdus salam** international centre for theoretical physics

SMR.1313 - 5

Summer Colloquium on the Physics of Weather and Climate

Workshop on Land-Atmosphere Interactions in Climate Models (28 May - 8 June 2001)

Land-surface Modeling of Intermediate Complexity for NWP and Climate: the ECMWF Experience

Lecture 2

REVISED

Pedro Viterbo European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading RG2 9AX United Kingdom

These are preliminary lecture notes, intended only for distribution to participants

-

đ

Layout

- Introduction
- General remarks
- Model development and validation
- The surface energy budget
- Soil heat transfer
- Soil water transfer
- Surface fluxes
- Initial conditions
- Snow
- Conclusions and a look ahead

Energy budget: Summer examples

Fig. 2.3 Observed diurnal energy balance over a dry lake bed at El Mirage, California, on June 10 and 11, 1950. [After Vehrencamp (1953).] Fig. 2.5 Observed energy budget of a Douglas fir canopy at Haney, British Columbia, on July 23, 1970. [From Oke (1987); after McNaughton and Black (1973).]

Fig. 2.4 Observed diurnal energy budget of a barley field at Rothamsted, England, on July 23, 1963. [From Oke (1987); after Long *et al.* (1964).]

Arya, 1988

The surface radiation

$$\boldsymbol{R}_{n} = (1 - \alpha)\boldsymbol{R}_{S}^{\downarrow} + \boldsymbol{\varepsilon}_{g}\boldsymbol{R}_{T}^{\downarrow} - \boldsymbol{\varepsilon}_{g}\boldsymbol{\sigma}\boldsymbol{T}_{sk}^{4}$$

- α Surface albedo
- \mathcal{E}_{g} Surface emissivity T_{sk} Skin temperature $\overline{T}_{s} \neq T_{sk}$
- In some cases (snow, sea ice, dense canopies) the impinging solar radiations penetrates the "ground" layer and is absorbed at a variable depth. In those cases, an extinction coefficient is needed.

 Table 3.1

 Radiative Properties of Natural Surfaces^a

Surface type	Other specifications	Albedo (a)	Emissivity (ε) 0.92-0.97	
Water	Small zenith angle	0.03-0.10		
	Large zenith angle	0.10-0.50	0.92-0.97	
Snow	Old	0.40-0.70	0.82-0.89	
	Fresh	0.45-0.95	0.90-0.99	
Ice	Sea	0.30-0.40	0.92-0.97	
	Glacier	0.20-0.40		
Bare sand	Dry	0.35-0.45	0.84-0.90	
	Wet	0.20-0.30	0.91-0.95	
Bare soil	Dry clay	0.20-0.35	0.95	
	Moist clay	0.10-0.20	0.97	
	Wet fallow field	0.05-0.07		
Paved	Concrete	0.17-0.27	0.71-0.88	
	Black gravel road	0.05-0.10	0.88-0.95	
Grass	Long (1 m) Short (0.02 m)	0.16-0.26	0.90-0.95	
Agricultural	Wheat, rice, etc.	0.10-0.25	0.90-0.99	
-	Orchards	0.15-0.20	0.90-0.95	
Forests	Deciduous	0.10-0.20	0.97-0.98	
	Coniferous	0.05-0.15	0.97-0.99	

^a Compiled from Sellers (1965), Kondratyev (1969), and Oke (1978).

Arya, 1988

Sensible heat flux $H = \rho C_h u_L (C_p T_L + gz - C_p T_{sk})$ $C_h = f(Ri_B, z_{oh}, z_{om})$ z_{oh}, z_{om} specify the surface

Evaporation

$$E = \rho C_h u_L [a_L q_L - a_s q_{sat} (T_{sk}, p_s)]$$

$$a_{L,s} = f(q_L, T_s, \text{ state and nature of the soil, soil cover })$$

Ground heat flux

 $(\rho C)_{g} \frac{\partial T_{s}}{\partial t} = -\frac{\partial G}{\partial z} = \frac{\partial}{\partial z} \lambda_{T} \frac{\partial T}{\partial z}$ $(\rho C)_{g}, \lambda_{T} = f \text{ (soil type, other soil characteristics)}$

