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WITH GRAND UNIFICATION SIGNALS IN,
CAN PROTON DECAY BE FAR BEHIND? *

Jogesh C. Pati
Department of Physics,
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College Park MD 20742, USA.
(June 7, 2001)

Abstract

It is noted that one is now in possession of a set of facts, which may be viewed as

the matching pieces of a puzzle ; in that all of them can be resolved by just one
idea - that is grand unification. These include : (i) the observed family-structure,
(ii) quantization of electric charge, (iii) meeting of the three gauge couplings,
(iv) neutrino oscillations; in particular the mass of v, (suggested by SuperK),
(v) the intricate pattern of the masses and mixings of the fermions, including the
smallness of V3 and the largeness of 6777, , and (vi) the need for B-L to implement
baryogenesis (via leptogenesis). All these pieces fit beautifully together within a
single puzzle board framed by supersymmetric unification, based on SO(10) or
a string-unified G(224)-symmetry. The one and the most notable piece of the
puzzle still missing, however, is proton decay. ,

A concrete proposal is presented, within a predictive SO(10)/G(224)-
framework, that successfully describes the masses and mixings of all fermions,
including the neutrinos - with eight predictions, all in agreement with observa-
tion. Within this framework, a systematic study of proton decay is carried out,
which pays special attention to its dependence on the fermion masses, including
the superheavy Majorana masses of the right-handed neutrinos, and the thresh-
old effects. The study (based on prior work and a recent update) shows that a
conservative upper limit on the proton lifetime is about (1/2 - 1)x10%* yrs, with
DK™ being the dominant decay mode, and as a distinctive feature, u* K° being
prominent. This in turn strongly suggests that an improvement in the current
sensitivity by a factor of five to ten (compared to SuperK) ought to reveal proton
decay. Otherwise some promising and remarkably successful ideas on unification
would suffer a major setback.

*Invited talk presented at the International School held at Erice Italy (Sept. 2000) and at the
Dirac Medalists’ symposium held at Trieste, Italy (Nov. 2000).



I. INTRODUCTION

The standard model of particle physics, based on the gauge symmetry SU(2); x U(1)y x
SU(3)¢ [1,2] is in excellent agreement with observations, at least up to energies of order
100 GeV. Its success in turn constitutes a triumph of quantum field theory, especially of the
notions of gauge invariance, spontaneous symmetry breaking, and renormalizability. The
next step in the unification-ladder is associated with the concept of “grand unification”,
which proposes a unity of quarks and leptons, and simultaneously of their three basic forces:
weak, electromagnetic and strong [3-5]. This concept was introduced on purely aesthetic
grounds, in fact before any of the empirical successes of the standard model was in place.
It was realized in 1972 that the standard model judged on aesthetic merits has some major
shortcomings [3,4]. For example, it puts members of a family into five scattered multiplets,
assigning rather peculiar hypercharge quantum numbers to each of them, without however
providing a compelling reason for doing so. It also does not provide a fundamental reason
for the quantization of electric charge, and it does not explain why the electron and proton
possess exactly equal but opposite charges. Nor does it explain the co-existence of quarks
and leptons, and that of the three gauge forces - weak, electromagnetic and strong - with
their differing strengths.

The idea of grand unification was postulated precisely to remove these shortcomings. It
introduces the notion that quarks and leptons are members of one family, linked together by a
symmetry group G, and that the weak, electromagnetic and strong interactions are aspects of
one force, generated by gauging this symmetry G. The group G of course inevitably contains
the standard model symmetry G(213) = SU(2); x U(1)y x SU(3)¢ as a subgroup. Within
this picture, the observed differences between quarks and leptons and those between the three
gauge forces are assumed to be low-energy phenomena that arise through a spontaneous
breaking of the unification symmetry G to the standard model symmetry G(213), at a very
high energy scale M > 1TeV. As a prediction of the hypothesis, such differences must then
disappear and the true unity of quarks and leptons and of the three gauge forces should
manifest at energies exceeding the scale M.

The second and perhaps the most dramatic prediction of grand unification is proton
decay. This important process, which would provide the window to view physics at truly
short distances (< 1073% cm), is yet to be seen. Nevertheless, as I will stress in this talk,
there has appeared over the years an impressive set of facts, favoring the hypothesis of grand
unification. These include:

(a) The observed family structure : The five scattered multiplets of the standard
model, belonging to a family, neatly become parts of a whole (a single multiplet), with -
their weak hypercharges precisely predicted by grand unification. Realization of this feature
calls for an extension of the standard model symmetry G(213)=SU(2);xU(1)y xSU(3)¢
minimally to the symmetry group G(224) =SU(2)1xSU(2)gxSU(4)€ [3], which can be ex-
tended further into the simple group SO(10) [6], but not SU(5) [4]. The G(224) symmetry
in turn introduces some additional attractive features (see Sec.II), including especially the
right-handed (RH) neutrinos (vg’s) accompanying the left-handed ones (v1’s), and B-L as a
local symmetry. As we will see, both of these features now seem to be needed on empirical
grounds.



(b) Meeting of the gauge couplings : Such a meeting is found to occur at a scale
Mx = 2 x 10'® GeV, when the three gauge couplings are extrapolated from their values
measured at LEP to higher energies, in the context of supersymmetry [7]. This dramatic
phenomenon supports the ideas of both grand unification and supersymmetry [8]. These in
turn may well emerge from a string theory [9] or M-theory [10] (see discussion in Sec.III).

(c) Mass of v, ~1/20 eV : Subject to the well-motivated assumption of hierar-
chical neutrino masses, the recent discovery of atmospheric neutrino-oscillation at Su-
perKamiokande [11] suggests a value for m(v,) ~ 1/20eV. It has been argued (see e.g.
Ref. [12]) that a mass of v, of this magnitude can be understood very simply by utilizing the
SU(4)-color relation m(v;)pjirac & Mtop and the SUSY unification scale Mx, noted above
(See Sec.IV).

(d) Some intriguing features of fermion masses and mixings: These include:
(i) the “observed” near equality of the masses of the b-quark and the 7-lepton at the
unification-scale (i.e. m) = m?) and (ii) the observed largeness of the v,-v, oscillation
angle (sin® 205%, > 0.83) [11], together with the smallness of the corresponding quark mix-
ing parameter Vcb(~ 0.04) [13]. As shown in recent work by Babu, Wilczek and me [14], it
turns out that these features and more can be understood remarkably well (see discussion
in Sec.V) within an economical and predictive SO(10)-framework based on a minimal Higgs
system. The success of this framework is in large part due simply to the group-structure of
SO(10). For most purposes, that of G(224) suffices.

(e) Baryogenesis : To implement baryogenesis [15] successfully, in the presence of
electroweak sphaleron effects [16], which wipe out any baryon excess generated at high tem-
peratures in the (B-L)-conserving mode, it has become apparent that one would need B-L as
a generator of the underlying symmetry, whose spontaneous violation at high temperatures
would yield, for example, lepton asymmetry (leptogenesis). The latter in turn is converted
to baryon-excess at lower temperatures by electroweak sphalerons. This mechanism, it turns
out, yields even quantitatively the right magnitude for baryon excess [17]. The need for B-L,
which is a generator of SU(4)-color, again points to the need for G(224) or SO(10) as an
effective symmetry near the unification-scale M.

The success of each of these five features (a)-(e) seems to be non-trivial. Together they
make a strong case for both supersymmetric grand unification and simultaneously for the
G(224)/SO(10)-route to such unification, as being relevant to nature at short distances.
However, despite these successes, as long as proton decay remains undiscovered, the hallmark
of grand unification - that is quark-lepton transformability - would remain unrevealed.

The relevant questions in this regard then are : What is the predicted range for the
lifetime of the proton - in particular an upper limit - within the empirically favored route
to unification mentioned above? What are the expected dominant decay modes within
this route? Are these predictions compatible with current lower limits on proton lifetime
mentioned above, and if so, can they still be tested at the existing or pos51ble near-future
detectors for proton decay?

Fortunately, we are in a much better position to answer these questions now, compared
to a few years ago, because meanwhile we have learnt more about the nature of grand
unification. As noted above (see also Sec.II and Sec.IV), the neutrino masses and the meeting
of the gauge couplings together seem to select out the supersymmetric G(224)/SO(10)-route



to higher unification. The main purpose of my talk here will therefore be to address the
questions raised above, in the context of this route. For the sake of comparison, however, I
will state the corresponding results for the case of supersymmetric SU(5) as well.

My discussion will be based on a recent study of proton decay by Babu, Wilczek and me
[14] and an update of the same as presented here. Relative to other analysis, this study has
three distinctive features:

(a) It systematically takes into account the link that exists between proton decay and
the masses and mixings of all fermions, including the neutrinos.

(b) In particular, in addition to the contributions from the so-called “standard” d =5
operators [18] (see Sec.VI), it includes those from a new set of d = 5 operators, related to
the Majorana masses of the RH neutrinos [19]. These latter are found to be as important as
the standard ones.

(c) The work also incorporates GUT-scale threshold effects, which arise because of mass-
splittings between the components of the SO(10)-multiplets, and lead to differences between
the three gauge couplings.

Each of these features turn out to be crucial to gaining a reliable insight into the nature
of proton decay. Our study shows that the inverse decay rate for the K *-mode, which
is dominant, is less than about 5 x 10%® yrs for the case of MSSM embedded in SO(10).
This upper bound is obtained by making generous allowance for uncertainties in the matrix
element and the SUSY-spectrum. Typically, the lifetime should of course be less than this
bound.

Proton decay is studied also for the case of the extended supersymmetric standard model
(ESSM), that has been proposed a few years ago [20] on theoretical grounds, pertaining to the
issues of string-unification and dilaton stabilization (see Sec.VI and the appendix). This case
adds an extra pair of vector-like families at the TeV-scale, transforming as 16 +16 of SO(10),
to the MSSM spectrum. While the case of ESSM is fully compatible with both neutrino-
counting at LEP and precision electroweak tests, it can of course be tested directly at the
LHC. Our study shows that, with the inclusion of only the standard d=>5 operators (defined
in Sec.VI), ESSM, embedded in SO(10), can quite plausibly lead to proton lifetimes in the
range of 103 — 103 years, for nearly central values of the parameters pertaining to the SUSY-
spectrum and the matrix element. Allowing for a wide variation of the parameters, owing
to the contributions from both the standard and the neutrino mass-related d=5 operators
(discussed in Sec.VI), proton lifetime still gets bounded above by about 10** years, even for
the case of ESSM, embedded in SO(10) or a string - G(224).

For either MSSM and ESSM, due to contributions from the new operators, the utK°-
mode is found to be prominent, with a branching ratio typically in the range of 10-50%.
By contrast, minimal SUSY SU(5), for which the new operators are absent, would lead to
branching ratios < 1073 for this mode.

Thus our study of proton decay, correlated with fermion masses, strongly suggests that
discovery of proton decay should be imminent. In fact,one expects that at least candidate
events should be observed in the near future already at SuperK. However, allowing for the
possibility that the proton lifetime may well be closer to the upper bound stated above, a
next-generation detector providing a net gain in sensitivity in proton decay-searches by a
factor of 5-10, compared to SuperK, would certainly be needed not just to produce proton-



decay events, but also to clearly distinguish them from the background. It would of course
also be essential to study the branching ratios of certain sub-dominant but crucial decay
modes, such as the utK°. The importance of such improved sensitivity, in the light of the
successes of supersymmetric grand unification, is emphasized at the end.

II. ADVANTAGES OF THE SYMMETRY G(224) AS A STEP TO HIGHER
UNIFICATION

As mentioned in the introduction, the hypothesis of grand unification was introduced to
remove some of the conceptual shortcomings of the standard model (SM). To illustrate the
advantages of an early suggestion in this regard, consider the five standard model multiplets
belonging to the electron-family as shown :
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Here the superscripts denote the respective weak hypercharges Yy (where Qe = I3 +Yiw /2)
and the subscripts L and R denote the chiralities of the respective fields. If one asks : how
one can put these five multiplets into just one multiplet, the answer turns out to be simple
and unique. As mentioned in the introduction, the minimal extension of the SM symmetry
G(213) needed, to achieve this goal, is given by the gauge symmetry [3] :

G(224) = SU(2), x SU(2)g x SU(4)°. (2)

Subject to left-right discrete symmetry (L <+ R), which is natural to G(224), all members
of the electron family fall into the neat pattern :
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The multiplets Ff and F§, are left-right conjugates of each other and transform respectively
as (2,1,4) and (1,2,4) of G(224); likewise for the muon and the tau families. Note that the
symmetries SU(2), and SU(2)g are just like the familiar isospin symmetry, except that they
operate on quarks and well as leptons, and distinguish between left and right chiralities.
The left weak-isospin SU(2)y, treats each column of F} as a doublet; likewise SU(2)p for F§.
The symmetry SU(4)-color treats each row of Ff and F§ as a quartet; thus lepton number is
treated as the fourth color. Note also that postulating either SU(4)-color or SU(2)y forces one
to introduce a right-handed neutrino (vg) for each family as a singlet of the SM symmetry.
This requires that there be sizteen two-component fermions in each family, as opposed to
fifteen for the SM. The symmetry G(224) introduces an elegant charge formula :

B-~-L
Qem = IsL + IBR + ) (4)

expressed in terms of familiar quantum numbers I31, Isg and B-L, which applies to all forms
of matter (including quarks and leptons of all six flavors, gauge and Higgs bosons). Note
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that the weak hypercharge given by Yiy//2 = I35 + 5%5 is now completely determined for
all members of the family. The values of Y} thus obtained precisely match the assignments
shown in Eq. (1). Quite clearly, the charges I5;, Isgr and B-L, being generators respectively
of SU(2), SU(2)g and SU(4)¢, are quantized; so also then is the electric charge Q..

In brief, the symmetry G(224) brings some attractive features to particle physics. These
include :

(1) Unification of all 16 members of a family within one left-right self-conjugate multiplet;
(ii) Quantization of electric charge, with a reason for the fact that Qeiectron = ~Qproton

(iii) Quark-lepton unification (through SU(4) color);

(iv) Conservation of parity at a fundamental level [3,21];

(v) Right-handed neutrinos (v/3s) as a compelling feature; and

(vi) B-L as a local symmetry.

As mentioned in the introduction, the two distinguishing features of G(224) - i.e. the exis-
tence of the RH neutrinos and B-L as a local symmetry - now seem to be needed on empirical
grounds. Furthermore, SU(4)-color provides simple relations between the masses of quarks
and leptons, especially of those in the third family. As we will see in Secs.IV and V, these
are in good accord with observations.

Believing in a complete unification, one is led to view the G(224) symmetry as part
of a bigger symmetry, which itself may have its origin in an underlying theory, such as
string theory. In this context, one may ask : Could the effective symmetry below the string
scale in four dimensions (see Sec.III) be as small as just the SM symmetry G(213), even
though the latter may have its origin in a bigger symmetry, which lives only in higher
dimensions? I will argue in Sec.IV that the data on neutrino masses and the need for
baryogenesis provide an answer to the contrary, suggesting that it is the effective symmetry
in four dimensions, below the string scale, which must minimally contain either G(224) or a
close relative G(214) = SU(2)xI3pxSU(4)°.

One may also ask : does the effective four dimensional symmetry have to be any bigger
than G(224) near the string scale? In preparation for an answer to this question, let us recall
that the smallest simple group that contains the SM symmetry G(213) is SU(5) [4]. It has
the virtue of demonstrating how the main ideas of grand unification, including unification
of the gauge couplings, can be realized. However, SU(5) does not contain G(224) as a
subgroup. As such, it does not possess some of the advantages listed above. In particular,
it does not contain the RH neutrinos as a compelling feature, and B-L as a local symmetry.
Furthermore, it splits members of a family into two multiplets : 5 + 10.

By contrast, the symmetry SO(10) has the merit, relative to SU(5), that it contains
G(224) as a subgroup, and thereby retains all the advantages of G(224) listed above. (Asa
historical note, it is worth mentioning that these advantages had been motivated on aesthetic
grounds through the symmetry G(224) (3], and all the ideas of higher unification were in
place [3-5], before it was noted that G(224)(isomorphic to SO(4)xSO(6)) embeds nicely into
SO(10) [6]). Now, SO(10) even preserves the 16-plet family-structure of G(224) without a
need for any extension. By contrast, if one extends G(224) to the still higher symmetry
E¢ [22], the advantages (i)-(vi) are retained, but in this case, one must extend the family-
structure from a 16 to a 27-plet, by postulating additional fermions. In this sense, there
seems to be some advantage in having the effective symmetry below the string scale to be



minimally G(224) (or G(214)) and maximally no more than SO(10). I will compare the
relative advantage of having either a string-derived G(224) or a string-SO(10), in the next
section. First, I discuss the implications of the data on coupling unification.

III. THE NEED FOR SUPERSYMMETRY : MSSM VERSUS STRING
UNIFICATIONS

It has been known for some time that the precision measurements of the standard model
coupling constants (in particular sin?fy) at LEP put severe constraints on the idea of
grand unification. Owing to these constraints, the non-supersymmetric minimal SU(5), and
for similar reasons, the one-step breaking minimal non-supersymmetric SO(10)-model as
well, are now excluded [23]. But the situation changes radically if one assumes that the
standard model is replaced by the minimal supersymmetric standard model (MSSM), above
a threshold of about 1 TeV. In this case, the three gauge couplings are found to meet [7], to
a very good approximation, barring a few percent discrepancy which can be attributed to
threshold corrections (see Appendix). Their scale of meeting is given by

My ~ 2 x 10 GeV (MSSM or SUSY SU(5)) (5)

This dramatic meeting of the three gauge couplings, or equivalently the agreement of the
MSSM-based prediction of sin® y (mz)T}, = 0.2315 + 0.003 [24] with the observed value of
sin? @y (mz) = 0.23124 +0.00017 [13], provides a strong support for the ideas of both grand
unification and supersymmetry, as being relevant to physics at short distances.

In addition to being needed for achieving coupling unification there is of course an inde-
pendent motivation for low-energy supersymmetry - i.e. for the existence of SUSY partners
of the standard model particles with masses of order 1 TeV. This is because it protects the
Higgs boson mass from getting large quantum corrections, which would (otherwise) arise
from grand unification and Planck scale physics. It thereby provides at least a technical
resolution of the so-called gauge-hierarchy problem. In this sense low-energy supersymmetry
seems to be needed for the consistency of the hypothesis of grand unification. Supersym-
metry is of course also needed for the consistency of string theory. And most important,
low-energy supersymmetry can be tested at the LHC, and possibly at the Tevatron.

