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The Surface Energy and Water Balances in
a Semi-Arid Climate

(i) Semi-Arid Climates

(ii) HAPEX-Sahel

(iii) Diumal Variability

(iv) Daily Variability

(v) Seasonal Variability

(vi) Interannual Varibility
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CLIMATIC VAM ABILITY IN DRYLANDS
Introduction

The study of desertification is hampered by the normal
variability of dryland areas, as outlined briefly in the Introduc-
tion. Accurate indentification of the causes of desertification,
and thus suitable strategies for its treatment, can only be made
by paying close attention both to the human use and possible
mismanagement of resources and also to the way in which
dryland ecosystems and their resources respond to climatic
variations. While this atlas concentrates on human-induced soil
degradation, it is important to note the dynamic nature of some
of the natural environmental elements in the dryland equation.

The inherent variability of dryland environments is very
largely governed by the variations in climatic parameters that
characterize such regions. Chief among these climatic parameters
is precipitation, the input of moisture into the desert ecosytem.
While many dryland areas receive important inputs of moisture

from dew, and some others from fog, rainfall is the key source of
moisture in most of the world's dryland regions. However, the
"effectiveness" of rainfall, that is the amount available for plant
growth or other uses, is also dependent upon the main output
from the ecosystem, evapotranspiration, which is governed by
parameters such as vegetation cover and type, wind speeds, and
perhaps most importantly temperature. Hence in this section a
closer look will be made at the variability of rainfall and
temperature in the world's drylands as a contextual background
to the preceding pages on dryland degradation. The graphs and
maps shown on these pages are supplied by the CRU.

Rainfall

Figures 1 to 3 show time series graphs of annual rainfall for
three dryland regions: the Sahel from the Atlantic coast to 35°E;

the northeastern region of Brazil from 44°W to the Atlantic coast
and from the Equator to 10°S, and North China from 100°E to
the China Sea coast and from the borders with Mongolia and
Russia to 35°N.

The graphs for each area have been derived as follows: the
annual rainfall series for each station in the area is normalized
by taking away the long-term mean from each value and the
difference is then divided by the long-term standard deviation.
The long-term period on which the mean and standard
deviation are based in each area is 1951-1980, the period of the
climate surfaces used for the annual Aridity index which has
given the dryland area boundaries throughout the global and
continental Africa sections of this atlas.

Normalizing gives a set of data series that are more readily
comparable as each series will then have a mean close to zero
and a standard deviation close to one. The spatial mean rainfall
anomalies are then found by averaging the values for all stations
in the area with data. Although the number of stations with

1880 1900 1920 1940 1960 1980

Year
1880

Figure 1 Time series of annual rainfall - The Sahel (1897-1990) Figure 2 Time series of annual rainfall - Northeastern Brazil (1893-1990)
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Fig. 2. Schematic diagrams showing the resistance networks of the three models (height axis not to
scale).

Penman-Monteith equation is assumed to hold for the bushes across aerodynamic
resistance nB and for the herbs across rau + r&H to a point z = ZB with vapour
pressure deficit DB> ^E is determined from (2) where

pCpDB

\EB = (4)
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Fig. 5. E>iurnaJ curves of errviromnefstal stress fntnctians and the potential and actimal stomatal comhictances: (a)
Guiera senegalensis (West-Ceuiitral sferrab fallow site), for selected days churirag the growimg season of 1992.
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Fig. 5. Stomatal response of bushes and herbs to (a) vapour pressure deficit, (b) solar radiation and
(c) soil moisture deficit as determined using the Two Layer Model.

bush evaporation rate was optimized first, men the herb response a4}1 should be
regarded as the optimization adjusting to compensate for CI4B taking unexpected
values.

Although it is recognised that the confidence limits on the a4 values are large,
die different values of O4B may be indicating something important about the aero-
dynafaiic resistance networks. Suppose raft in the Penman-Monteith equation is
jj|ficially mcreasedlTo maintain a good fit of XE, the value of rs must change

**" amount bŷ wMch it must adjust depends on the other variables in the
variation is the available energy Rn — G

ana^^oniitt thai! m^smaUer the value mis takes, the smaller rs must be to
energy shows an almost identical diurnal trend to the
p r i d e s air explanation why a4B = -3.39 for the

the aerodynamic resistance for the bushes in the Two

. The value a4B is too high,
networfcforth«»
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Figure 2: Dependences of the MOSES canopy conductance on environmental and strtctiiral variables.
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Fib. 5. Daytime averaged values of (a) available energy normalized by incoming shortwave flux and (b) evaporative fraction for the three
SSS subsites. The daily rainfall (mm) at the savannah site is also shown.
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Figure 3. Summary of conditions averaged over the SSS stations for (a) 1991 and (b) 1992. Top panel: daily (bars) and accumulated
rainfall. Second panel: MSAVI. Third panel: modelled soil moisture stress function (p) for fallow savannah (dashed) and 0-5 cm
volumetric soil moisture (m3 m"3; solid). Bottom panel: modelled daily total evaporation (line) and contribution from b&re soil (shaded)

Copyright © 2000 John Wiley & Sons, Ltd. Hydrol. Process. 14, 1245-1259 (2000)
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DRY SEASON WATER USE BY SHRUBS
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Figure 3. (a) Mean soil water storage for depth increments of 0-1 m (o), 1-2 m (•), 2-3 m
(&), 3-4 m ( A ) and 4 - 5 m (o), and (b) daily rainfall between September 1993 and November
1994 at a Guura senegaUnsis savanna in south*west Niger.

1993. It might therefore reasonably be assumed that the drying of the soil profile in the
•« 11—i~u , «.„ mronnrQhon fmm the soil surface and plant
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DRY SEASON WATER USE BY SHRUBS 61

Apr May

Figure 4. Temporal patterns of water loss during the dry season at different distances from the
nearest Guitra semgaUmis bush in a savanna in south-west Niger: ( a ) » 1 m; ( A ) < * 2 m;
(o) - 5 ra; (•) - 10 m.

5404 was 151 mm, equivalent to 28% of the 1993 annual rainfall. Of this water loss,
59% (89 mm) was from depths greater than 2 m. In the absence of the deep-rooted G.
semgalemii, this water would otherwise have contributed to ground-water recharge
below the site.



Los Angeles, CA 90095-15$"'~^SA. 2NASA-
d Space Flight Center, Greenl . MD, 20771,

10m correspondence should be addressed. E-
ing@9tmos.ucla.edu

Annual rainfall anom-
rtkal bars) over the
African Sahel (13N-
5W-20E) from 1950
6, (A) Observations
lulme (7), (B) Model
noninteractive land
hydrology (fixed soil
e) and noninterac-
getation |SST influ-
ily» AO). Smoothed

a 9-year running
howing the low-fre-
| variation, (C) Model
teractjve soil mois-
DUt noninteractive

was modified to account for the effects of
leaf-to-canopy scaling (20) so that the canopy
conductance gc for evapotranspiration is

(2)

-15
1950 1955 1960 1965 1970 1975 1960 1965 1990 1995

150

100

50

0

f -50-

AO

• •