Recap: The surface energy equation

$$(1-\alpha)R_{s}^{\downarrow} + \varepsilon_{g}R_{T}^{\downarrow} - \varepsilon_{g}\sigma T_{sk}^{4} + \rho C_{h}u_{L}(C_{p}T_{L} + gz - C_{p}T_{sk}) + \rho C_{h}u_{L}[a_{L}q_{L} - a_{s}q_{sat}(T_{sk}, p_{s})] + G(T_{s}, T_{sk}) = (\rho C)_{g}D\frac{\partial T_{s}}{\partial t}$$

- Equation for T_s, T_{sk}
- For: \bullet
 - a thin soil layer at the top $(\rho C)_g D \frac{\partial T_s}{\partial t} \approx 0$ G (T_s,T_{sk}) is known, or parameterized or G << R_n

we have a non-linear equation defining the skin temperature

- Skin layer at the interface between soil (snow) and atmosphere; no thermal inertia, instantaneous energy balance
- At the interface soil/atmosphere, each grid-box is divided into fractions (tiles), each fraction with a different functional behaviour. The different tiles see the same atmospheric column above and the same soil column below.

$$G_i = \Lambda_{sk,i} \left(T_s - T_{sk,i} \right)$$

i index for tile

i = 1,..., *N*

- If there are N tiles, there will be N fluxes, N skin temperatures per grid-box
- There are currently up to 6 tiles over land (N=6)

TESSEL skin temperature equation

$$(1 - \alpha_{i})R_{s}^{\downarrow} + \varepsilon_{g}R_{T}^{\downarrow} - \varepsilon_{g}\sigma T_{sk,i}^{4} + \rho C_{h,i}u_{L}(C_{p}T_{L} + gz - C_{p}T_{sk,i}) + \rho C_{h,i}u_{L}[a_{L,i}q_{L} - a_{s,i}q_{sat}(T_{sk,i}, p_{s})] + \Lambda_{sk,i}(T_{s} - T_{sk,i}) = 0$$

• Grid-box quantities

$$H = \sum_{i} C_{i} H_{i}$$
$$E = \sum_{i} C_{i} E_{i}$$
$$T_{sk} = \sum_{i} C_{i} T_{sk,i}$$
$$C_{i}$$
Tile fraction

ICTP, May 2001

8

ς.

Land	Sea and ice
High vegetation	Open sea / unfrozen lakes
Low vegetation	Sea ice / frozen lakes
High vegetation with snow beneath Snow on low vegetation	
Bare ground	
Interception layer	

TESSEL geographic characteristics

Fields	ERA15	TESSEL
Vegetation	Fraction	Fraction of low Fraction of high
Vegetation type	Global constant (grass)	Dominant low type Dominant high type
Albedo	Annual	Monthly
LAI r _{smin}	Global constants	Dependent on vegetation type
Root depth	1 m	Dependent on
Root profile	Global constant	vegetation type

Aggregated from GLCC 1km

Aggregated from GLCC 1km

ICTP, May 2001

12

High vegetation type at T511

Aggregated from GLCC 1km

ICTP, May 2001

13

🖀 crops 🛛 🖩 sh gtass 🗰 ta gtass 🖀 tundra 🛛 🖷 itr crops 🔅 semide sett 🖀 bog/marsh 🖀 ever shrub 🖀 deci shrub

Aggregated from GLCC 1km

Layout

- Introduction
- General remarks
- Model development and validation
- The surface energy budget
- Soil heat transfer
- Soil water transfer
- Surface fluxes
- Initial conditions
- Snow
- Conclusions and a look ahead

In the absence of phase changes, heat conduction in the soil obeys a Fourier law

$$(\rho C)_{g} \frac{\partial T_{s}}{\partial t} = -\frac{\partial G}{\partial z} = \frac{\partial}{\partial z} \lambda_{T} \frac{\partial T}{\partial z}$$

$$(\rho C)_{g}$$
Soil volumetric heat capacity
$$\lambda_{T}$$
Thermal conductivity
$$k = \frac{\lambda_{T}}{(\rho C)_{g}}$$
Thermal diffusivity

For an homogeneous soil,

$$\frac{\partial T_s}{\partial t} = k \frac{\partial^2 T}{\partial z^2}$$

Boundary conditions:

•Top	Net surface heat flux
•Bottom	No heat flux OR prescribed climate

Soil science miscellany (1)

- The soil is a 3-phase system, consisting of
 - minerals and organic matter
 soil matrix
 - water
 - moist air trapped

condensate (liquid/solid) phase

gaseous phase

• Texture - the size distribution of soil particles

Fig. 3.5. Textural triangle, showing the percentages of clay (below 0.002 mm), silt (0.002-0.05 mm), and sand (0.05-2.0 mm) in the basic soil textural classes.