The most straightforward interpretation of the observed meeting of the three gauge cou-
plings and of the scale My, is that a supersymmetric grand unification symmetry (often
called GUT symmetry), like SU(5) or SO(10), breaks spontaneously at My into the stan-
dard model symmetry G(213). :

Even if supersymmetric grand unification may well be a good effective theory below a
certain scale M 2 My, it ought to have its origin within an underlying theory like string/M
theory. Such a theory is needed to unify all the forces of nature including gravity, and to
provide a good quantum theory of gravity. It is also needed to provide a rationale for the
existence of flavor symmetries (not available within grand unification), which distinguish
between the three families and can resolve certain naturalness problems including those
associated with inter-family mass hierarchy.

In the context of string or M theory, an alternative interpretation of the observed meeting
of the gauge couplings is however possible. This is because, even if the effective symmetry in
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four dimensions emerging from a higher dimensional string theory is non-simple, like G(224)
or G(213), string theory can still ensure familiar unification of the gauge couplings at the
string scale. In this case, however, one needs to account for the small mismatch between the
MSSM unification scale Mx (given above), and the string unification scale, given by M, ~
gst X 5.2 x 1017 GeV = 3.6 x 10'" GeV (Here we have put ay = agur(MSSM) ~ 0.04) [25].
Possible resolutions of this mismatch have been proposed. These include : (i) utilizing the
idea of string-duality [26) which allows a lowering of M,; compared to the value shown above,
or alternatively (ii) the idea of a semi-perturbative unification that assumes the existence of
two vector-like families, transforming as (16 + 16) of SO(10), with masses of order one TeV
[20]. The latter raises agyr to about 0.25-0.3 and simultaneously Mx, in two loop, to about
(1/2 - 2) x 10*” GeV. (Other mechanisms resolving the mismatch are reviewed in Ref. [27]).
In practice, a combination of the two mechanisms mentioned above may well be relevant. !
While the mismatch can thus quite plausibly be removed for a non-GUT string-derived
symmetry like G(224) or G(213), a GUT symmetry like SU(5) or SO(10) would have an
advantage in this regard because it would keep the gauge couplings together between M,; and
My (even if Mx ~ M /20), and thus not even encounter the problem of a mismatch between
the two scales. A supersymmetric GUT-solution (like SU(5) or SO(10)), however, has a
possible disadvantage as well, because it needs certain color triplets to become superheavy
by the so-called doublet-triplet splitting mechanism (see Sec.VI and Appendix), in order to
avoid the problem of rapid proton decay. However, no such mechanism has emerged yet, in
string theory, for the GUT-like solutions [28].
Non-GUT string solutions, based on symmetries like G(224) or G(2113) for example, have
a distinct advantage in this regard, in that the dangerous color triplets, which would induce
rapid proton decay, are often naturally projected out for such solutions [29,30]. Furthermore,
the non-GUT solutions invariably possess new “flavor” gauge symmetries, which distinguish
between families. These symmetries are immensely helpful in explaining qualitatively the
observed fermion mass-hierarchy (see e.g. Ref. [30]) and resolving the so-called naturalness
problems of supersymmetry such as those pertaining to the issues of squark-degeneracy [31],
CP violation [32] and quantum gravity-induced rapid proton decay [33].
Weighing the advantages and possible disadvantages of both, it seems hard at present
to make a priori a clear choice between a GUT versus a non-GUT string-solution. As
~ expressed elsewhere [34], it therefore seems prudent to keep both options open and pursue
their phenomenological consequences. Given the advantages of G(224) or SO(10) in the light

!T have in mind the possibility of string-duality [26] lowering My, for the case of semi-perturbative
unification (for which a4 ~0.25, and thus, without the use of string-duality, M,; would be about
10'® GeV) to a value of about (1-2) x10'7 GeV (say), and semi-perturbative unification [20] raising
the MSSM value of My to about 5x10'® GeV~ M,;(1/2 to 1/4) (say). In this case, an intermediate
symmetry like G(224) emerging at M, would be effective only within the short gap between Mg,
and My, where it would break into G(213). Despite this short gap, one would still have the benefits
of SU(4)-color that are needed to understand neutrino masses (see sec.4). At the same time, since
the gap is so small, the couplings of G(224), unified at M, would remain essentially so at My, so
as to match with the “observed” coupling unification, of the type suggested in Ref. [20].
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of the neutrino masses (see Secs.II and IV), I will thus proceed by assuming that either a
suitable G(224)-solution with a mechanism of the sort mentioned above, or a realistic SO(10)-
solution with the needed doublet-triplet mechanism, will emerge from string theory. We
will see that with this broad assumption, an economical and predictive framework emerges,
which successfully accounts for a host of observed phenomena, and makes some crucial
testable predictions. Fortunately, it will turn out that there are many similarities between
the predictions of a string-unified G(224) and SO(10) frameworks, not only for the neutrino
and the charged fermion masses, but also for proton decay. I next discuss the implications
of the mass of v, suggested by the SuperK data.

IV. MASS OF v,;: EVIDENCE IN FAVOR OF THE G(224) ROUTE

One can obtain an estimate for the mass of v} in the context of G(224) or SO(10) by
using the following three steps (see e.g.Ref. [12]):

(i) Assume that B—L and I3g, contained in a string-derived G(224) or SO(10), break
near the unification-scale:

My ~ 2 x 10 GeV, (6)

through VEVs of Higgs multiplets of the type suggested by string-solutions - i.e. {(1,2,4)y)
for G(224) or (16g) for SO(10), as opposed to 126y which seems to be unobtainable (at
least) in weakly interacting string theory [35]. In the process, the RH neutrinos (%), which
are singlets of the standard model, can and generically will acquire superheavy Majorana
masses of the type M vif C~! v}, by utilizing the VEV of (16g) and effective couplings of
the form:

Ly (SO(].O)) = fij 16; - 16j 1—6H . 1_6H/M + h.c. (7)

A similar expression holds for G(224). Here i,j = 1,2,3, correspond respectively to
e, 1 and 7 families. Such gauge-invariant non-renormalizable couplings might be expected
to be induced by Planck-scale physics, involving quantum gravity or stringy effects and/or
tree-level exchange of superheavy states, such as those in the string tower. With f;; (at
least the largest among them) being of order unity, we would thus expect M to lie between
Mbpianer = 2 x 10'® GeV and Myiping = 4 x 1017 GeV. Ignoring for the present off-diagonal
mixings (for simplicity), one thus obtains 2:

., $33(16m)?
M

This is the Majorana mass of the RH tau neturino. Guided by the value of My, we have
substituted (16g) = (2 x 10'® GeV) p ,with p = 1/2 to 2(say).

M;g ~ f33 (2 % 10" GeV) p* (Mpianck/M) (8)

2The effects of neutrino-mixing and of possible choice of M = Miring = 4 x 107 GeV (instead of
M = Mpjgnck) on Msg are considered in Ref. [14].
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(ii) Now using SU(4)-color and the Higgs multiplet (2,2,1)n of G(224) or equivalently
10z of SO(10), one obtains the relation m,(Mx) = my(Mx), which is known to be successful.
Thus, there is a good reason to believe that the third family gets its masses primarily from
the 10y or equivalently (2,2,1)g (see sec.5). In turn, this implies:

m(VBirac) ~ Miop (MX) ~ (100- 120) GeV (g)

Note that this relationship between the Dirac mass of the tau-neutrino and the top-mass is
special to SU(4)-color. It does not emerge in SU(5).

(iii) Given the superheavy Majorana masses of the RH neutrinos as well as the Dirac
masses as above, the see-saw mechanism [36] yields naturally light masses for the LH neu-
trinos. For v} (ignoring flavor-mixing), one thus obtains, using Egs.(8) and (9),

m(l/ IT)ira,c) 2

m(vy) = Man

~ [(1/20) eV (1-1.44)/ fa3 p°] (M/Mpianck) (10)

Now, assuming the hierarchical pattern m(v¢) < m(vf) <« m(v]), which is suggested by
the see-saw mechanism, and further that the SuperK observation represents vf — v] (rather
than v} — vx) oscillation, the observed dm? = 1/2(1072-107%) eV? corresponds to m(vf) ~
(1/15 - 1/40) eV. It seems truly remarkable that the expected magnitude of m(v]), given by
Eq.(10), is just about what is suggested by the SuperK data, if fs3 p>(Mpianer/M) = 1.3 to
1/2. Such a range for fa3 p>(Mpianck/M) seems most plausible and natural (see discussion in
Ref. [12]). Note that the estimate (10) crucially depends upon the supersymmetric unification
scale, which provides a value for M3z, as well as on SU(4)-color that yields m(v%,,,.). The
agreement between the ezpected and the SuperK results thus clearly favors supersymmetric
unification, and in the string theory context, it suggests that the effective symmetry below the
string-scale should contain SU(4)-color. Thus, minimally this effective symmetry should be
either G(214) or G(224), and maximally as big as SO(10), if not Es.

By contrast, if SU(5) is regarded as either a fundamental symmetry or as the effective
symmetry below the string scale, there would be no compelling reason based on symmetry
alone, to introduce a vg, because it is a singlet of SU(5). Second, even if one did introduce
vt by hand, their Dirac masses, arising from the coupling h*5;(55)v%, would be unrelated
to the up-flavor masses and thus rather arbitrary (contrast with Eq. (9)). So also would be
the Majorana masses of the v%’s, which are SU(5)-invariant, and thus can be even of order
string scale . This would give m(v]) in gross conflict with the observed value.

Before passing to the next section, it is worth noting that the mass of v, suggested by
SuperK, as well as the observed value of sin® 6y (see Sec.III), provide valuable insight into -
the nature of GUT symmetry breaking. They both favor the case of a single-step breaking
(SSB) of SO(10) or a string-unified G(224) symmetry at a scale of order My, into the
standard model symmetry G(213), as opposed to that of a multi-step breaking (MSB). The
latter would correspond, for example, to SO(10) (or G(224)) breaking at a scale M, into
G(2213), which in turn breaks at a scale My << M; into G(213). One reason why the
case of single-step breaking is favored over that of multi-step breaking is that the latter
can accommodate but not really predict sin®€fy,, whereas the former predicts the same
successfully. Furthermore, since the Majorana mass of v arises arises only after B — L and
I3g break, it would be given, for the case of MSB, by M3g ~ f33(M2/M), where M ~ M,
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(say). If My < Mx ~ 2x10'® GeV, and M > My, one would obtain too low a value (<< 10
GeV) for M3 (compare with Eq.(8)), and thereby too large a value for m(v]), compared
to that suggested by SuperK. By contrast, the case of SSB yields the right magnitude for
m(v;) (see Eq. (10)).

Thus the success of the result on m(v,) discussed above not only favors the symmetry
G(224) or SO(10), but also clearly suggests that B — L and I3g break near the conventional
GUT scale Mx ~ 2x10'® GeV, rather than at an intermediate scale << Mx. In other words,
the observed values of both sin® 8y and m(v,) favor only the simplest pattern of symmetry-
breaking, for which SO(10) or a string-derived G(224) symmetry breaks in one step to the
standard model symmetry, rather than in multiple steps. It is of course only this simple
pattern of symmetry breaking that would be rather restrictive as regards its predictions for
proton decay (to be discussed in Sec.VI). I next discuss the problem of understanding the
masses and mixings of all fermions.

V. UNDERSTANDING FERMION MASSES AND NEUTRINO OSCILLATIONS
IN SO(10)

Understanding the masses and mixings of all quarks and charged leptons, in conjunction
with those of the neutrinos, is a goal worth achieving by itself. It also turns out to be
essential for the study of proton decay. I therefore present first a recent attempt in this
direction, which seems most promising [14]. A few guidelines would prove to be helpful in
this regard. The first of these is motivated by the desire for economy and the rest by data.

1) Hierarchy Through Off-diagonal Mixings : Recall earlier attempts [37] that
attribute hierarchical masses of the first two families to mass matrices of the form : -

= (0 5)me )

for the (d, s) quarks, and likewise for the (u,c) quarks. Here ¢ ~ 1/10. The hierarchical
patterns in Eq. (11) can be ensured by imposing a suitable flavor symmetry which distin-
guishes between the two families (that in turn may have its origin in string theory (see e.g.
Ref [30]). Such a pattern has the virtues that (a) it yields a hierarchy that is much larger
than the input parameter € : (mg/m,) ~ €2 < ¢, and (b) it leads to an expression for the

cabibbo angle :
0, ~ ’dnﬁ - ei¢1/T—'—‘-
‘ ms me

which is rather successful. Using 1/mg4/ms = 0.22 and /m,/m, = 0.06, we see that Eq.
(12) works to within about 25% for any value of the phase ¢. Note that the square root
formula (like \/mg/m;) for the relevant mixing angle arises because of the symmetric form
of M in Eq. (11), which in turn is ensured if the contributing Higgs is a 10 of SO(10). A
generalization of the pattern in Eq. (11) would suggest that the first two families (i.e. the
e and the p) receive masses primarily through their mixing with the third family (), with

, (12)
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(1,3) and (1, 2) elements being smaller than the (2, 3); while (2, 3) is smaller than the (3, 3).
We will follow this guideline, except for the modification noted below.

2) The Need for an Antisymmetric Component : Although the symmetric hier-
archical matrix in Eq. (11) works well for the first two families, a matrix of the same form
fails altogether to reproduce V, for which it yields :

Vcb ~ ’ -nk - €ix TE

mp my

Given that \/m,/my =~ 0.17 and /m./m; = 0.0.06, we see that Eq. (13) would yield V,,
varying between 0.11 and 0.23, depending upon the phase x. This is too big, compared to
the observed value of V; &~ 0.04 0.003, by at least a factor of 3. We interpret this failure as
a clue to the presence of an antisymmetric component in M, together with symmetrical ones
(so that m;; # my;), which would modify the relevant mixing angle to , / Ti‘ / e , Where

m

3V i

: (13)

m; and m; denote the respective eigenvalues.

3) The Need for a Contribution Proportional to B-L : The success of the relations
mQ =~ m?, and m{ = m(v;)p;.q. (See Sec.IV), suggests that the members of the third family
get their masses primarily from the VEV of a SU(4)-color singlet Higgs field that is indepen-
dent of B-L. This is in fact ensured if the Higgs is a 10 of SO(10). However, the empirical
observations of m3 ~ mS, /3 and m ~ 3mJ [38] clearly call for a contribution proportional to
B-L as well. Further, one can in fact argue that the suppression of V; (in the quark-sector)
together with an enhancement of 67, (in the lepton sector) calls for a contribution that
is not only proportional to B-L, but also antisymmetric in the family space (as suggested
above in item (2)). We show below how both of these requirements can be met, rather easily,
in SO(10), even for a minimal Higgs system.

4) Up-Down Asymmetry: Finally, the up and the down-sector mass matrices must
not be proportional to each other, as otherwise the CKM angles would all vanish. Note that
the cubic couplings of a single 105 will not serve the purpose in this regard.

Following Ref. [14], I now present a simple and predictive mass-matrix, based on SO(10),
that satisfies all four requirements (1), (2), (3) and (4). The interesting point is that one
can obtain such a mass-matrix for the fermions by utilizing only the minimal Higgs system,
that is needed anyway to break the gauge symmetry SO(10). It consists of the set :

Hminimal = {45Hs 16H, EH& 10H} . (14)

Of these, the VEV of (45g) ~ Mx breaks SO(10) into G(2213), and those of (165) =
(165) ~ Mx break G(2213) to G(213), at the unification-scale Mx. Now G(213) breaks at
the electroweak scale by the VEV of (10g) to U(1)e,x SU(3)".

One might have introduced large-dimensional tensorial multiplets of SO(10) like 126 and
120g, both of which possess cubic level Yukawa couplings with the fermions. In particular,
the coupling 16;16,(120y) would give the desired family-antisymmetric as well as (B-L)-
dependent contribution. We do not however introduce these multiplets in part because
they do not seem to arise in string solutions [35], and in part also because mass-splittings
within such large-dimensional multiplets could give excessive threshold corrections to as(m,)
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(typically exceeding 20%), rendering observed coupling unification fortuitous. By contrast,
the multiplets in the minimal set (shown above) do arise in string solutions leading to
SO(10). Furthermore, the threshold corrections for the minimal set are found to be naturally
small, and even to have the right sign, to go with the observed coupling unification [14] (see
Appendix).

The question is: can the minimal set of Higgs multiplets (see Eq.(14)) meet all the
requirements listed above? Now 10y (even several 10‘s) can not meet the requirements of
antisymmetry and (B-L)-dependence. Furthermore, a single 10y cannot generate CKM-
mixings. This impasse disappears, however, as soon as one allows for not only cubic, but
also effective non-renormalizable quartic couplings of the minimal set of Higgs fields with the
fermions. These latter couplings could of course well arise through exchanges of superheavy
states (e.g. those in the string tower) involving renormalizable couplings, and/or through
quantum gravity.

Allowing for such cubic and quartic couplings and adopting the guideline (1) of hierar-
chical Yukawa couplings, as well as that of economy, we-are led to suggest the following
effective lagrangian for generating Dirac masses and mixings of the three families [14] (for a
related but different pattern, involving a non-minimal Higgs system, see Ref [39]).

Lyuk = h33 16316310 + [h23 165163 10y + as3 165163 10y 45H/M
+ g23162 163 16y 16H/M] + {a12 16,16, 104 45H/M
+ 912 164 165 16y 16H/M} . (15)

Here, M could plausibly be of order string scale. Note that a mass matrix having essentially
the form of Eq. (11) results if the first term hs33(10g) is dominant. This ensures m) =
m? and mY =~ m(Vpire)®. Following the assumption of progressive hierarchy (equivalently
appropriate flavor symmetries 3 ),we presume that hos ~ h33/10, while hy; and hyy, which are
not shown, are assumed to be progressively much smaller than hos. Since (45y) ~ (165) ~
My, while M ~ My ~ 10My, the terms a03{455)/M and go3(16g)/M can quite plausibly
be of order hs3/10, if ass ~ go3 ~ hss. By the assumption of hierarchy, we presume that
aip K ags, and g1z K go3

It is interesting to observe the symmetry properties of the as; and go3-terms. Although
105 % 455 = 10 + 120 + 320, given that (455) is along B-L, which is needed to implement

3 Although no explicit string solution with the hierarchy in all the Yukawa couplings in Eq.(15)--
i.e. in hyj, a;; and g;; - exists as yet, one can postulate flavor symmetries of the type alluded to
(e.g. two abelian U(1) symmetries), which assign flavor charges not only to the fermion families
and the Higgs multiplets, but also to a few (postulated) SM singlets that acquire VEVs of order
My. The flavor symmetry - allowed effective couplings such as 162163105 < S > /M would lead to
hog ~< 8§ > /M ~ 1/10. One can verify that the full set of hierarchical couplings shown in Eq.(15)
can in fact arise in the presence of two such U(1) symmetries. String theory (at least) offers the
scope (as indicated by the solutions of Refs. [30] and [29]) for providing a rationale for the existence
of such flavor symmetries, together with that of the SM singlets. For example, there exist solutions
with the top Yukawa coupling being leading and others being hierarchical (as in Ref. [30]).
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doublet-triplet splitting (see Appendix), only 120 in the decomposition contributes to the
mass-matrices. This contribution is, however, antisymmetric in the family-index and, at the
same time, proportional to B-L. Thus the ags term fulfills the requirements of both anti-
symmetry and (B-L)-dependence, simultaneously * . With only h;; and a;;-terms, however,
the up and down quark mass-matrices will be proportional to each other, which would yield
Vexm = 1. This is remedied by the g;; coupling, because, the 16y can have a VEV not only
along its SM singlet component (transforming as 7r) which is of GUT-scale, but also along
its electroweak doublet component - call it 165 — of the electroweak scale. The latter can
arise by the the mixing of 164 with the corresponding doublet (call it 104) in the 104. The
MSSM doublet Hg, which is light, is then a mixture of 104 and 164, while the orthogonal
combination is superheavy (see Appendix). Since (16,4) contributes only to the down-flavor
mass matrices, but not to the up-flavor, the go3 and g;5 couplings generate non-trivial CKM-
mixings. We thus see that the minimal Higgs system (as shown in Eq.(14)) satisfies apriori
all the qualitative requirements (1)-(4), including the condition of Ve # 1. 1 now discuss
that this system works well even quantitatively.

With these six effective Yukawa couplings, the Dirac mass matrices of quarks and leptons
of the three families at the unification scale take the form :

0 € 0 0 €+n 0
U=1{—-¢ 0 e+o | my, D=1 —-€+7 0 e+n | mp,
0 —e+o0 1 0 —-e+n 1
0 -3¢ 0 0 -3+74 0
N=[3% 0 -=-3¢+4+0c|my,L=|3+17 0 -3¢+ 1n | mp. (16)
0 3e+o 1 0 3¢ + 1 1

Here the matrices are multiplied by left-handed fermion fields from the left and by anti-
fermion fields from the right. (U, D) stand for the mass matrices of up and down quarks,
while (N, L) are the Dirac mass matrices of the neutrinos and the charged leptons. The
entries 1,¢,and o arise respectively from the hss,as3 and hos terms in Eq. (15), while 5
entering into D and L receives contributions from both g,3 and heg; thus 1 # o. Similarly n’
and € arise from g;5 and a;, terms respectively. Note the quark-lepton correlations between
U and N as well as D and L, and the up-down correlations between U and D as well as N
and L. These correlations arise because of the symmetry property of G(224). The relative
factor of —3 between quarks and leptons involving the ¢ entry reflects the fact that (45g) ~
to(B-L), while the antisymmetry in this entry arises from the group structure of SO(10), as
explained above*. As we will see, this e-entry helps to account for (a) the differences between
ms and m,,, (b) that between mq and m,, and also, (c) the suppression of Vg, together with
the enhancement of the v,-v; oscillation angle.

“The analog of 10 - 45 for the case of G(224) would be xg = (2,2,1)x - (1,1,15) . Although in
general, the coupling of x i to the fermions need not be antisymmetric, for a string-derived G(224),
the multiplet (1,1,15) 5 is most likely to arise from an underlying 45 of SO(10) (rather than 210);
in this case, the couplings of xr must be antisymmetric like that of 10y - 455.
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The mass matrices in Eq.(16) contain 7 parameters °: ¢, o, 7, mp = ha3 (10g), my =
hss (10y), ' and €¢’. These may be determined by using, for example, the following input
values: m2™* = 174 GeV, m.(m,) = 1.37 GeV, m,(1 GeV) = 110-116 MeV [40], m, (1 GeV)
~ 6 MeV and the observed masses of e, 4 and 7, which lead to (see Ref. [14], for details):

o~ 0110, n~ 0.151, € =~ ~0.095, |n'| ~4.4x107% and € ~ 2 x 10~*

my ~ my(My) ~ (100-120) GeV, mp ~ my(My) ~ 1.5GeV. (17)

Here, I will assume, only for the sake of simplicity, as in Ref. {14}, that the parameters
are real 6. Note that in accord with our general expectations discussed above, each of the
parameters o, 7 and ¢ are found to be of order 1/10, as opposed to being ” O(1) or O(1072),
compared to the leading (3,3)-element in Eq. (16). Having determined these parameters,
we are led to a total of five predictions involving only the quarks (those for the leptons are
listed separately) :

my ~ m2(1 — 8€¢%); thus my(my) ~ (4.6-4.9) GeV (18)
n+e€ 2 g+ € 1/2
V| =~ o — 0] = |v/ms/mp mad Vme/my pa— ~ 0.045 (19)
mg (1GeV) ~ 8MeV (20)
bc ~ ’\/md/ms — &%v/my/m, (21)

Van/Ver| = v/ my/m. ~ 0.07. (22)

In making these predictions, we have extrapolated the GUT-scale values down to low energies
using az(mz) = 0.118, a SUSY threshold of 500 GeV and tanf = 5. The results depend
weakly on these choices, assuming tan § =~ 2-30. Further, the Dirac masses and mixings of
the neutrinos and the mixings of the charged leptons also get determined. We obtain :

50f these, mY, &~ m? can in fact be estimated to within 20% accuracy by either using the argument

of radiative electroweak symmetry breaking, or some promising string solutions (see e.g. Ref. [30]).

6Babu and I have recently studied supersymmetric CP violation within the G(224)/S0O(10) frame-
work, by using precisely the fermion mass-matrices as in Eq.(16). We have observed [32] that
complexification of the parameters can lead to observed CP violation, without upsetting in the
least the success of Ref. [14] (i.e. of the fermion mass-matrices of Eq.(16)) in describing the masses
and mixings of all fermions, including neutrinos. Even with complexification the relative signs and
the approximate magnitudes of the real parts of the parameters must be the same as in Eq.(17),
to retain the success.

"This is one characteristic difference between our work and that of Ref. [39], where the (2,3)-
element is even bigger than the (3,3).
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my, (My) ~ 100-120 GeV; m) (My) =~ 8GeV, (23)

[ |—3+17 1/2

l o~ ot ~

01”. ~ —3€¢ + n = m“/m,. m ~ 0.437 (24)

D~ [9€?/(9€® — 0%)]my =~ 0.4MeV (25)
1/2

. n' — 3¢ N

O, = IW e \/me/my, = 0.854/m./m, =~ 0.06 (26)
6L, 085 — /meJm, (my/m.) ~ 0.0012. (27)

In evaluating 06”, we have assumed € and 7’ to be relatively positive.

Given the bizarre pattern of quark and lepton masses and mixings, it seems remark-
able that the simple pattern of fermion mass-matrices, motivated by the group theory of
G(224)/SO(10), gives an overall fit to all of them (Eqgs.(18) through (22)) which is good
to within 10%. This includes the two successful predictions on m; and Vg, (Egs.(18) and
(19)). Note that in supersymmetric unified theories, the “observed” value of my(m;) and
renormalization-group studies suggest that, for a wide range of the parameter tan 8, m{
should in fact be about 10-20% lower than m? [42]. This is neatly explained by the rela-
tion: m) ~ m2(1 — 8¢?) (Eq. (18)), where exact equality holds in the limit ¢ — 0 (due to
SU(4)-color), while the decrease of m{ compared to m2 by 8¢ ~ 10% is precisely because
the off-diagonal e-entry is proportional to B-L (see Eq. (16)).

Specially intriguing is the result on V,; &~ 0.045 which compares well with the observed
value of o~ 0.04. The suppression of V,;, compared to the value of 0.17 4= 0.06 obtained from
Eq. (13), is now possible because the mass matrices (Eq. (16)) contain an antisymmetric
component o €. That corrects the square-root formula 6, = \/ms/m; (appropriate for
symmetric matrices, see Eq. (11)) by the asymmetry factor |(n + €)/(n — €)|*/? (see Eq.
(19)), and similarly for the angle 6.;. This factor suppresses Vg, if 7 and € have opposite
signs. The interesting point is that, the same feature necessarily enhances the corresponding
mizing angle OﬁT in the leptonic sector, since the asymmetry factor in this case is given by
[(—3€ + 1)/ (3¢ + m)]/? (see Eq. (24)). This enhancement of 6% helps to account for the
nearly maximal oscillation angle observed at SuperK (as discussed below). This intriguing
correlation between the mixing angles in the quark versus leptonic sectors — that is suppres-
sion of one implying enhancement of the other — has become possible only because of the
e-contribution, which is simultaneously antisymmetric and is proportional to B-L. That in -
turn becomes possible because of the group-property of SO(10) or a string-derived G(224)*.

Taking stock, we see an overwhelming set of facts in favor of B-L and in fact for the
full SU(4)- color~symmetry These include: (i) the suppression of Vg, together with the
enhancement of 6%, just mentioned above, (ii) the successful relatlon mg ~ ml(1— 8¢?), (iii)
the usefulness again of the SU(4)-color-relation m(v%,,,.)° & m) in a,ccountmg for m(v])(
see Sec. 4 ), and (iv) the agreement of the relation |mQ/mJ| = |(e —n%)/(9¢? — n?)| with
the data, in that the ratio is naturally less than 1, if n ~ e. The presence of 9¢? in the
denominator is because the off-diagonal entry is proportional to B-L. Finally, the need for
(B-L)- as a local symmetry, to implement baryogenesis, has been noted in Sec.1.
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Turning to neutrino masses, while all the entries in the Dirac mass matrix N are now
fixed, to obtain the parameters for the light neutrinos, one needs to specify those of the
Majorana mass matrix of the RH neutrinos (v3*"). Guided by economy and the assumption
of hierarchy, we consider the following pattern :

ME =

v

Mg. (28)

N OR
< OO
[aaali SR

As discussed in Sec.IV, the magnitude of Mg =~ (5-15) x 10** GeV can quite plausibly
be justified in the context of supersymmetric unificaton® (e.g. by using M ~ M, ~ 4 x 107
GeV in Eq. (8)). To the same extent, the magnitude of m(v,) = (1/10-1/30) eV, which is
consistent with the SuperK value, can also be anticipated. Thus there are effectively three
new parameters: z, y, and 2. Since there are six observables for the three light neutrinos,
one can expect three predictions. These may be taken to be 6%, , m,, (see Eq. (10)), and
for example 0"“

Assuming successively hierarchical entries as for the Dirac mass matrices, we presume
that |y| ~ 1/10, |z| < |y|/10 and |z| < 22. Now given that m(v,;) ~ 1/20 eV (as estimated in
Eg. (10)), the MSW solution for the solar neutrino puzzle [43] suggests that m(v,)/m(v,) =
1/10-1/30. The latter in turn yields : |y| = (1/18 to 1/23.6), with y having the same sign as
¢ (see Eq. (17)). This solution for y obtains only by assuming that y is O(1/10) rather than
O(1). Combining now with the mixing in the p-7 sector determined above (see Eq. (24)),
one can then determine the v,-v, oscillation angle. The two predictions of the model for the
neutrino-system are then :

m(v,;) =~ (1/10-1/30) eV (29)

08¢~ 14 Vo o my,
01/#'/1' oﬂ‘r - 0#7’ - (0‘437 + m : ) : (30)

vs
Thus, sin? 293:?,1_ = (0.96,0.91,0.86,0.83,0.81) (31)
for m,,/m,, = (1/10,1/15,1/20,1/25,1/30). (32)

Both of these predictions are extremely successful.

Note the interesting point that the MSW solution, together with the requirement that |y|
should have a natural hierarchical value (as mentioned above), lead to y having the same sign
as €; that (it turns out) implies that the two contributions in Eq.(30) must add rather than
subtract, leading to an almost mazimal oscillation angle {14]. The other factor contributing
to the enhancement of 3%, is, of course, also the asymmetry-ratio which increases 6%, |
from 0.25 to 0.437 (see Eq (24)). We see that one can derive rather plausibly a large v,-v,
oscillation angle sin? 267, > 0.8, together with an understanding of hierarchical masses

and mixings of the quarks "and the charged leptons, while maintaining a large hierarchy in

8This estimate for Mp, is retained even if one allows for v,-v, mixing (see Ref. [14]).
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the seesaw derived neutrino masses (m,,/m,, = 1/10-1/30), all within a unified framework
including both quarks and leptons. In the example exhibited here, the mixing angles for
the mass eigenstates of neither the neutrinos nor the charged leptons are really large, in
that 6%, =~ 0.437 ~ 23° and 6, ~ (0.18-0.31) ~ (10-18)°, yet the oscillation angle obtained
by combining the two is near-mazimal. This contrasts with most works in the literature
in which a large oscillation angle is obtained either entirely from the neutrino sector (with
nearly degenerate neutrinos) or almost entirely from the charged lepton sector.

While My = (5-15) x 10'* GeV and y =~ —1/20 are better determined, the parameters z
and z can not be obtained reliably at present because very little is known about observables
involving ve. Taking, for concreteness, m,, = (107°-10* (1 to few)) eV and 62 ~ #¢_—6"_ ~
1073 +£0.03 as inputs, we obtain : z ~ (1-5) x 1073 and = ~ (1 to few)(1076-10~%), in accord
with the guidelines of |z| ~ |y|/10 and |z| ~ 2*. This in turn yields : 62 ~ 6%, — 6%, ~
0.06£0.015. Note that the mass of m,,, ~ 3x 10~3 eV, that follows from a natural hierarchical
value for y ~ —(1/20), and 6., as above, go well with the small angle MSW explanation® of
the solar neutrinos puzzle.

It is worthnoting that although the superheavy Majorana masses of the RH neutrinos
cannot be observed directly, they can be of cosmological significance. The pattern given
above and the arguments given in Sec.III and in this section suggests that M(v}) = (5-15) x
10 GeV, M(vh) =~ (1-4) x 10* GeV (for z = 1/20); and M (vg) ~ (1/2-10) x 10° GeV (for
T ~ (1/2-10)107® > 22). A mass of v§ ~ 10° GeV is of the right magnitude for producing
v% following reheating and inducing lepton asymmetry in v§ decay into HO + vi, that is
subsequently converted into baryon asymmetry by the electroweak sphalerons [16,17].

In summary, we have proposed an economical and predictive pattern for the Dirac mass
matrices, within the SO(10)/G(224)-framework, which is remarkably successful in describing
the observed masses and mixings of all the quarks and charged leptons. It leads to five
predictions for just the quark- system, all of which agree with observation to within 10%.
The same pattern, supplemented with a similar structure for the Majorana mass matrix,
accounts for both the large v,-v, oscillation angle and a mass of v, ~ 1/20 eV, suggested
by the SuperK data. Given this degree of success, it makes good sense to study proton
decay concretely within this SO(10)/G(224)-framework. The results of this study [14] are
presented in the next section.

Before turning to proton decay, it is worth noting that much of our discussion of fermion
masses and mixings, including those of the neutrinos, is essentially unaltered if we go to the
limit ¢ — 0 of Eq. (28). This limit clearly involves:

my =0, Oc = /mg/mg, my, =0, 6,, =6, =0.

|Vas| = ,/Z - :\/md/mb (ms/my) =~ (2.1)(0.039)(0.023) ~ 0.0019 (33)

9 Although the small angle MSW solution appears to be more generic within the approach outlined
above, we have found that the large angle solution can still plausibly emerge in a limited region of
parameter space, without affecting our results on fermion masses.
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All other predictions remain unaltered. Now, among the observed quantities in the list above,
Oc =~ y/mg/ms is a good result. Considering that m,/m; ~ 1075, m, = 0 is also a pretty
good result. There are of course plausible small corrections which could arise through Planck
scale physics; these could induce a small value for m,, through the (1,1)-entry § ~ 10~5. For
considerations of proton decay, it is worth distinguishing between these two eztreme variants
which we will refer to as cases I and II respectively.

Casel: € ~2x 107, 6§ =0

Case Il :6 =~ 107°, ¢ =0. (34)

It is worth noting that the observed value of |V;;| =~ 0.003 favors a non-zero value of €(~
(1 — 2) x 107*). Thus, in reality, ¢ may not be zero, but it may lie in between the two
extreme values listed above. In this case, the predicted proton lifetime for the standard
d = 5 operators would be intermediate between those for the two cases, presented in Sec.VI.

VI. EXPECTATIONS FOR PROTON DECAY IN SUPERSYMMETRIC UNIFIED
THEORIES

A. Preliminaries

Turning to the main purpose of this talk, I present now the reason why the unification
framework based on SUSY SO(10) or G(224), together with the understanding of fermion
masses and mixings discussed above, strongly suggest that proton decay should be imminent.

Recall that supersymmetric unified theories (GUTs) introduce two new features to proton
decay : (i) First, by raising Mx to a higher value of about 2 x 10'® GeV (contrast with the
non-supersymmetric case of nearly 3 x 10** GeV), they strongly suppress the gauge-boson-
mediated d = 6 proton decay operators, for which e*7° would have been the dominant mode
(for this case, one typically obtains : "} (p — e*70)|4=6 &~ 10353%15 yrs). (ii) Second, they
generate d = 5 proton decay operators [18] of the form Q;Q;QxQ:/M in the superpotential,
through the exchange of color triplet Higginos, which are the GUT partners of the standard
Higgs(ino) doublets, such as those in the 5+5 of SU(5) or the 10 of SO(10). Assuming that a
suitable doublet-triplet splitting mechanism provides heavy GUT-scale masses to these color
triplets and at the same time light masses to the doublets, these “standard” d = 5 operators,
suppressed by just one power of the heavy mass and the small Yukawa couplings, are found
to provide the dominant mechanism for proton decay in supersymmetric GUT [44-47].