- Structure The spatial organization of the soil particles
- Porosity (volume of maximum air trapped)/(total volume)

Hillel 1982

- Composition
- Water content

Soil properties

Rosenberg et al 1983

 Table 4.1

 Molecular Thermal Properties of Natural Materials^a

Material	Condition	Mass density ρ (kg m ⁻³ × 10 ³)	Specific heat c (J kg ⁻¹ K ⁻¹ × 10 ³)	Heat capacity C (J m ⁻³ K ⁻¹ \times 10 ⁶)	Thermal conductivity k (W m ⁻¹ K ⁻¹)	Thermal diffusivity α_h (m ² sec ⁻¹ × 10 ⁻⁶)
Air	20°C, Still	0.0012	1.00	0.0012	0.026	21.5
Water	20°C, Still	1.00	4.19	4.19	0.58	0.14
Ice	0°C, Pure	0.92	2.10	1.93	2.24	1.16
Snow	Fresh	0.10	2.09	0.21	0.08	0.38
Sandy soil	Dry	1.60	0.80	1.28	0.30	0.24
(40% pore space)	Saturated	2.00	1.48	2.98	2.20	0.74
Clay soil	Dry	1.60	0.89	1.42	0.25	0.18
(40% pore space)	Saturated	2.00	1.55	3.10	1.58	0.51
Peat soil	Dry	0.30	1.92	0.58	0.06	0.10-
(80% pore space)	Saturated	1.10	3.65	4.02	0.50	0.12

^e After Oke (1987).

Arya 1988

ICTP, May 2001

19

Rosenberg et al 1983

TESSEL

- Solution of heat transfer equation with the soil discretized in 4 layers, depths 7, 21, 72, and 189 cm.
- No-flux bottom boundary condition
- Heat conductivity dependent on soil water
- Thermal effects of soil water phase change

TESSEL soil energy equations

$$\frac{(\rho C)_{j}}{\Delta t} (T_{j}^{n+1} - T_{j}^{n}) = -\frac{(G_{j+1/2}^{n+1} - G_{j-1/2}^{n+1})}{D_{j}} \qquad \mathbf{j} = 1,...,4$$
$$G_{j+1/2}^{n+1} = -\lambda_{T,j+1/2} \frac{T_{j+1}^{n+1} - T_{j}^{n+1}}{0.5(D_{j} + D_{j+1})}$$

$$G_{1/2} = \sum_{i} \Lambda_{sk,i} \left(T_{sk,i} - T_{1} \right)$$
$$G_{41/2} = 0$$

Case study: winter (2)

Soil Temperature, North Germany, Feb 1996: Model (28-100 cm) vs OBS 50 cm

ICTP, May 2001

24

Viterbo, Beljaars, Mahfouf, and Teixeira, 1999: Q.J. Roy. Met. Soc., 125,2401-2426. ICTP, May 2001

Soil heat transfer equation

$$(\rho C)_{s} \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \lambda_{T} \frac{\partial T}{\partial z}$$

Winter: Soil water freezing

Soil heat transfer equation

Germany soil temperature: Observations vs Long model relaxation integrations

ICTP, May 2001

Case study: winter (5)

- Soil water freezing acts as a thermal regulator in winter, creating a large thermal inertia around 0 C.
- Simulations with soil water freezing have a near-surface air temperature 5 to 8 K larger than control.
- In winter, stable, situations the atmosphere is decoupled from the surface: large variations in surface temperature affect only the lowest hundred metres and do NOT have a significant impact on the atmosphere.

Layout

- Introduction
- General remarks
- Model development and validation
- The surface energy budget
- Soil heat transfer
- Soil water transfer
- Surface fluxes
- Initial conditions
- Snow
- Conclusions and a look ahead

...,

Schematics

Fig. 17.1. The water balance of a root zone (schematic).