Now, owing to (a) Bose symmetry of the superfields in QQQL/M, (b) color antisymmetry,
and especially (c) the hierarchical Yukawa couplings of the Higgs doublets, it turns out that
these standard d = 5 operators lead to dominant 7K+ and comparable 7w modes, but in
all cases to highly suppressed e*7%, et K? and even u* K° modes. For instance, for minimal
SUSY SU(5), one obtains (with tan 8 < 20, say) :

[D(u*E)/TEK*) 150 ~ [mu/(me sin® 6)F R ~ 1072, (35)

where R =~ 0.1 is the ratio of the relevant |matrix element|?x (phase space), for the two
modes.
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It was recently pointed out that in SUSY unified theories based on SO(10) or G(224),
which assign heavy Majorana masses to the RH neutrinos, there exists a new set of color
triplets and thereby very likely a new source of d = 5 proton decay operators [19]. For
instance, in the context of the minimal set of Higgs multiplets’® {45z,165,16y and 105}
(see Sec.V), these new d = 5 operators arise by combining three effective couplings intro-
duced before :- i.e., (a) the couplings f;;16;16;16516x/M (see Eq.(7)) that are required
to assign Majorana masses to the RH neutrinos, (b) the couplings ¢;;16,16;165165/M,
which are needed to generate non-trivial CKM mixings (see Eq.(15)), and (c) the mass term
Mi616516. For the f;; couplings, there are two possible SO(10)-contractions (leading to
a 45 or a 1) for the pair 16;16, both of which contribute to the Majorana masses of the
RH neutrinos, but only the non-singlet contraction (leading to 45), would contribute to d=5
proton decay operator. In the presence of non-perturbative quantum gravity, one would in
general expect the two contractions to have comparable strength. Furthermore, the couplings
of 45’s lying in the string-tower or possibly below the string-scale, and likewise of singlets, to
the 16;-16g-pair, would respectively generate the two contractions. It thus seems most likely
that both contractions are present, having comparable strength. Allowing for a difference
between the relevant projection factors for vz masses versus proton decay, and also for the
fact that both contractions contribute to the former, but only the non-singlet one (i.e. 45)
to the latter, we would set the relevant f;; coupling for proton decay to be (fi;), = (fij). - K,
where (fi;), defined in Sec.IV directly yields vg - masses (see Eq.(8)); and K is a relative
factor of order unity. As a plausible range, we will take K =~ 1/3 to 2 (say). In the presence
of the non-singlet contraction, the color-triplet Higginos in 165 and 165 of mass M;g can be
exchanged between §;q; and gg;-pairs (correspondingly, for G(224), the color triplets would
arise from (1,2,4)g and (1,2,4)g). This exchange generates a new set of d = 5 operators in
the superpotential of the form

Whew o (fij)y gk (16;16;) (16, 16) (I65) (165)/M? x (1/Mg), (36)

which induce proton decay. Note that these operators depend, through the couplings f;;
and gx;, both on the Majorana and on the Dirac masses of the respective fermions. This is
why within SUSY SO(10) or G(224), proton decay gets intimately linked to the masses and
mizings of all fermions, including neutrinos.

B. Framework for Calculating Proton Decay Rate

To establish notations, consider the case of minimal SUSY SU(5) and, as an example, the
process éd — 5, which induces p — 7,K™*. Let the strength of the corresponding d = 5
operator, multiplied by the product of the CKM mixing elements entering into wino-exchange
vertices, (which in this case is sinf¢ cosf¢c) be denoted by A. Thus (putting cosfc = 1),
one obtains:

10The origin of the new d = 5 operators in the context of other Higgs multiplets, in particular in
the cases where 126 and 1265 are used to break B-L, has been discussed in Ref. [19].
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A&;(SU(S)) = (hY, h%y/My,) sinf, ~ (m.m; sin®6c/vZ) (tan B/Mpg.)
~ (1.9 x 107%) (tan 8/Mpg,) =~ (2 % 1072 GeV~?) (tan 4/2) (2 x 10" GeV/My,,), (37)

where tan 8 = v, /vg, and we have put v, = 174 GeV and the fermion masses extrapolated
to the unification-scale - i.e. m, ~ 300 MeV and m; ~ 40 MeV. The amplitude for the
associated four-fermion process dus — 7, is given by:

~

As(dus — 7,) = Ay x (2f) (38)

where f is the loop-factor associated with wino-dressing. Assuming mg < mz ~ m;, one
gets: f =~ (mg/m%)(az/4r). Using the amplitude for (du)(svy), as in Eq. (38), (£ = p or 7),
one then obtains [45-47,14]:

I'Y(p - 7,K*) ~ (0.6 x 10%) yrs x
0.67\2 [0.014 GeV?1® [ (1/6) ]2 [ mg ]2
< As ) [ ,BH ] (mw/mq) 1.2TeV
Here By denotes the hadronic matrix element defined by Byur(E) = eagy (0](dsu?)ul|p, k).
While the range By = (0.003-0.03) GeV? has been used in the past [46], given that one
lattice calculation yields g = (5.63:0.5) x 10~2 GeV? [48], and a recent improved calculation
yields By =~ 0.014GeV? [49] (whose systematic errors that may arise from scaling violations
and quenching are hard to estimate [49]), we will take as a conservative, but plausible,
range for By to be given by (0.014GeV3)(1/2 — 2). [Compare this with the range for 8y =
(0.006GeV3)(1/2 — 2) as used in Ref. [14]]. Here, As ~ 0.67 stands for the short distance
renormalization factor of the d = 5 operator. Note that the familiar factors that appear in
the expression for proton lifetime — i.e., Mg, (1+ y:.) representing the interference between
the 7 and & contributions, and tan 3 (see e.g. Ref. [46] and discussion in the Appendix
of Ref. [14]) — are all effectively contained in A(7). In Ref. [14], guided by the demand of
naturalness (i.e. absence of excessive fine tunning) in obtaining the Higgs boson mass, squark
masses were assumed to lie in the range of 1 TeV(1/v/2 — v/2), so that m; < 1.4TeV. Recent
work, based on the notion of focus point supersymmetry however suggests that squarks may
be considerably heavier without conflicting with the demands of naturalness [{50]. In the

interest of obtaining a conservative upper limit on proton lifetime, we will therefore allow
squark masses to be as heavy as about 2.5 TeV and as light as perhaps 600 GeV. 1!

2
2% 1072 GeV!

A(@)

(39)

1We remark that if the recently reported (g-2) - anomaly for the muon [51] is attributed to
supersymmetry [52], one would need to have extremely light s-fermions (i.e. m; ~ 200 — 400 GeV
(say) and correspondingly (for promising mechanisms of SUSY-breaking) ms; < 300 — 600 TeV
(say)), and simultaneously large or very large tan 5(= 25 — 50). However, not worring about grand
unification, such light s-fermions, together with large or very large tan 3 would typically be in
gross conflict with the limits on the edm’s of the neutron and the electron, unless on can explain

naturally the occurence of minuscule phases (< 1/300 to 1/1000) and/or large cancellation. Thus,
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Allowing for plausible and rather generous uncertainties in the matrix element and the
spectrum we take:

Br = (0.014GeV?) (1/2-2)

mg/m; = 1/6(1/2-2), and m; = m; =~ 1.2TeV (1/2-2). "~ (40)
Using Egs.(39-40), we get:
I'''(p - 7,KT) ~ (0.6 x 10* yrs) [2 x 107 GeV ™/ A(7,) |* {64-1/64} . (41)

Note that the curly bracket would acquire its upper-end value of 64, which would serve to-
wards maximizing proton lifetime, only provided all the uncertainties in Eq.(41) are stretched
to the extreme so that Sy = 0.007 GeV?, my;,/m; ~ 1/12 and m; =~ 2.4 TeV. This relation,
as well as Eq. (39) are general, depending only on A(%,) and on the range of parameters
given in Eq. (40). They can thus be used for both SU(5) and SO(10).

The experimental lower limit on the inverse rate for the 7K+ modes is given by [55],

D T - 7K™k, > 1.6 X 10%¥yrs. (42)
£

Allowing for all the uncertainties to stretch in the same direction (in this case, the curly
bracket = 64), and assuming that just one neutrino flavor (e.g. v, for SU(5)) dominates, the
observed limit (Eq.(42)) provides an upper bound on the amplitude!?:

ATy) < 1x107#GeV? (43)

which holds for both SU(5) and SO(10). Recent theoretical analyses based on LEP-limit on
Higgs mass (2 114 GeV), together with certain assumptions about MSSM parameters (as

if the (g — 2), - anomaly turns out to be real, it may quite possibly need a non-supersymmetric
explanation, in accord with the edm-constraints which ordinarily seem to suggest that squarks are
(at least) moderately heavy (mg 2 0.6—1 TeV, say), and tan S is not too large (< 3 to 10, say). We
mention in passing that the extra vector - like matter - specially a 16 + 16 of SO(10) - as proposed
in the so-called extended supersymmetric standard model (ESSM) [20,53], with the heavy lepton
mass being of order (150-200) hundred GeV, can provide such an explanation [54]. Motivations for
the case of ESSM, based on the need for (a) removing the mismatch between MSSM and string
unification scales, and (b) dilaton-stabilization, have been noted in Ref. [20]. Since ESSM is an
interesting and viable variant of MSSM, and would have important implications for proton decay,
we will present the results for expected proton decay rates for the cases of both MSSM and ESSM
in the discussion to follow.

121f there are sub-dominant 7; K modes with branching ratio R, the right side of Eq. (43) should
be divided by +/1 + R.
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in CMSSM) and/or constaint from muon g-2 anomaly [51] suggest that tan 8 > 3 to 5 [56].
In the interest of getting a conservative upper limit on proton lifetime, we will therefore use,
as a conservative lower limit, tan 8 > 3. We will however exhibit relevant results often as
a function of tan § and exhibit proton lifetimes corresponding to higher values of tan 3 as
well. For minimal SU(5), using Eq.(37) and, conservatively tan 8 > 3, one obtains a lower
limit on My given by:

Mpye > 5.5 x 10 GeV (SU(5)) (44)

At the same time, higher values of Myc > 3 x 10 GeV do not go very well with gauge
coupling unification. Thus we already see a conflict, in the case of minimal SUSY SU(5),
between the experimental limit on proton lifetime on the one hand, and coupling unification
and constraint on tan  on the other hand. To see this conflict another way, if we keep Mo <
3 x 1018 GeV (for the sake of coupling unification) we obtain from Eq.(37): A(SU(5)) >
1.9 x 1072 GeV~!(tan #/3). Using Eq. (41), this in turn implies that

I''l(p = DK*) < 0.6 x 10®yrs x (3/tanB)* (SU(5)) (45)

For tan 3 > 3, a lifetime of 0.7 x 103 years is thus a conservative upper limit. In practice, it
is unlikely that all the uncertainties, including these in My and tan 3, would stretch in the
same direction to nearly extreme values so as to prolong proton lifetime. A more reasonable
upper limit, for minimal SU(5), thus seems to be: I'"}(p — TK*)(SU(5)) < (0.3) x 10% yrs.
Given the experimental lower limit (Eq.(42)), we see that minimal SUSY SU(5) is already
excluded (or strongly disfavored) by proton decay-searches. We have of course noted in
Sec.IV that SUSY SU(5) does not go well with neutrino oscillations observed at SuperK.

Now, to discuss proton decay in the context of supersymmetric SO(10), it is necessary
to discuss first the mechanism for doublet-triplet splitting. Details of this discussion may be
found in Ref. [14]. A synopsis is presented in the Appendix.

C. Proton Decay in Supersymmetric SO(10)

The calculation of the amplitudes Agq and A, for the standard and the new operators
for the SO(10) model, are given in detail in Ref. [14]. Here, I will present only the results. It
is found that the four amplitudes Asa(F, K1), Asa(T K™T), Apew(@,K*) and Anew (T.KT)
are in fact very comparable to each other, within about a factor of two to five, either way.
Since there is no reason to expect a near cancellation between the standard and the new
operators, especially for both 7, K+ and 7, Kt modes, we expect the net amplitude (standard
+ new) to be in the range exhibited by either one. Following Ref. [14], I therefore present
the contributions from the standard and the new operators separately.

One important consequence of the doublet-triplet splitting mechanism for SO(10) out-
lined briefly in the appendix and in more detail in Ref. [14] is that the standard d=5 proton
decay operators become inversely proportional to Mess = [ < 455 >]2/Myy ~ M% /My,
rather than to My, . Here, My represents the mass of 10%, that enters into the D-T split-
ting mechanism through effective coupling A10545510% in the superpotential (see Appendix,

23



Eq.(Al)). As noted in Ref. [14], Mjy can be naturally suppressed (due to flavor symme-
tries) compared to Mx, and thus M. correspondingly larger than Mx by even one to
three orders of magnitude. It should be stressed that M.ss does not represent the physical
masses of the color triplets or of the other particles in the theory. It is simply a parameter
of order M% /My. Thus larger values of Ms;, close to or even exceeding the Plank scale,
do not in any way imply large corrections from quantum gravity. Now accompanying the
suppression due to M.y, the standard proton decay amplitudes for SO(10) possess an in-
trinsic enhancement as well, compared to those for SU(5), owing primarily due to differences
in their Yukawa couplings for the up sector (see Appendix C of Ref. [14]). As a result of
this enhancement, combined with the suppression due to higher values of M,;;, a typical
standard d = 5 amplitude for SO(10) is given by (see Appendix C of Ref. [14])

A, K350 x5 (h2y/M.p1) (2 x 1075),

which should be compared with A(D,,K'*)ig(s) ~ (1.9 x 1078)(tan 8/Mpy,) (see Eq.(37)).
Note, taking hZ; = 1/4, the ratio of a typical SO(10) over SU(5) amplitude is given by
(Mu,/Mz£)(88)(3/ tan §). Thus the enhancement by a factor of about 88 (for tan 8 = 3),
of the SO(10) compared to the SU(5) amplitude, is compensated in part by the suppression
that arises from M,s; being larger than My, .

In addition, note that in contrast to the case of SU(5), the SO(10) amplitude does not
depend ezplicitly on tan 8. The reason is this: if the fermions acquire masses only through
the 105 in SO(10), as is well known, the up and down quark Yukawa couplings will be
equal. By itself, it would lead to a large value of tan § = m;/m;, =~ 60 and thereby to a large
enhancement in proton decay amplitude. Furthermore, it would also lead to the bad relations:
me/ms = my/my and Vogay = 1. However, in the presence of additional Higgs multiplets,
in particular with the mixing of (16g)4 with 10y (see Appendix and Sec.V), (a) tan 8 can
get lowered to values like 3-20, (b) fermion masses get contributions from both < 165 >4
and < 10y >, which correct all the bad relations stated above, and simultaneously (c) the
explicit dependence of A on tan B disappears. It reappears, however, through restriction on
threshold corrections, discussed below. .

Although M.¢; can far exceed My, it still gets bounded from above by demanding that
coupling unification, as observed '*, should emerge as a natural prediction of the theory
as opposed to being fortuitous. That in turn requires that there be no large (unpredicted)
cancellation between GUT-scale threshold corrections to the gauge couplings that arise from
splittings within different multiplets as well as from Plank scale physics. Following this point
of view, we have argued (see Appendix) that the net “other” threshold corrections to az(mz)

13For instance, in the absence of GUT-scale threshold corrections, the MSSM value of
az(mgz)mssm, assuming coupling unification, is given by az(mz)y;g5a = 0.125 — 0.13 [7], which
is about 5-8% higher than the observed value: az(mz)$s5ps = 0.118 — 0.003 [13]. We demand
that this discrepancy should be accounted for accurately by a net negative contribution from D-T
splitting and from “other” threshold corrections (see Appendix, Eq.(A4)), without involving large
cancellations. That in fact does happen for the minimal Higgs system (45, 16,16) [see Ref. [14]].
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arising from the Higgs (in our case 45, 165 and 16y) and the gauge multiplets should be
negative, but conservatively and quite plausibly no more than about 10%. This in turn
restricts how big can be the threshold corrections to az(myz) that arise from (D-T) splitting
(which is positive). Since the latter is proportional to In(M,ss cosy/Mx) (see Appendix), we
thus obtain an upper limit on M,s cos+y. For the simplest model of D-T splitting presented
in Ref. [14] and in the Appendix (Eq.(Al)), one obtains: cosy ~ (tan 3)/(m¢/m;). An upper
limit on M,y cos~y thus provides an upper limit on Ms; which is inversely proportional to
tan 8. In short, our demand of natural coupling unification, together with the simplest model
of D-T splitting, introduces an implicit dependence on tan 3 into the lower limit of the SO(10)
- amplitude - i.e. A(SO(10)) ox 1/M,;; > (a quantity) o tan 8. These considerations are
reflected in the results given below.

Assuming tan 3 > 3 and accurate coupling unification (as described above), one obtains
for the case of MSSM, a conservative upper limit on M,y < 2.7 X 10'® GeV (3/tan ) (see
Appendix and Ref. [14]). Using this upper limit, we obtain a lower limit for the standard
proton decay amplitude given by '

N (7.8 x 107 GeV™') (1/6-1/4) casel SO(10)/MSSM, with
AWK )owa 2 [(3.3 x 10724 GeV~1) (1/6-1/2) case Il tan 8 > 3 - (46)

Substituting into Eq.(41) and adding the contribution from the second competing mode
7, K™, with a typical branching ratio R =~ 0.3, we obtain

et (0.7 x 10% yrs.) (1.6-0.7) SO(10)/MSSM, with
I (WK sia < [(1.5>><< 1031};;,.)) (4-0.44)} {64-1/ 64}( tan§ > 3 ) (47)

The upper and lower entries in Egs.(46) and (47) correspond to the cases I and II of the
fermion mass-matrix with the extreme values of € - i.e. ¢ = 2x107* and € = 0 - respectively,
(see Eq.(34)). The uncertainty shown inside the square brackets correspond to that in the
relative phases of the different contributions. The uncertainty of {64 to 1/32} arises from
that in By, (my/m;) and my; (see Eq.(40)). Thus we find that for MSSM embedded in
SO(10), for the two extreme values of € (cases I and II) as mentioned above, the inverse
partial proton decay rate should satisfy:

0.7 x 1031337 yrs. 0.7 x 103 yrs, SO(10)/MSSM, with
-1 -1+ ’
I (p = VK )sta < [1_3 x 103356 yrs. | = | 3.7 x 10¥ ys. tan 3 > 3 ) - (48)

The central value of the upper limit in Eq.(48) corresponds to taking the upper limit on
M.;; < 2.7 x 10'® GeV, which is obtained by restricting threshold corrections as described
above (and in the Appendix) and by setting (conservatively) tan § > 3. The uncertainties of
matrix element, spectrum and choice of phases are reflected in the exponents.The uncertainty
in the most sensitive entry of the fermion mass matrix - i.e. € - is fully incorporated (as
regards obtaining an upper limit on the lifetime) by going from case I (with ¢ = 2 x 107%)
to case II (¢ = 0). Note that this increases the lifetime by almost a factor of six. Any
non-vanishing intermediate value of ¢ would only shorten the lifetime compared to case II.
In this sense, the larger of the two upper limits quoted above is rather conservative. We see
that the predicted upper limit for case I of MSSM (with the extreme value of ¢ = 2 x 107%)
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is already in conflict with the empirical lower limit (Eq.(43)) while that for case Il i.e. ¢ =0
(with all the uncertainties stretched as mentioned above) is only about two times higher
than the empirical limit.

Thus the case of MSSM embedded in SO(10) is already tightly constrained, to the point .
of being rather disfavored, by the limit on proton lifetime in that all the parameters need
to lie near their “extreme” ends so that it may be compatible with the empirical limit (see
also results for other choices of parameters listed in Table 1). The constraint is of course
augmented especially by our requirement of natural coupling unification which prohibits
accidental large cancellation between different threshold corrections (see Appendix); and
it will be even more severe, especially within the simplest mechanism of D-T splitting (as
" discussed in the Appendix), if tan 3 turns out to be larger than 5 (say). On the positive side,
improvement in the current limit by a factor of even 2 to 3 ought to reveal proton decay,
otherwise the case of MSSM embedded in SO(10), would be clearly excluded.

D. The case of ESSM ,

Before discussing the contribution of the new d = 5 operators to proton decay, an in-
teresting possibility, mentioned in the introduction, that would be especially relevant in the
context of proton decay, if tan f is large, is worth noting. This is the case of the extended
supersymmetric standard model (ESSM), which introduces an extra pair of vector-like fam-
ilies (16 + 16 of SO(10)), at the TeV scale [20,53]). Adding such complete SO(10)-multiplets
would of course preserve coupling unification. From the point of view of adding extra fami-
lies, ESSM seems to be the minimal and also the maximal extension of the MSSM, that is
allowed in that it is compatible with (a) neutrino-counting, (b) precision electroweak tests,
as well as (c) a semi-perturbative as opposed to non-perturbative gauge coupling unification
[20,53]. * The ezistence of two extra vector-like families can of course be tested at the LHC.

Theoretical motivations for the case of ESSM arise because, (a) it raises ayyis to a semi-
perturbative value of 0.25 to 0.3, and therefore has a better chance to achieve dilaton-
stabilization than the case of MSSM, for which oy is rather weak (only 0.04); and (b) owing
to increased two-loop effects [20,57], it raises the unification scale Mx to (1/2—2) x 10}"GeV
and thereby considerably reduces the problem of a mismatch [27] between the MSSM and the
string unification scales (see Sec.III). A third feature relevant to proton decay is the following.
In the absence of unification-scale threshold and Planck-scale effects, the ESSM value of
as(mz) obtained by assuming gauge coupling unification, which we denote by a;z(mz)gssm
is lowered to about 0.112 — 0.118 [20], compared to as3(mz)yssy =~ 0.125 — 0.13.

As explained in the appendix, the net result of these two effects - i.e. a raising of My and
a lowering of as(mz)nsem - is that for ESSM embedded in SO(10), tan S can span a wide
range from 3 to even 30, and simultaneously the value or the upper limit on M.s; can range
from (60 to 6) x 10'8GeV, in full accord with our criterion for accurate coupling unification

MFor instance, addition of two pairs of vector-like families at the TeV-scale, to the three chiral
families, would cause gauge couplings to become non-perturbative below the unification scale.
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discussed above.

Thus, in contrast to MSSM, ESSM allows for larger values of tan § (like 20 or 30), without
needing large threshold corrections, and simultaneously without conflicting with the limit
on proton lifetime.

To be specific, consider first the case of a moderately large tan 8 = 20 (say), for which
one obtains M.ss ~ 9 x 10 GeV, with the “other” threshold correction —d} being about
5% (see Appendix for definition). In this case, one obtains:

I Y TK )y & [ (1(‘160__01')7 ) ] {64 — 1/64} (7 x 10*' yrs) ( So(lﬁiﬁsihgé With) . (49)

As before, the upper and lower entries correspond to cases I (¢/ =2 x 107*) and II (¢’ = 0)
of the fermion mass-matrix (see Eq.(34)). The uncertainty in the upper and lower entries
in the square bracket of Eq.(49) corresponds to that in the relative phases of the different
contributions for the cases I and II respectively, while the factor {64-1/64} corresponds to
uncertainties in the SUSY spectrum and the matrix element (see Eq.40).

We see that by allowing for an uncertainty of a factor of (30 — 100) jointly from the two
brackets for Case I (and (13 — 44) for Case II), proton lifetime arising from the standard
operators would be expected to lie in the range of (2.2 —7.5) x 103 yrs, for the case of ESSM
embedded in SO(10), with tan # = 20. Such a range is compatible with present limits, but
accessible to searches in the near future.

The other most important feature of ESSM is that, by allowing for larger values of
M.y, especially for smaller values of tan § ~ 3 to 10 (say), the contribution of the standard
operators by itself can be perfectly consistent with present limit on proton lifetime even for
almost central or “median” values of the parameters pertaining to the SUSY spectrum, the
relevant matriz element, ¢ and the phase-dependent factor.

For instance, for ESSM, one obtains M,s; = (4.5 x 10'°GeV)(4/tanf), with the “other”
threshold correction - &3 being about 5% (see Appendix and Eq.(A6)). Now, combining
cases I (¢/ = 2 x 107%) and II (¢ = 0), we see that the square bracket in Eq.(49) which we
will denote by [S], varies from 0.7 to 10, depending upon the relative phases of the different
contributions and the values of €. Thus as a “median” value, we will take [S];,eq = 2 to 6.
The curly bracket {64-1/64}, to be denoted by {C}, represents the uncertainty in the SUSY
spectrum and the matrix element (see Eq.(40)). Again as a “nearly central” or “median”
value, we will take {C}meq = 1/6 to 6. Setting M,; as above we obtain

DY (DK)medion” 5 18)mea{Chmea(1.8 x 103 yrs)(4/ tan £)2(SO(10)/ESSM). (50)

Choosing a few sample values of the effective parameters [S] and {C}, with low values of
tan 8 = 4 to 10, the corresponding values of I'"1(7K™), following from Eq.(50), are listed
below in Table 1.

Note that ignoring contributions from the new d=>5 operators for a moment 5, the entries
in Table 1 represent a very plausible range of values for the proton lifetime, for the case of

15As I will discuss in the next section, we of course expect the new d=>5 operators to be important
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ESSM embedded in SO(10), with tan 3 = 3 to 10 (say), rather than upper limits for the
same. This is because they are obtained for “nearly central” or “median” values of

TABLE 1. PROTON LIFETIME, BASED ON CONTRIBUTIONS FROM
ONLY THE STANDARD OPERATORS FOR THE CASE OF ESSM
EMBEDDED IN SO(10), WITH PARAMETERS BEING IN THE
“MEDIAN” RANGE

tan =4 tanf =4 tan 8 = 10 tan 3 = 10
[S]=2.7 [S]=6 [S]=5.4 [S]=6
{C}=1/2t0 2 {C}=1/6to 1 {C}=1to06 {C}=1to4

T oK) gesy ~ | T 0K )gssy ~ | TTH0K)Besy = | TTHOKN) gy ~
(2.5 to 10) x 1033 yrs|(1.8 to 11) x 10% yrs|(1.6 to 10) x 10% yrs|(1.8 to 7.3) x 103 yrs

the parameters represented by the values of [S]~ 2 to 6 and {C}~ 1/6 to 6, as discussed
above. For instance, consider the cases {C}=1 and {C}=1/6 respectively, both of which (as
may be inferred from the table) can quite plausibly yield proton lifetimes in the range of
10% to 10%* yrs. Now {C}=1 corresponds, e.g., to Sy = 0.014GeV? (the central value of
Ref. [49]) mz = 1.2 TeV and my;/m; = 1/6 (see Eq.(40)), while that of {C}=1/6 would
correspond, for example, to By = 0.014GeV3, with m; ~ 600GeV and my,/m; ~ 1/5. In
short, for the case of ESSM, with low values of tan 8 = 3 to 10 (say), squark masses can be
well below 1 TeV, without conflicting with present limit on proton lifetime. This feature is
not permissible within MSSM embedded in SO(10).

Thus, confining for a moment to the standard operators only, if ESSM represents low-
energy physics, and if tan 3 is rather small (3 to 10, say), we do not have to stretch at all
" the uncertainties in the SUSY spectrum and the matrix elements to their extreme values (in
contrast to the case of MSSM) in order to understand why proton decay has not been seen
as yet, and still can be optimistic that it ought to be discovered in the near future, with a
lifetime < 10%* years. The results for a wider variation of the parameters are listed in Table
2, where contributions of the new d=5 operators are also shown.

It should also be remarked that if in the unlikely event, all the parameters (i.e. Sy,
(my/mg), ms and the phase-dependent factor) happen to be closer to their extreme values
so as to extend proton lifetime, and if tan § is small (=~ 3 to 10, say) and at the same time the
value of M.y is close to its allowed upper limit (see Appendix), the standard d=5 operators
by themselves would tend to yield proton lifetimes exceeding even (1/3 to 1)x 103 years for
the case of ESSM, (see Eq.(49) and Table 2). In this case (with the parameters having nearly
extreme values), however, as I will discuss shortly, the contribution of the new d=5 operators
related to neutrino masses (see Eq.(36)), would dominate and quite naturally yield lifetimes
bounded above in the range of (1 — 10) x 10% years (see Sec.VIE and Table 2). Thus in the

and significantly infuence proton lifetime (see e.g. Table 2). Entries in Table 1 could still represent
the actual expected values of proton lifetimes, however, if the parameter K defined in VI A (also
see VIE) happens to be unexpectedly small (< 1).
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presence of the new operators, the range of (103 — 10%*) years for proton lifetime is not only

very plausible but it also provides a conservative upper limit, for the case of ESSM embedded
in SO(10).

E. Contribution from the new d=5 operators

As mentioned in Sec.VIA, for supersymmetric G(224)/SO(10), there very likely exists
a new set of d=5 operators, related to neutrino masses, which can induce proton decay
(see, Eq.(42)). The decay amplitude for these operators for the leading mode (which in this
case is 7, K*) becomes proportional to the quantity P = {(fs3),(16g)/M thss K/(Me tany),
where (f33), and hs; are the effective couplings defined in Eqgs.(7) and (15) respectively, and
Mg and tan+y are defined in the Appendix. The factor K, defined by (fs3), = (f33). K, is
expected to be of order unity (see Sec.VIA for the origin of K). As a plausible range, we
take K ~ 1/3 to 2. Using Mj¢tany = X' (16y) (see Appendix), and hs3 =~ 1/2 (given by top
mass), one gets: P = ((fs3),/M)(1/2X)K. Here M denotes the string or the Planck scale
(see Sec.IV and footnote 2); thus M ~ (1/2 — 1) x 10'®*GeV; and X is a quartic coupling
defined in the appendix. Validity of perturbative calculation suggests that A’ should not
much exceed unity, while other considerations suggest that A’ should not be much less than
unity either (see Ref. [14], Sec.6E). Thus, a plausible range for X' is given by X' =~ (1/2—+/2).
(Note it is only the upper limit on A’ that is relevant to obtaining an upper limit on proton
lifetime). Finally, from consideration of v, mass, we have (fs3), ~ 1 (see Sec.IV). We thus
obtain: P & (5 x 10719GeV1)(1/v/2 to 4)K. Incorporating a further uncertainty by a factor
of (1/2 to 2) that arises due to choice of the relative phases of the different contributions
(see Ref. [14]), the effective amplitude for the new operator is given by

A0, K ) pew = (1.5 x 107%GeV™1)(1/2V2 to 8)K (51)

Note that this new contribution is independent of M,ys; thus it is the same for ESSM as
it 18 for MSSM, and it is independent of tan 3. Furthermore, it turns out that the new
contribution is also insensitive to €; thus it is nearly the same for cases I and II of the
fermion mass-matrix. Comparing Eq.(51) with Eq.(46) we see that the new and the standard
operators are typically quite comparable to one another. Since there is no reason to expect
near cancellation between them (especially for both 7, K* and 7, Kt modes), we expect the
net amplitude (standard+new) to be in the range exhibited by either one. It is thus useful
to obtain the inverse decay rate assuming as if the new operator dominates. Substituting
Eq.(51) into Eq.(41) and allowing for the presence of the 7, K™ mode with an estimated
branching ratio of nearly 0.4 (see Ref. [14]), one obtains

T Y TK )pew =~ (1 x 103 yrs) [8-1/64] {64-1/64}(K ™2 ~ 9 to 1/4). (52)

The square bracket represents the uncertainty reflected in Eq.(51), while the curly bracket
corresponds to that in the SUSY spectrum and matrix element (Eq.(40)). Allowing for a
net uncertainty at the upper end by as much as a factor of 100 to 600 (say), arising jointly
from the three brackets in Eq.(52), which can be realized by keeping the SUSY-spectrum
and the matrix element in the “nearly-central” or “intermediate” range (see below), the new

29



operators related to neutrino masses, by themselves, lead to a proton decay lifetime given
by:

Y (wK™)Medion ~ (0.7-5) x 10%® yrs. (SO(10) or string G(224))( Indep. of tan ). (53)

For instance, taking the curly bracket in Eq.(52) to be ~ 4 to 10 (say) (corresponding for
example, to By = 0.012 GeV3, (my;/mg) = 1/10 to 1/12 and m; =~ (1 to 1.3)(1.2 TeV)),
instead of its extreme value of 64, and setting the square bracket in Eq.(52) to be ~ 6,
and K~2 = 9, which are quite plausible, we obtain: I Y (DK *),e & (2.2 — 4) x 103 yrs;
independently of tan 3, for both MSSM and ESSM. Proton lifetime for other choices of
parameters, which lead to similar conclusion, are listed in Table 2.

It should be stressed that the standard d = 5 operators (mediated by the color-triplets
in the 105 of SO(10)) may naturally be absent for a string-derived G(224)-model (see e.g.
Ref. [29] and [30]), but the new d = 5 operators, related to the Majorana masses of the RH
neutrinos and the CKM mixings, should very likely be present for such a model, as much as
for SO(10). These would induce proton decay 6. Thus our expectations for the proton decay
lifetime (as shown in Eq. (53)) and the prominence of the u*K° mode (see below) hold for
a string-derived G(224)-model, just as they do for SO(10). For a string - G(224) - model,
however, the new d=5 operators would be essentially the sole source of proton decay.

Nearly the same situation emerges for the case of ESSM embedded in G(224) or SO(10),
with low tan B(~ 3 to 10, say), especially if the parameters (including By, my,/m;, mg,
the phase-dependent factor as well as M.ss) happen to be somewhat closer to their extreme
values so as to extend proton lifetime. In this case, as noted in the previous sub-section,
the contribution of the standard d=5 operators would be suppressed; and proton decay
would proceed primarily via the new operators with a lifetime quite naturally in the range
of 1033 — 10%* years, as exhibited above.

F. The Charged Lepton Decay Modes (p — p+tK° and p — e*70)

I now note a distinguishing feature of the SO(10) or the G(224) model presented here.
Allowing for uncertainties in the way the standard and the new operators can combine with
each other for the three leading modes i.e. 7,K*, 7,K* and pu*K°, we obtain (see Ref. [14]
for details):

B(pt K% starnew = [1% to 50%] & (SO(10) or string G(224)) (54)

where x denotes the ratio of the squares of relevant matrix elements for the ut K° and 7K+
modes. In the absence of a reliable lattice calculation for the ZK* mode, one should remain
open to the possibility of x & 1/2 to 1 (say). We find that for a large range of parameters,

16In addition, quantum gravity induced d=5 operators are also expected to be present at some

level, depending upon the degree of suppression of these operators due to flavor symmetries (see
e.g. Ref. [33]).
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the branching ratio B(u* K?°) can lie in the range of 20 to 40% (if & =~ 1). This prominence of
the u* K° mode for the SO(10)/G(224) model is primarily due to contributions from the new
d=>5 operators. This contrasts sharply with the minimal SU(5) model, in which the u+K?°
mode is expected to have a branching ratio of only about 10~3. In short, prominence of the
ptK°® mode, if seen, would clearly show the relevance of the new operators, and thereby
reveal the proposed link between neutrino masses and proton decay {19].

While the d=5 operators as described here (standard and new) would lead to highly
suppressed e*n® mode, for MSSM or ESSM embedded in SO(10), the gauge-mediated d=6
operators, can still give proton decay into e*#® with an inverse rate =~ 10%5-3%1-5 years, which
can be as short as about 10** yrs. Thus, even within supersymmetric unification, the et7°
mode may well be a prominent one, competing favorably with (even) the 7K+ mode.

G. Section Summary

In summary, our study of proton decay has been carried out within the supersymmetric
SO(10) or the G(224)-framework!?, with special attention paid to its dependence on fermion
masses and threshold effects. A representative set of results corresponding to different choices
of parameters is presented in Tables 1 and 2. The study strongly suggests that, for either
‘MSSM or ESSM embedded in SO(10) or G(224), an upperlimit on proton lifetime is given
by

Toroton < (1/2-1) x 103 yrs, (55)

with 7K™ being the dominant decay mode, and u* K° being prominent. Although there are
uncertainties in the matrix element, in the SUSY-spectrum, in the phase-dependent factor,
tan 8 and in certain sensitive elements of the fermion mass matrix, notably €' (see Eq.(48) for
predictions in cases I versus II), this upper limit is obtained, for the case of MSSM embedded
in SO(10), by allowing for a generous range in these parameters and stretching all of them
- in the same direction so as to extend proton lifetime. In this sense, while the predicted
lifetime spans a wide range, the upper limit quoted above, in fact more like 3 x 1033 yrs,
is most conservative, for the case of MSSM (see Eq.(48) and Table 1). It is thus tightly
constrained already by the empirical lower limit on ['"}*(ZK¥) of 1.6 x 1033 yrs. For the case
of ESSM embedded in SO(10), the standard d=>5 operators are suppressed compared to the
case of MSSM; as a result, by themselves they can naturally lead to lifetimes in the range
of (3 — 10) x 10% yrs., for nearly central values of the parameters pertaining to the SUSY-
spectrum and the matrix element (see Eq.(50)) and Table 1. Including the contribution of
the new d=5 operators, and allowing for a wide variation of the parameters mentioned above,
one finds that the range of (103 — 10%*) yrs for proton lifetime is not only very plausible
but it also provides a rather conservative upper limit, for the case of ESSM embedded in
either SO(10) or G(224) (see Sec.VIE and Table 2). Thus our study provides a clear reason
to expect that the discovery of proton decay should be imminent for the case of ESSM, and

17 A5 described in Secs.III, IV and V.
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even more so for that of MSSM. The implication of this prediction for a next-generation
detector is emphasized in the next section.