Hillel 1982

- $\rho_{w} \frac{\partial \theta}{\partial t} = -\frac{\partial F}{\partial z} + \rho_{w} S_{\theta}$
- θ soil water $[] = m^3 m^{-3}$
- **F** Soil water flux $[] = kgm^{-2}s^{-1}$
- S_{θ} Soil water source/sink, ie root extraction

Boundary conditions:TopSee laterBottomFree drainage or bed rock

Root extraction

The amount of water transported from the root system up to the stomata (due to the difference in the osmotic pressure) and then available for transpiration

Soil water flux

Fig. 3. Examples of the dependence of hydraulic conductivity on volumetric soil water content for sand (DL, Day and Luthin, 1956); (Black et al., 1970, 0-50 cm-BGT₁, 50-150 cm-BGT₂); loam (J, Jackson, 1973); (MH_{L1} and MH_{L2}, Marshall and Holmes, 1979); (GHB, Gardner et al., 1970); results approximated from Gardner (1960) for sand (B₂), loam (B₁), and clay (B₂); relationship from Clapp and Hornberger (1978) for sand (CH₂), loam (CH₂), and (CH₂).

and Bowers, 1962); clay (P, Passioura and Cowan, 1968); results approximated from Gardner (1960) for sand (B_S), loam (B_L), and clay (B_C); relationship from Clapp and Hornberger (1978) for sand (CH_S), loam (CH_L), and clay (CH_C).

Mahrt and Pan 1984

More soil science miscellany

Hillel 1982

TABLE IJacquemin and Noilhan 1990

Critical water contents of soils derived from the classification of Clapp and Hornberger (1978): saturated moisture w_{sat} , field capacity w_{fl} , wilting point w_{wilt} . The field capacity is associated with a hydric conductivity of 0.1 mm/day. The wilting point corresponds to a moisture potential of -15 bar

Soil type	$w_{\rm sat} ({\rm m}^{3}/{\rm m}^{3})$	$w_{fc} (m^3/m^3)$	$w_{\rm wilt} ({\rm m}^3/{\rm m}^3)$	
Sand	0.395	0.135	0.068	
Loamy sand	0.410	0.150	0.075	
Sandy loam	0.435	0.195	0.114	
Silt loam	0.485	0.255	0.179	
Loam	0.451	0.240	0.155	
Sandy clay loam	0.420	0.255	0.175	
Silty clay loam	0.477	0.322	0.218	
Clay loam	0.476	0.325	0.250	
Sandy clay	0.426	0.310	0.219	
Silty clay	0.482	0.370	0.283	
Clay	0.482	0.367	0.286	

- 3 numbers defining soil water properties
 - Saturation (soil porosity) Maximum amount of water that the soil can hold when all pores are filled
 0.472 m³m⁻³
 - Field capacity "Maximum amount of water an entire column of soil can hold against gravity" 0.323 m³m⁻³
 - Permanent wilting point Limiting value below which the plant system cannot extract any water
 0.171 m³m⁻³

- Solution of Richards equation on the same grid as for energy
- Clapp and Hornberger (1978) diffusivity and conductivity dependent on soil liquid water
- Free drainage bottom boundary condition
- Surface runoff, but no subgrid-scale variability; It is based on infiltration limit at the top
- One soil type for the whole globe: "loam"

TESSEL soil water equations (1)

$$\rho_{w} \frac{\left(\theta_{j}^{n+1} - \theta_{j}^{n}\right)}{\Delta t} = -\frac{\left(F_{j+1/2}^{n+1} - F_{j-1/2}^{n+1}\right)}{D_{j}} + \rho_{w} S_{\theta,j} \qquad j = 1,...,4$$

$$F_{j+1/2}^{n+1} = -\rho_{w} \left(\lambda_{j+1/2} \frac{\theta_{j+1}^{n+1} - \theta_{j}^{n+1}}{0.5(D_{j} + D_{j+1})} - \gamma_{j+1/2} \right)$$

Boundary conditions

$$F_{1/2} = T - Y_s + E_{1/2}$$

 $F_{41/2} = \rho_w \gamma_{41/2}$

TESSEL soil water equations (2)

Root extraction at layer j, separate for high/low (H/L) vegetation

$$\left[\rho_{w}S_{\theta,j}\right]_{H/L} = C_{H/L} \frac{R_{j,H/L}\theta_{j,liq}D_{j}}{\sum_{j}R_{j,H/L}\theta_{j,liq}D_{j}} \qquad j=1,...,4$$

Hydraulic coefficients

$$\gamma = \gamma_{sat} \left(\frac{\theta}{\theta_{sat}}\right)^{2b+3}$$
$$\lambda = \frac{b\gamma_{sat}\left(-\psi_{sat}\right)}{\theta_{sat}} \left(\frac{\theta}{\theta_{sat}}\right)^{b+2}$$

FIFE: Time evolution of soil moisture

Viterbo and Beljaars 1995