VII. CONCLUDING REMARKS

The preceding sections show that, but for one missing piece — proton decay — the evidence
in support of grand unification is now strong. It includes: (i) the observed family-structure,
(ii) the meeting of the gauge couplings, (iii) neutrino-oscillations, (iv) the intricate pattern of
the masses and mixings of all fermions, including the neutrinos, and (v) the need for B — L
as a generator, to implement baryogenesis. Taken together, these not only favor grand
unification but in fact select out a particular route to such unification, based on the ideas
of supersymmetry, SU(4)-color and left-right symmetry. Thus they point to the relevance of
an effective string-unified G(224) or SO(10)-symmetry. .

Based on a systematic study of proton decay within the supersymmetric SO(10)/G(224)-
framework [14], which is clearly favored by the data, and an update as presented here, I have
argued that a conservative upper limit on the proton lifetime is about (1/2 - 1)x10%* yrs.
for the case of either MSSM or ESSM, embedded in SO(10) or a string - G(224).

So, unless the fitting of all the pieces listed above is a mere coincidence, and I believe that
that is highly unlikely, discovery of proton decay should be around the corner. In particular,
as mentioned in the Introduction, we expect that candidate events should very likely be
observed in the near future already at SuperK. However, allowing for the possibility that
proton lifetime may well be near the upper limit or value stated above, a next-generation
detector providing a net gain in sensitivity by a factor five to ten, compared to SuperK, would
be needed to produce real events and distinguish them unambiguously from the background.
Such an improved detector would of course be essential to study the branching ratios of
certain crucial though (possibly) sub-dominant decay modes such as the y*K® and e*7° as
mentioned in Sec.VIF.

The reason for pleading for such improved searches is that proton decay would provide
us with a wealth of knowledge about physics at truly short distances (< 1073 cm), which
cannot be gained by any other means. Specifically, the observation of proton decay, at a
rate suggested above, with 7K+ mode being dominant, would not only reveal the underlying
unity of quarks and leptons but also the relevance of supersymmetry. It would also confirm
a unification of the fundamental forces at a scale of order 2 x 10'® GeV. Furthermore,
prominence of the pu*K® mode, if seen, would have even deeper significance, in that in
addition to supporting the three features mentioned above, it would also reveal the link -
between neutrino masses and proton decay, as discussed in Sec.VI. In this sense, the role
of proton decay in probing into physics at the most fundamental level is unique . In view
of how valuable such a probe would be and the fact that the predicted upper limit on the
proton lifetime is at most a factor of three to six higher than the empirical lower limit, the
argument in favor of building an improved detector seems compelling.

To conclude, the discovery of proton decay would undoubtedly constitute a landmark
in the history of physics. It would provide the last, missing piece of gauge unification and
would shed light on how such a unification may be extended to include gravity in the context
of a deeper theory.
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APPENDIX: A NATURAL DOUBLET-TRIPLET SPLITTING MECHANISM IN
SO(10)

In supersymmetric SO(10), a natural doublet—triplet splitting can be achieved by coupling
the adjoint Higgs 45y to a 10y and a 10y, with 45y acquiring a unification—scale VEV in
the B-L direction [58): (45y) = (a,a,a,0,0) x 7 with a ~ My. As discussed in Section V,
to generate CKM mixing for fermions we require (16g)4 to acquire a VEV of the electroweak
scale. To ensure accurate gauge coupling unification, the effective low energy theory should
not contain split multiplets beyond those of MSSM. Thus the MSSM Higgs doublets must be
linear combinations of the SU(2),, doublets in 10y and 16g. A simple set of superpotential
terms that ensures this and incorporates doublet-triplet splitting is [14]:

Wy = A10g 455 10} + Mo 10" + X165 165 105 + Mg 165165 . (A1)

A complete superpotential for 45y, 165, 165, 105, 10’ and possibly other fields, which
ensure that (a) 455, 16y and 16y acquire unification scale VEVs with (45y) being along the
(B-L) direction; (b) that exactly two Higgs doublets (H,, H;) remain light, with H; being a
linear combination of (10g)s and (16x)g; and (c) there are no unwanted pseudoGoldstone
bosons, can be constructed. With (45y) in the B-L direction, it does not contribute to
the Higgs doublet mass matrix, so one pair of Higgs doublet remains light, while all triplets
acquire unification scale masses. The light MSSM Higgs doublets are [14]

H, = 10,, H; = cosy104 + siny16,, (A2)

with tany = X' (165)/M;6. Consequently, (10)4 = (cos <) vg, (164) = (sin~y) vq, with (Hy) =

vg and (164) and (104) denoting the electroweak VEVs of those multiplets. Note that H,

is purely in 10y and that (104)° + (164)° = v2. This mechanism of doublet-triplet (DT)

splitting is the simplest for the minimal Higgs systems. It has the advantage that meets

the requirements of both D-T splitting and CKM-mixing. In turn, it has three special

consequences: )
(i) It modifies the familiar SO(10)-relation tan 8 = v, /vg = my/my = 60 to 8:

181t is worth noting that the simple relationship between cosy and tanf - ie. cosy =~
tan 8/(m¢/mp) - would be modified if the superpotential contains an additional term like \"16y -
165 - 10y, which would induce a mixing between the doublets in 10, 164 and 104. That in turn will
mean that the upper limit on M.y cosy following from considerations of threshold corrections (see
below) will not be strictly proportional to tan 8. I thank Kaladi Babu for making this observation.
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tan 8/ cosy = my/my =~ 60 (A3)

As a result, even low to moderate values of tan 3 = 3 to 10 (say) are perfectly allowed in
SO(10) (corresponding to cos~y ~ 1/20 to 1/6).

(ii) The most important consequence of the DT-splitting mechanism outlined above is
this: In contrast to SU(5), for which the strengths of the standard d=5 operators are pro-
portional to (Mg,)™! (where My, ~ few x 10'® GeV (see Eq. (44)), for the SO(10)-model,
they become proportional to Me'flf, where Mcsr = (Ma)?/Miy ~ M%/Myy. As noted in
Ref. [14], My can be naturally smaller (due to flavor symmetries) than My and thus M,
correspondingly larger than Mx by even one to three orders of magnitude. Now the proton
decay amplitudes for SO(10) in fact possess an intrinsic enhancement compared to those for
SU(5), owing primarily due to differences in their Yukawa couplings for the up sector (see
Appendix C in Ref. [14]). As a result, these larger values of M,ss ~ (10'® — 10'°) GeV are
in fact needed for the SO(10)-model to be compatible with the observed limit on the proton
lifetime. At the same time, being bounded above by considerations of threshold effects (see
below), they allow optimism as regards future observation of proton decay.

(ili) M.ss gets bounded above by considerations of coupling unification and GUT-scale
threshold effects as follows. Let us recall that in the absence of unification-scale threshold
and Planck-scale effects, the MSSM value of a3(mz) in the MS scheme, obtained by assuming
gauge coupling unification, is given by az(mz)jgem = 0.125 — 0.13 [7]. This is about 5 to
8% higher than the observed value: az(mz) = 0.118 £ 0.003 [13]. Now, assuming coupling
unification, the net (observed) value of aj, for the case of MSSM embedded in SU(5) or
SO(10), is given by:

3 (Mz)net = 03(Mz)yssm + Das(mz)Pe 1 + Aj (A4)

where Aas(mz)pr and A} represent GUT-scale threshold corrections respectively due
to doublet-triplet splitting and the splittings in the other multiplets (like the gauge
and the Higgs multiplets), all of which are evaluated at mz. Now, owing to mix-
ing between 10; and 164 (see Eq. (A2)), one finds that Aas(mgz)pr is given by
(as(mz)?/27) (9/7) In(Mags cos 7/ M) [14].

As mentioned above, constraint from proton lifetime sets a lower limit on Mg given by
Mg > (1 — 6) x 10'8GeV. Thus, even for small tan 8 =~ 2 (i.e. cosy = tan((3/60) =~ 1/30),
Aas(mz)pr is positive; and it increases logarithmically with Meg. Since as(mz)3sey 1S
higher than az(mz)ops, and as we saw, Aaz(mz)pr is positive, it follows that the corrections
due to other multiplets denoted by &3 = A}/as(mz) should be appropriately negative so -
that ag(mz)net would agree with the observed value.

In order that coupling unification may be regarded as a natural prediction of SUSY uni-
fication, as opposed to being a mere coincidence, it is important that the magnitude of the
net other threshold corrections, denoted by d3, be negative but not any more than about 8
to 10% in magnitude (i.e. —d% < (8—10)%). It was shown in Ref. [14] that the contributions
from the gauge and the minimal set of Higgs multiplets (i.e. 45g,164,16y and 105) leads
to threshold correction, denoted by 65, which has in fact a negative sign and quite naturally
a magnitude of 4 to 8%, as needed to account for the observed coupling unification. The cor-
rection to az(mz) due to Planck scale physics through the effective operator F,, F*455 /M
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does not alter the estimate of 6; because it vanishes due to antisymmetry in the SO(10)-
contraction.

Imposing that &5 (evaluated at mz)be negative and not any more than about 10-11%
in magnitude in turn provides a restriction on how big the correction due to doublet-triplet
splitting - i.e. Aas(mz)pr - can be. That in turn sets an upper limit on M,ss cos+y, and
thereby on M, for a given tan §. For instance, for MSSM, with tan 3 = (2, 3, 8), one obtains
(see Ref. [14]): M.ss < (4,2.66,1) x 10'8GeV. Thus, conservatively, taking tan 8 > 3, one
obtains:

Mes; < 2.7 x 10¥GeV (MSSM). (A5)

Limit on M,s; For The case of ESSM

Next consider the restriction on M,ss that would arise for the case of the extended su-
persymmetric standard model (ESSM), which introduces an extra pair of vector-like families
(16 + 16) of SO(10)) at the TeV scale [20](see also footnote 11). In this case, quyy is raised
to 0.25 to 0.3, compared to 0.04 in MSSM. Owing to increased two-loop effects the scale
of unification My is raised to (1/2 — 2) x 107GeV, while a3(mz)gesy is lowered to about
0.112-0.118 [20,57).

With raised My, the product M.sscosy =~ M.ss(tan §)/60 can be higher by almost a
factor of five compared to that for MSSM, without altering Aas(mz)pr. Furthermore, since
asz(mz)3ssy s typically lower than the observed value of az(mz) (contrast this with the case
of ESSM), for ESSM, M.ss can be higher than that for MSSM by as much as a factor of 2
to 3, without requiring an enhancement of 6;. The net result is that for ESSM embedded in
SO(10), tan 3 can span a wide range from 3 to even 30 (say) and simultaneously the upper
limit on M,ss can vary over the range (60 to 6)x10'GeV/, satisfying

M. < (6 x 10'GeV)(30/ tan 8) (ESSM), (A6)

with the unification-scale threshold corrections from “other” sources denoted by d; =
A} /az(mz) being negative, but no more than about 5% in magnitude. As noted above,
such values of 63 emerge quite naturally for the minimal Higgs system. Thus, one important
consequence of ESSM is that by allowing for larger values of M.ss (compared to MSSM),
without entailing larger values of 43, it can be perfectly compatible with the limit on proton
lifetime for almost central values of the parameters pertaining to the SUSY spectrum and
the relevant matrix elements (see Eq.(40)). Further, larger values of tan 8 (10 to 30, say)
can be compatible with proton lifetime only for the case of ESSM, but not for MSSM. These
features are discussed in the text, and also exhibited in Table 2.
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TABLE 2. VALUES OF PROTON LIFETIME (I'"!(p - vK*)) FOR A WIDE
RANGE OF PARAMETERS

Parameters MSSM — SO(10) ESSM — SO(10) MSSM ‘
(spectrum/Matrix Std. d=5 Std. d=5 { E(SnéM — G(224)/50(10)
element) Intermed. € & phase!|Intermed. € & phase! New d=51t
tan =3 | tan /=20 ||tan $=5| tan =20 Independent of tan G
Nearly “central” |0.7 x 10%2| 1.6x10% [[1.1x10%*| 0.7x10% 0.7 x 10%
{ }=2 yIs yrS yrs* yrs yrstt
Intermediate |2.8x10% | 0.6x10%! [|0.4x10%| 2.8x10% 2.8x10%
{ }=8 yrs yrs yrs* yrs yrsit
Nearly Extreme [1.1x10% | 2.6x10° [[1.7x10%°| 1.1x10%* 1.1x10%
{ }=32 yIS yIS yrs* yIS yrsit
*In this case, lifetime is given by the last column.

e Since we are interested in exhibiting expected proton lifetime near the upper end, we
are not showing entries corresponding to values of the parameters for the SUSY spectrum
and the matrix element (see Eq.(40), for which the curly bracket appearing in Egs.(47), (49),
(52)) would be less than one (see however Table 1). In this context, we have chosen here
“nearly central”, “intermediate” and “nearly extreme” values of the parameters such that
the said curly bracket is given by 2, 8 and 32 respectively, instead of its extreme upper-end
value of 64. For instance, the curly bracket would be 2 if 8y = (0.0117) GeV?, m; ~ 1.2
TeV and my,/mg =~ (1/7.2), while it would be 8 if By = 0.010 GeV?, m; ~ 1.44 TeV and
my, /mg = 1/10; and it would be 32 if, for example, Sz = 0.007 GeV3, m; =~ v/2(1.2 TeV)
and my, /m; = 1/12.

t All the entries for the standard d=5 operators correspond to taking an intermediate
value of € ~ (1 to 1.4) x 10~* (as opposed to the extreme values of 2x 10™* and zero for cases
I and II, see Eq.(34)) and an intermediate phase-dependent factor such that the uncertainty
factor in the square bracket appearing in Eqgs.(47) and (49) is given by 5, instead of its
extreme values of 2 x 4 = 8 and 2.5 x 4 = 10, respectively.

11 For the new operators, the factor [8-1/64] appearing in Eq.(52) is taken to be 6, and
K2, defined in Sec.VIA, is taken to be 9, which are quite plausible, in so far as we wish to
obtam reasonable values for proton lifetime at the upper end.

" e The standard d=5 operators for both MSSM and ESSM are evaluated by taklng the
upper limit on Mgs; (defined in the text) that is allowed by the requirement of natural .
coupling unification. This requirement restricts threshold corrections and thereby sets an
upper limit on M.y, for a given tan 8 (see Sec.VI and Appendix).

* For all cases, the standard and the new d=5 operators must be combined to obtain the
net amplitude. For the three cases of ESSM marked with an asterisk, and other similar cases
which arise for low tan 8 ~ 3 to 6 (say), the standard d=5 operators by themselves would
lead to proton lifetimes typically exceeding (0.1 —0.7) x 103 years. For these cases, however,
the contribution from the new d=5 operators would dominate, which quite naturally lead to
lifetimes in the range of (1033 — 1034) years (see last column).

e As shown above, the case of MSSM embedded in SO(10) is tightly constrained by
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present empirical lower limit on proton lifetime (Eq.(42)). In this case, only low values of
tan 8 < 3, with the parameters (pertaining to the SUSY spectrum, matrix element and
phase-dependent factor) having their “nearly extreme” or extreme values (as in Eq.(40))
can lead to lifetimes in the range of (1 — 3) x 1033yrs (see Table and Eq.(48)), compatible
with present empirical limit. Other cases of MSSM - especially with tan$ > 5 and/or
“nearly central” or even “intermediate” range of parameters - seem to be excluded, subject
(of course) to our requirement for natural coupling unification (see Sec.VI and Appendix).

e Including contributions from the standard and the new operators, the case of ESSM,
embedded in either G(224) or SO(10), is, however, fully consistent with present limits on
proton lifetime for a wide range of parameters; at the same time it provides optimism that
proton decay will be discovered in the near future, with a lifetime < 103* years.

e The lower limits on proton lifetime are not exhibited. In the presence of the new opera-
tors, these can typically be as low as about 10?° years (even for the case of ESSM embedded
in SO(10)). Such limits and even higher are of course long excluded by experiments.

e Allowing for a wide variation in the relevant parameters, we thus see that a conservative
upper limit on proton lifetime is given by the range of (1/2 — 1) x 10** years for ESSM and
(of course) MSSM, embedded in SO(10) or string-G(224).
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Abstract

Recently a promising mechanism for supersymmetry breaking that utilizes both an anomalous
U(1) gauge symmetry and an effective mass term m ~ 1 TeV of certain relevant fields has been
proposed. In this paper we examine whether such a mechanism can emerge in superstring-derived
free fermionic models. We observe that certain three-generation string solutions, though not all,
lead to an anomalous UU(1) which couples universally to all three families. The advantages of
this three-family universality of U(1)4, compared to the two-family case, proposed in earlier
works, in yielding squark degeneracy, while avoiding radiative breaking of color and charge, are
noted. The root cause of the flavor universality of U(1), is the cyclic permutation symmetry
that characterizes the Z x Z orbifold compactification with standard embedding, realized in
the free fermionic models by the NAHE set. It is shown that non-renormalizable terms which
contain hidden-sector condensates, generate the required suppression of the relevant mass term m,
compared to the Planck scale. While the D-term of the family-universal U(1)4 leads to squark
degeneracy, those of the family-dependent U(1)’s, remarkably enough, are found to vanish for
the solutions considered, owing to minimization of the potential. Motivations are provided for the
combined U(1)-Dilaton SUSY breaking. (©) 1998 Elsevier Science B.V.

PACS: 11.25.Mj; 12.60Jv; 14.80.Ly
Keywords: Realistic superstring models; Supersymmetry breaking; Squark degeneracy

1. Introduction

Understanding the origin of (i) supersymmetry breaking and simultaneously of (ii)
the extreme degeneracy in the masses of the squarks in at least the first two families,
as inferred from the minuscule strengths of the K°-K° transition, is still among the
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important unsettled issues in particle physics. Equally important is understanding the
Jarge hierarchy between the Planck scale and the SUSY breaking mass splitting émy,
reflected by the ratio Sm;/Mp ~ 10715,

Several mechanisms have been proposed to implement SUSY breaking. These include
the ideas of: (i) gaugino condensation in the hidden sector [1]; (ii) dilaton dominated
SUSY breaking (DDSB) [2]; (iii) gauge mediated SUSY breaking (GMSB) [3];
whose intrinsic origin is delegated to an unknown mechanism involving an effective
singlet field, which couples to a set of messenger particles; and (iv) SUSY breaking,
induced through joint effects of an anomalous U(1) gauge interaction and effective
mass terms of certain relevant fields, which carry the anomalous U(1) charge [4-6].
The mass terms in case (iv) represent the scale of SUSY breaking mass splitting dmy,
and thus, on phenomenological grounds, they must be of order 1 TeV.

Among these, the mechanism of DDSB automatically yields squark degeneracy at
the tree level. It however has the problem of possible color- and charge-breaking (sece
e.g. the last paper in Ref. [2]). The GMSB yields squark degeneracy, provided that
the superpotential Yukawa interactions of the messenger fields with the Standard Model
fields are suppressed. The existence of such messenger fields in superstring-derived
models was proposed [8]. That of the anomalous U(1) can yield the desired degeneracy
provided that it couples universally to at least the first two families, which is assumed in
Refs. [5,7]. Short of deriving any of these from an underlying theory, such as superstring
theory, however, the scale of SUSY breaking mass splittings dm; as well as the choice
of fields and of their quantum numbers are rather arbitrary. They must therefore be put
in by hand.

It is thus of great interest to examine whether any of these mechanisms could in fact
emerge from within a superstring theory. Now, phenomenologically viable, solutions of
string theory invariably do indeed contain an anomalous U(1) as a generic feature (see
e.g. Refs. [9-15], as examples of models based on the free fermionic construction [16].
We wish therefore to explore in this note the viability of supersymmetry breaking through
an anomalous U(1) in the context of such string-derived solutions. In particular, we
examine whether they can yield either a two- or a three-family-universal anomalous
U(1) that would lead to squark mass degeneracy (following SUSY breaking) on the
one hand, and yet would not conflict with the observed hierarchy in the masses of the
fermions on the other hand; and whether these solutions can also yield non-vanishing but
strongly suppressed mass terms m < Mpy of certain relevant fields, which are essential
to trigger SUSY breaking. The smallness of m compared to the Planck mass would then
account for the large hierarchy between ém; and Mp;.

Given that string theory yields a vast set of solutions at the tree level and that no guid-
ing principle is available to choose between them, it is, of course, still premature to take
too seriously any specific solution. Yet certain generic features of a class of solutions,
related especially to their symmetry properties, may well survive in the final picture.
With this in mind and for concreteness, we examine the issues noted above within a
specific class of string-derived solutions, which are obtained in the free fermionic for-
mulation [16], and yield non-GUT standard model-like gauge symmetries with three
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generations [13,14]. Later, we will comment on the issue of flavor universality of the
anomalous U(1) in some other solutions such as those of Refs. [9,11]. A priori mo-
tivations for considering the class of solutions obtained in Refs. [13,14] are that (a)
they seem capable of generating qualitatively the right texture for fermion masses and
mixings; (b) they provide a natural doublet-triplet splitting mechanism because of their
non-GUT character and (c) they also possess extra gauge symmetries, beyond SUSY
GUTs, which, together with the allowed pattern of VEVs, safeguard proton stability
from all potential dangers [17,18], including those which may arise from higher dimen-
sional operators and from the exchange of color triplets in the heavy tower of string
states. These extra symmetries also turn out to be helpful in suppressing ¥;—H mixing
operator [19]. Last but not the least, having their origin in a string theory, they of
course satisfy gauge coupling unification in spite of their non-GUT character [20]. The
obvious question is whether this class of string solutions also permits supersymmetry
breaking at the electroweak scale through an anomalous U(1), while preserving family
universality in squark masses.

In Section 2, we observe that the desired family universality of the anomalous U(1)
is by no means a general property of string solutions, but it holds in the class of
solutions obtained in Refs. [13,14]. We point out the root cause why it holds for
this class. In Sections 3 and 4, we discuss supersymmetry breaking and generation of
relevant mass terms for these solutions. We show in Section 4 that there exist solutions
in this class which yield operators of dimension n > 4, that induce highly suppressed
relevant mass terms, ~ (%—50) TeV. These mass terms, together with the anomalous
U(1), induce SUSY breaking. Thus these solutions have the potential for explaining
(a) supersymmetry breaking, (b) gauge hierarchy and (c¢) squark degeneracy.

An issue of special concern is that string solutions invariably possess a host of other
U(1)’s, which are family-dependent, and contributions from their D-terms, if non-
vanishing, could potentially spoil squark degeneracy. We show in Section 3 that there
exist solutions for which the contributions from the undesirable D-terms, remarkably
enough, vanish owing to a minimization of the potential. In short, the class of string
solutions considered here, though by no means unique, possesses three non-trivial and
highly desirable features: (i) a family-universal anomalous U(1), (ii) suitably sup-
pressed mass terms of relevant fields which trigger SUSY breaking, and (iii) vanishing
of family-dependent D-term contributions. In Section 5, we mention certain features of
phenomenological interest. In particular string solutions of Refs. [13] or [14] lead to
approximate squark degeneracy for all three families. This is in contrast to the case
of Refs. [5,7], where the degeneracy holds (because of the choice of the anomalous
charge) only for the first two families. Advantages of three- compared to two-family
squark-degeneracy in avoiding radiative color- and electric charge-breaking ~ are noted.
We also point out that the solution of Ref. [14] leads to intra-family-sfermion degener-
acy (i.e. mg, = mg, =my =my, etc.), whereas that of Ref. [13] leads to considerable
splitting between the members of a family. In Sections 6 and 7, we make some general
remarks about the prospect of supersymmetry-breaking through U(1)4, and provide
motivations for the combined anomalous-U(1)-Dilaton SUSY breaking.
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2. A family-universal anomalous U(1) in a class of string solutions

We begin by recalling certain salient features of the solutions based on the free
fermionic formulation [16]. They are defined by a set of boundary condition basis
vectors and the associated one-loop GSO projection coefficients. The massless states are
obtained by applying the generalized GSO projections. Each massless state defines a
vertex operator and the cubic and higher order terms in the superpotential are obtained
by calculating the correlators between the vertex operators [21,22].

The specific class of solutions [13,14] which we examine here are generated by
a set of eight boundary condition basis vectors. The first five of these, denoted by
{1, S, by, by, b3}, constitute the so-called NAHE set [9,23]. They are common to a large
class of viable string solutions, including those of Refs. [9,11,12]. The properties of
the NAHE set are crucial to understanding how the required flavor universality of the
anomalous U(1) may arise in certain free fermionic solutions. We therefore refer the
reader to Refs. {9,23] for a definition of these basis vectors and their detailed properties.
Here we note only certain salient features. The vectors {1, S} give rise to a solution
with N =4 space-time supersymmetry and SO(44) gauge symmetry. The vectors b, b,
and b; break N =4 to N =1 and SO(44) to SO(10) x Eg x SO(6)3, where SO(10) is
identified with the GUT symmetry containing the Standard Model. Each of the vectors
by, by and b3 produces 16 multiplets, each of which is a 16 of SO(10); thus there are
altogether 48 generations. The sixteen generations produced by each b; are charged with
respect to only one of the SO(6);-symmetries, which is why the SO(6) ;-symmetries
provide the origin of flavor symmetries. Note that at this stage, there is a complete
permutation symmetry between the sectors by, b, and b;, which is reflected in the full
set of gauge interactions as well as in the superpotential. It is this permutation symmetry
which leads to family universality of the anomalous U(1) in some models.

It is important to note that the NAHE set corresponds to a Z, x Z, orbifold com-
pactification. This seemingly apparent observation has far reaching phenomenological
implications. The focus in this paper is on SUSY breaking and squark degeneracy.
The correspondence of the NAHE set with Z, x Z, orbifold compactification is best
illustrated by adding to the NAHE set the boundary condition basis vector X with
periodic boundary conditions for the world-sheet fermions {¢/!+3, !>}, and antiperi-
odic boundary conditions for all others. With a suitable choice of the generalized GSO
projection coefficients the SO(10) gauge group is enhanced to Eg. The SO(6)? sym-
metries are broken to SO(4)3 x U(1)3. One combination of the U(1) symmetries is
embedded in Es. The gauge group in this case would be Eg x Eg x SO(4)* x U(1)2.
This extended NAHE set then corresponds to a Z; X Z; orbifold with the standard
embedding of the gauge connection [24]. The three sectors generated by b, b, and b3
are the three twisted sectors of the orbifold models. The cyclic permutation symmetry
associated with the NAHE set is thus simply the symmetry between the three twisted
sectors of the Z, x Z, orbifold, with standard embedding. The permutation symmetry
also applies to the spectrum that arises from the untwisted sector, including the moduli.
The phenomenological motivation for this symmetry will become apparent in the context
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of supersymmetry breaking and squark degeneracy. Whether this symmetry is unique to
the Z, x Z, orbifold compactification is an open question.

The next stage in the construction of viable solutions is the introduction of additional
boundary condition basis vectors, which reduce the number of chiral generations from
forty-eight to three, barring possible vector-like multiplets. These also break SO(10)
to one of its subgroups — e.g. SU(5) x U(1) [9], SO(6) x SO(4) [11] or SU(3) x
SU(2) x U(1)? [10,13,14]. The hidden Eg symmetry is typically also broken to one
of its subgroups, and the horizontal SO(6)* symmetry breaks typically to Abelian
factors of U(1)", where n(> 3) varies between the solutions. As we discuss below,
the permutation symmetry of the full set of gauge interactions with respect to the three
chiral families is retained for solutions of the type presented in Refs. [13,14], in spite
of the introduction of three additional boundary condition basis vectors (beyond the
NAHE set). But this is not the case for the solutions of Refs. [9,11]. The reason for
this difference is that in the case of Refs. [13,14] the three chiral families have their
origin entirely in the sectors b;, b, and bs respectively, and there are no additional
vector-like families. By contrast, for the cases of Refs. [9,11], owing to the nature
of the additional boundary condition basis vectors, there are vector-like multiplets in
addition to the three chiral families, and the latter do not all arise from the sectors b,
b, and b3 respectively.

In summary, the NAHE set naturally gives rise to the permutation symmetry of the
three families, or rather three groups of families, both in the gauge as well as in the
superpotential sector. This symmetry need not, however, be retained in general in the
presence of additional boundary condition basis vectors, beyond the NAHE set. It is
intriguing that the stated symmetry is fully retained in the gauge sector (though it
is partially lost in the superpotential, see below) for solutions of the type presented
in Refs. [13,14]. As we will show, this permutation symmetry in the gauge sector
guarantees family universality of the anomalous U(1).

As concrete examples, we consider the solutions of both Ref. [13] and Ref. [14],
which we will refer to as solutions I and II respectively. They are very similar for
most purposes, yet they possess certain crucial differences. The gauge symmetry in both
cases, arising from the NS sector, after application of all the GSO projections, has the
following form, at the string scale:

6
G=[SUB)c x SUR)L x U(1)p—L x U(1)p,, ] X [GM = HU(I),] x Gy.

i=1

(2.1)

Here, U(1); denote six horizontal flavor symmetries, which descend from SO(6)3, and
act non-trivially on the three chiral families, Higgs multiplets as well as Hidden matter
states. In both cases, Gy = SU(5)y x SU(3)y x U( 1)%,, is the gauge symmetry of the
hidden sector. In the model of Ref. [14] additional space-time vector bosons arise from
the sector 1+ a + 2y and enhance the SU(3)¢ gauge group to SU(4)c [25] (which we
use in Tables 4, 5 and 6). This enhancement, however, does not affect our discussion
here.
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Table |
Massless states for solution I (Ref. [13]) which transform solely under the observable gauge group

F sector SUGBYXSU2) Qc QL @1 @2 O3 Q4 Qs Qs SUGS)XSU3) Q7 Qs
Ly b (1,2) -2 0 3 0 0o 4 0o o (0 0 0
Qi (3,2) Lot 0o o-1 0o o 0 0
dy 3.1 -4 -1 1 0o o-1 0o o D 0 0
Ny (L, -1 4 0 0 -4 0 0 (LD 0 o
uy (3.1 -3 1 3 0 0 4 0 0 (1 0 0
el (L1 i1 L 0 0o 1 0o o an 0 0
Ly I (1,2) -2 0 0 4 0 0o 1 o 0 0
o (3,2) o 0 4 0o o0o-f 0o n 0 0
d 3.1 -4+ -1 0 4 0 o0o-1 0o n 0 0
N, (L1) -1 0 4 0 0 -3 0 (1,1 0 0
U 3.1 -t 1 0 4 0 0o 3 0 0 0
e (1,1) 10 4 0 0o 3 0o @y 0 0
Ly b3 (1,2) -3 0 0 0 4 0 0 5 (LD 00
03 3,2) {00 0 1 0 0 -3 (LD 0 0
ds (3.1 -l -1 0 0o {1 0o 0o -3 @D 0 0
N (1,1 -1 0 0 3 0 0 -1 (LD 0 0
u3 (3,1 -t 0 0o 4 o o 1 an 0 0
e3 (1,1) 310 0 % 0o 0o 1 an 0 0
hy NS (1,2) 0-1 1 0 0 0 0 0 (1,1 0 0
ha (1,2) 0 -1 0 1 0 0 0 0 (1,1 0 0
hy (1,2) 0-1 0 0 1 0 0 0 (LD 0 0
b1 (L1 0 0 1 -1 0 0 0 0 (1,1 0 0
P (L 0 0 1 0-1 0 0 0 (1,1 0 0
P23 (1, 1) 0 0 0 1 -1 0 0 0 (1D 0 0
has b1+ by (1,2) 0 -1-{-1 0 0o 0o o (LD 0 0
Ds tTetB (31 -1 o-1-1 9 0o 0o o @ 0 0
D5 (1,1 0 0-4 -3 -1 0 0 0 (LD 0 0
o (L1 0o 0-4 L1 o£1 0o o (10D 0 0
of (1.n o o-1 L o o+ 0o 0 0
o (1, 1) 0o o~ 4 0o o o =x1 D 00

Qc =3/2(B ~ L) and Qy = 2T3,. The NS and the b) + b + a + B sectors contain also the conjugate states
(hy, etc.). The NS sector contains an additional three singlet states, £) 23, which are neutral undeér all the
U(1) symmetries.

The massless spectrum of solution I (Ref. [13]), together with the quantum numbers
of the respective states, is exhibited in Tables 1, 2 and 3. The spectrum includes the three
generations that arise from the sectors by, b, and b3, the Higgs-like multiplets 423, has
and their conjugates, the color triplets (Das, D4s), the SO(10) singlets cbffm, Dys, Do,
&3, Py3 and their conjugates, and the hidden sector multiplets (V;, Vi, TiT;)i=1,23. We
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Table 2
Massless states for solution I (Ref. [13])
F  sector SUGBYXSU(2) Qc Q1 Q1 @2 Q3 Qs Qs Q¢ SUGS)XSU(3) Q7 Qs
1 1 1 1 ]
i bi+2y (1) 0 0 0 3 3 3 0 0 (1,3 -+ 3
v T 0 0 0 % % % 0 0 (13 I3
T (1,1) 0 0 0 3 7 —3 0 0 (?,l) —% _%
Ty (L1 o o o i 1-1 0 o G 13
Vi by+2y (1,1 00 3 0 4 0o 1 0o (13 -1 3
+ (1) 1 1 1 3 1 _5
1% (LD 0 0 ? 0 ? 0 5 0 (1,3 5 -3
T (L1 0 0 3 0 3 0-3 0 G -4 -2
Ty (1,1) 0 0 3 0 3 0-3 0 G5 3 3
i bha+y+ (LD o o 1 4 0 0 0o 1 (13 -3 3
v 1) 11 1 3 1 _5
o+ (1,1) o 0 4+ L o 0o 0o I 3 J
T 1,1) 0 0 3 3 0 0 0 -3 (50 -1 -3
Ty 1,1 0o o 4 1 0o 0o o0o-{ 5 i3
H bi+b (1,1 R B B S A AN ¢ ) i-3
He 1310 @b i T i i e B -4 3
y+) 3 i 1 1 1 1 1 0 1.1 3 15
Hy LD i 3734 7% 37172 (4.1 i %
Hy (1.1 i3 & i-i-173 0 @D -7
B bkl D F bbb 04 ay b -1
+a -3 _1 1_.1 1_1 -1 a3 -1 s
A T2 R G B - S I DA Bt § g
Hy (1.1 i 271 373 ~73 0-3 (LD -3
Hy (L1 -i-3 i-f 17z 0 -3 @D i -7
Hy b+ bs (1,1) - B B B S N B¢ ) -3
Ho 1516 A T T S L T SO -t 3
y+ D) 3 01 1 _1 _1 ¢ _1 _}1 1 3 Is
Hi 1.n i 7 37171 -z =3 (LD -1 7
Hiy (1.1 it -i-io1 0-3 -3 4D i-?
His b1+b:l3: (L1 -3 11 41 0 0 0 (1,3 3 3
+taty 3.1 1.1 1 3 -3 _3
e GO I I T A § 7y
Hys (L,2) "3z EEEEE 0 0 0 (LD "3 —E
His (1,2) AR R 0 0 0 (LD i
Hi (1L -3 1131 90 0o o D -1 B
Hyg (LD i-34 4 1 4 0 0 0 (LD i 2

see that each generation that arises from the sector bj, is charged with respect to two of
the U(1)’s —i.e. U(1)g; and U(1)g,,,. For each right-moving gauged U(1) symmetry,
there is a corresponding left-moving global U(1) symmetry, denoted by U(1),, and
U(1)y,,,;, and the states from each sector b; are charged with respect to two of these
global symmetries.

The spectrum for solution II (Ref. [14]) is very similar. The main difference is
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Table 3
Massless states for solution I (Ref. [13])

F sector SUBYXSU2) Qc QL @1 @2 Q3 Qs Qs Qs SUGS)XSU3) Q7 QO
Hyg by + b3 (LD -2 3 14— 0 0 0 51 -3 3

+aty 3 1 _1 1L 1 5 1 _9
Ho D 1.1 P14 4 3 0 0 0 G 1_e
Hy (3,1 p L bbb 0 0 0 b -1 s
Hp (3.1) -4 -1-3 L L+ 0o 0o o 1 Lo
Hos (1,1) -3 4§ -5 3 0 0 0 1ou
Has (1,1 -1 -1 L -3 0 0 0 b -1 B
Hs (1,1 -3 1 13-l 0 0 0o Sy
Hy (1,1) 313 b 0 0 0 D Lo
Hy bi+by (L1 -3 -3 -i-i-i-3 3 3 (L3 i -3

+b3+a 3 1 1 1 1 1 _.1_1 3 _1 s
Hig +Bxy (1,1) ;1‘ 3 ‘: ;11 ‘: % 3 —3 (L,3) i 2
Hy +(I) (1,1 -3 -3 ~i-%i-31 3-3 3 (LD -3 &
Ho a.n R Pk

that the six SO(10)-singlets @fm are replaced by only two fields @;,, while hys
is accompanied by an additional doublet hjs and P45 by P)s, and the color triplets
(Da4s, Dy4s) are absent. These are listed in Tables 4, 5 and 6.

While the subgroup SU(3)¢c x SU(2), x U(1)p—_ X U(D)g, of SO(10) treats all
three families universally, it is easy to see from Table 1 that the pairs (U;, Us), (U2, Us)
and (Us, Us), respectively couple to families 1, 2 and 3 in an identical fashion. Thus,
on the one hand, these six U(1) symmetries, having their origin in SO(44), distinguish
between the three families, unlike a GUT symmetry like SO(10); thereby they serve as
the origin of flavor symmetries, which are needed to explain the hierarchical Yukawa
couplings of the three families (see below). On the other hand, as stated before, they
preserve the full permutation symmetry with respect to the three families.

It is easy to check that solution I (Ref. [13]) contains six anomalous U(1) symme-
tries: TrU; = Tt U, = TrUs = 24, TrUy = TrUs = TrUg = —12. These can be expressed
by one anomalous combination which is unique and five non-anomalous ones: !

1

1
Us=—= (2(U1 + Uy +Us) — (Us + Us +U6)), TrQ, = i 130. 22

One choice for the five anomaly-free combinations is given by

1 1
Up=— (U - U3), Uy =— (U + U, =2U5), 2.3
12 \/5( 1 2) v \/6( 1 2 3) (2.3)

1 1
Usys=—= (Us —Us), Ur=— (Us +Us —2Us), 24
45 \/5( 4 5) ¢ \/6( 4 5 s) (2.4)

! The normalization of the different U(1) combinations is fixed by the requirement that the conformal
dimension of the massless states still gives A = 1 in the new basis. We remark in advance that the proper
normalization must be taken as it affects the minimization of the potential (see below).
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Table 4
Massless states for solution II (Ref. [14])
F  sector SUMBcxSURIL Qcr QL @1 Q2 Q3 Qv Qv SUBIuxXSUB)n Q¢ Qg
L bhel (1,2) -3 0 3 0 o0o-{-1 n %o
o TetY @) 1ol o o-1-1 amn ~Zo
d (1) -3 1 3 0 0 3 3 D 2o
Ny (11 -1 L 0o 0o 1 4 ap fo
el (1,1) d 1 L0 0.4 4 ap $0
n 41 -4 -1 4 0 o L L 2o
L, ol (1,2) -3 00 4 0o 1-1 D -$o0
0, Tt ) I oo 1 o -1 g -29
d (4,1) -+ 10 4 o~} L an to
N (1,1) 310 4 0o~ 1 ap §o
e (1,1 P10 4 0o-4 1 an $o
Uy 1) -+ -1 0 1 o0o-4 4 D Zo
Ly b®1 (1,2) -2 00 0 § 0 1 (D -$o0
0, tat 1 o0 0 L o 1 -10
ds 1) -+ 1.0 0 § 0-1 (1,1 Zo
N3 (1,1 2 -1 0 0 1 0-1 (LD £ 0
e (1,1) 2 1.0 0 1 0-1 (LD g0
us 4,1) -+ -1 0 0 § 0-1 (1,1 fo
hy NS (1,2) 0 -1 1 0 0 0 0 (1,1) 00
hy (1,2) 0 -1 0 1 0 0 0 (L1 00
hy (1,2) 0 -1 0 0 1 0 0 (L) 00
P (1,1) 0 0 1 -1 0 0 0 (L1 00
P13 (L1 0 01 0-1 0 0 (1,1) 00
P (1,1 0 0 0 1 -1 0 0 (1) 00
has by + b2 (1,2) 0 -1 & 4 0 0o o (D 00
Wy TetB (2 0 -1 -4-1 0 0 o 00
Pys (1,1 0 0-3-4-1 0 0 (1,1) 2o
Pl (1,1) 0 0-3 -3 1 0 0 (LD 00
®1,2 (1,1) 0 0-3 4 0 0o o0 (1,1 00
1 -
UX=_1§(U1 + U 4+ Us +2U4 4+ 2Us + 2Us) . (2.5)

V15

Note that the anomalous U(1), containing the sums of U;,3 and Usse is universal
with respect to all three families. This flavor universality of the anomalous U(1) is
thus a consequence of the family permutation symmetry of the six U(1)-interactions,
mentioned above. Of the anomaly-free combinations Uy, Uy, Uss, and U, are clearly

family-dependent, but U, is family universal.

It is worth noting that while solution II (Ref. [14]) differs in detail from solution I as
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Table 5
Massless states for solution II (Ref. [141)

£ sector SUMB)cxSUR)L Qcr Qv Q1 Q2 Q3 Qv Os SUGS)uXSUB)u Q¢ Qg
Vi bi+2y (1,1) -+ 0 0o {1 1 1 1 3 g 3
¥ (0 o o 1 1113 -8 3
T (L, 1o o 1 11 1 (0 -3 3
Ty (1, 1) -+ 0 0o § 1 L 1 3Gy ¢ 3
Va by +2y (1,1) -+ 0 1 oo -1 1o 8 3
Y (1,1) oo 1 oo 1 11 3 ~& 3
T (1,1) 10 40 3 L1 -3 3
T (LD -z 0 3 0 ;-3 1 G 83
Vi by+2y (1,1 -3 0 4 f 0 0-1 (13 i3
& (1,1 10 3 10 0 1 (L3 -§ .3
T3 (L, 1) Lo 4 4 0 0 1 D -3 3
T3 (LD -1 0 1 1 0o 0o-1 G § _3
It b+ b (1,2) -3 -1 41-1-1 0o o 0o -L
L tATYHE 3 P11 1L o (1,1 o I
Sy (1,1) g i L1l o 0 0 -1
5 (1,1 -3 L 2 L 1o o 0 0o L
5 (L1 3413 Lo o (Lp 0 -1
5 (1,1) -3 L L3 10 0 (1D 0o L
$3 (1,1 P-3-1 1-3 0 0 (LD 0o -L
5 (1,1 -3 4+ 3 0 0o 1y 0o
Hi a,n -3 L i1 0 0 6D 0o ¢
A (1,1) P-4-1 1 1 o 0 G 0o -2
L by +bs (1,2) -3 -3 110 0o ap 0 -1
o Terrre A R (BT 0 I
S4 (n I-4-3-1 1 0 0 (D 0 -k
S4 (1,1) -3 4+ 3 11 o o0 (LD 0o &
Ss (L1 P4 -i-i-1 0 0 0 -5
85 (1,1) -3 4 1 2 Lo o0 0o b
S (1 F-3 i-3-3 0 0 D 0 -1
S6 (1,1) -3 -3 4 2 0 0o 0o L
H, (. -3 4=+ -1 0 0o 51 0o 2
H, (1,1 P-4 f-F F 0o 0 @G 0 =2

regards its spectrum of Higgs multiplets and the SO(10) singlets, its gauge interactions
nevertheless possess the full permutation symmetry with respect to the three families
just like solution I. In this case, however, there are only three anomalous symmetries
U, 2.3, which can be expressed by one anomalous and two anomaly-free combinations:
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Table 6
Massless states for solution II (Ref. [14])

F  sector SUMM)cxSUR)L Qcr Q1 Q1 Q2 O3 Qv Oy SUGS)uxSUB)n Q¢ Qs
Iy 1+b (1,2) -1 0-3 0 o-1-1 5 o
s Tt o, 1 1= 0 0 11 ks
§ (11) 1 -1-4 0 0o [ I an s
Is 1+b (1,2) -1 0 0-3 o 1-1 5 o
5 Tt 11 0-1 o-1 1 _ls o
s (L 1 -1 0 -3 -+ 1 -
lg 1+bs (1,2) -1 0 0 0-3 0 1 (LD 5 o
S Te+2r (1, 110 0=l 0o-1 _is o
S (1,1 1 -1 0 0 -1 0-1 (1,1 -5 0
S 1+ (1,1 -2 0 0 0 0 -1 -1 (1 _g 0
S0 YT o, -2 0 0 0 0 1 1 (1) i o0
1 1.,
Ua= 7A (Ui +U2+Us), TrQa= "\/"572’ (2.6)
1 1
U12=%(U1 - U,), Uy = 76 Uy + U, - 2Us). 2.7

Note that the anomalous U(1) is again family universal, though U, and U, are not.
We next examine the superpotential and the issue of generating relevant mass terms
which would trigger SUSY breaking in the string solution of Ref. [13].

3. Superpotential and SUSY breaking

The relevant terms in the cubic level superpotential of solutions I and II are given by

W =[u§ Q1h1 + N, Lihy +u5,Q0hy + Ni, Loho + uf Qshs + N§, Lshs]
+[mbaP12 + hhsPis + hohsPos + hihe®r2 + hihs®y3 + hahsPa3)
+h3has®as + hahasDPas + (P3P13P12 + D3 P13P12) + ... (3.1)

Here a common normalization constant v/2 g is not exhibited. Note that the Yukawa
couplings given in the first square bracket and effectively the second bracket as well
respect the family permutation symmetry, which simultaneously permutes the three
families and the Higgs-multiplets (%1, k2, h3), and likewise the &;;’s, but the rest of the
superpotential (including higher order terms), which is not shown, does not.

Note that owing to the constraints of the flavor U(1);-symmetries, which distinguish
between the families, and the Higgs multiplets, &; couples at the cubic level of the
superpotential only to family 1 and not to families 2 and 3; Similarly 4, and %3 couple
only to families 2 and 3 respectively. Now, for the case of solution I (Ref. [13]), where



32 A.E. Faraggi, J.C. Pati/Nuclear Physics B 526 (1998) 21-52

contributions of higher dimensional operators to the Higgs mass matrix have been
analyzed in detail [26], it has been shown that the pair A3 and h3 necessarily become
superheavy since their masses receive contributions from the cubic level superpotential
terms; and only one pair of doublets — i.e. either (%, hss) or (h2,hss) - remains
light, while the remaining pairs become medium heavy (~ 10'? GeV). It is easy to
verify that for solution II (Ref. [14]) as well, h3 and h3; become superheavy [27].
The mass pattern of the remaining Higgs doublets depend on the structure of the higher
dimensional operators and the allowed pattern of VEVs. Considering the similarity of the
massless spectrum in the observable sector for the two cases, however, it seems rather
plausible that the Higgs spectrum for the two cases would be quite similar. Following
Refs. [14,27] we will proceed by assuming that only one pair of Higgs doublets, like
(hi, has) or (ha, has), remain light for both solutions I and II, and that the remaining
pairs become medium or superheavy.

Since only the light Higgs scalars acquire VEVs (radiatively), it would follow, for
the Higgs spectrum mentioned above, that the up-quark member of only one family,
i.e. the top and v, would get masses at the level of cubic terms in W. The masses of
the other quarks and their mixings would arise through successively higher dimensional
operators, which permit their couplings to the light Higgs-pair. Thus, a hierarchy in
fermion masses and mixings arises in spite of the permutation symmetry of the cubic
Yukawa couplings (see Ref. [ 13] and especially Ref. [ 14] for details of this discussion).
Thus, ultimately, such a hierarchy has its origin in two features: (a) the family-dependent
U(1);-symmetries, which force the three families to have Yukawa couplings with three
distinct Higgs-multiplets, and (b) the spontaneously generated asymmetric Higgs mass-
matrix.

We now turn to the pattern of symmetry breaking below the string-scale. The anoma-
lous U(1) 4 is broken by the Dine-Seiberg-Witten mechanism [28] in which a poten-
tially large Fayet-Iliopoulos D-term £ is generated by the VEV of the dilaton field.
Such a D-term would, in general, break supersymmetry, unless there is a direction in
the scalar potential é = > ai¢; which is F-flat and also D-flat with respect to all
the non-anomalous gauge symmetries and in which 3" Q% |a;|?> < 0. If such a direction
exists, it will acquire a VEV, canceling the Fayet-Iliopoulos &-term, restoring super-
symmetry and stabilizing the vacuum. The exception to this picture arises if there exist
mass terms (m) for certain relevant fields carrying anomalous charge; in this case the
anomalous D-term and the F-terms would necessarily acquire nonvanishing VEVs that
are proportional to m and SUSY would be broken.

The set of D- and F-flat constraints, in the absence of such mass terms, is given by

(0a)= (D2} = (Dg) = (Fi= 5 ) =0. (32)
Da=[Ka+ > Okl +¢|, (3.3)

Do=[Ka+ Y Okl a# A4, (34)
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£= g (TrQ4)
19242

Here y/ are the fields which acquire VEVSs of order /£, while the K-terms contain fields
7 like squarks, sleptons and Higgs bosons whose VEVs vanish, at this scale. Q% and Q,
denote the anomalous and non-anomalous charges, which are listed in Egs. (2.2)-(2.7)
for solutions I and II, and Mp =~ 2 x 10'® GeV denotes the reduced Planck mass. The
solution (i.e. the choice of fields with non-vanishing VEVs) to the set of Egs. (3.2)-
(3.4), though nontrivial, is not unique. A few alternative solutions have been considered
in Refs. [13,14,26,19].

As a general guide, note that ¢ is positive and is of order 10~2M3. To cancel the
é-term in (D,), in the absence of mass terms, at least one field with negative Q4 must
acquire a VEV. A large set of solutions including those of Refs. [13] and [14] assigns
nonzero VEV to @45, which is the field with the largest negative Q4. If @45 (or a suitable
alternative), acquiring a VEV, is charged with respect to one of the other symmetries,
some additional fields must also acquire VEVs, so that the full set of (D4, ;) must
vanish.

To demonstrate how SUSY breaking could arise it is instructive to consider first
a simple pattern of VEVs satisfying Eqgs. (3.2)-(3.4), for the case of solution II
(Ref. [14]). We will subsequently study a more complicated pattern of VEVs for
solution I (Ref. [13]).

M3, (3.5)

SUSY breaking in solution II

As an instructive example we consider a pattern which assigns nonzero VEVs of
order /£ to only two fields

({¢45,¢‘,‘5}) #* 0. (3.6)

All other fields have zero VEV. The charges (Qa,Qy,Q12) for @45 are (-2,+1,0),
and those for @}, are (0, —3,0) (see Egs. (2.7) and Table 2). Their contributions to
the respective D-terms are thus given by

1

Da=—= [Ka~ 2(|@as|? — |Bas)?) + €1, (3.7)
1 .

Dy = 7 [Ky + (|@as]? — |Das|?) — 3|®as’|*1, (38)
1

D12=—EK12, (3.9)

where £ = v/3¢. The contribution of @45 and @ to all other D-terms are zero. The
K-terms contain fields like squarks, sleptons and Higgs bosons which have zero VEVs.
Although @5 is assigned zero VEV, its contribution is still exhibited to demonstrate
that it would be forced to have zero VEV in the presence of a mass term. All the F-
and D-flat conditions are satisfied at the cubic level of the superpotential by assigning
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[(Pas)ol* = 3|{Pis)of* = 1€, (3.10)

All other VEVs are zero. The subscript zero signifies that the VEVs are obtained in the
zero mass limit. Now introduce an effective mass term m (<& Mgging) for @45 and dys
in the superpotential:

WD m¢45<f>45. (3.11)

We will discuss how such a mass term is likely to arise through higher dimensional
operators in string theory. The effective potential then takes the form

V = 1g2(D% + D3 + D}) + m?({@as|* + |Bas|?) . (3.12)

For simplicity of writing, we have put just one gauge coupling; in practice the various
gauge couplings would differ due to the running even if they are equal at the string
scale. It is now easy to verify that minimization of the potential would lead to a shift
in the VEVs of @45 and @;.

The extremum conditions lead to the following constraints:

oV Dy m?
—=0 = (Pg)|-2D +——+\/§—]=0, 3.13
pry (Pas) [ at s e (3.13)
45
v . Dy m?
— =0 = (ds5)t|2D ——+\/§—]=0. 3.15
a¢45 ( 45) [ A \/5 82 ( )

Here the fields and the D-terms to the right of the arrows stand for the VEVs of the
respective entities. Since (®P45) # 0, Eq. (3.13) clearly shows that (D4) and/or (Dy)
must be of order m?/g? and thus SUSY is broken. Since (®}5) # 0, Eq. (3.14) implies
(Dy) = 0. Eq. (3.13) then yields (D) = v/3m?/2g?. Substituting this in Eq. (3.15) we
see that {®45) must remain zero, even with m # 0. Now, using the expressions for D,
and Dy given in Egs. (3.7) and (3.8), we can determine the VEVs of @45 and @.
Thus, we see that, for the special choice of VEVs given by Eq. (3.10), which provides
a solution to the F- and D-flat conditions (Eqgs. (3.2)-(3.5)) in the massless limit, the
extremum condition leads to a unique solution for the pattern of VEVs in the case of
finite mass (m(Ps4s) = m(Dss) # 0):

£ 3m? , E 1m? -
(@f=3-3%  HeP=S-75% @)l -0; (3.16)
3 2
(Dy) = %Z—z, (Dy) = (Dy2) = 0; 3.17)
_ £ 3m2
F(®us) =F(Phs) =0,  F(Pas) =m g"Z%‘ (3.18)

It may be verified that this VEV-pattern in fact minimizes the potential. Note that for
this simple example, the D-term of only the anomalous charge Q4, which is family
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universal, is non-zero, but those of the non-universal charges Qy and Qi, vanish owing
to minimization. This special feature arises because there are only two fields (P45 and
®s), having non-zero VEVs, and they contribute only to two D-terms (D, and Dy),
but not to D. Thus, to start with, Dy, = 0. Furthermore, @} contributes only to Dy,
but not to D,. Thus, extremization of V with respect to &5 forces Dy, =0 as well (see
Eq. (3.14)).

Vanishing of the non-universal D-terms has the desirable consequence that squarks
of all three families receive the same contribution to their masses from the D-terms, in
spite of the presence of the non-universal flavor symmetries:

[m31p, = £Q4(Da) = Q4 (3V3m?) = jm’. (3.19)

Likewise for the sleptons. Here Q’, denotes the anomalous charge of the respective field.
For solution II, 0%, = (Q1 + Q2+ Q3)' is not only family universal, but it is also positive
and the same (= 1/ V12) for all members of a family. Thus, Oy, dg, L, iig and &g are
degenerate (barring small F-term contributions) at the scale of /. We will return to
this point in Section 5. '

It has been suggested in Ref. [5], that in a supergravity theory the squarks and the
sleptons are expected to receive contributions to their masses from the Kihler potential
through F-terms like A [ d%@ (545)(@45)Tq,~q§ /M3, where A = O(1). Although these
operators conserve all gauge symmetries, in a string theory one still needs to ascertain
whether they satisfy the string-selection rules; otherwise A would be small (< %)
compared to unity. Deferring the study of this issue to a later work, we note that the
contribution of these terms, if they are present, to squark masses is given by

MF(@as))? | Amé

— 13,2
M12>| ~ 2M12,] = 3Am’e, (3.20)

[Am 1 ~

where € = E/Mf,,. With £ = /3¢, given by (3.5) and TrQ4 = 72/V/3 [14], we expect
€ =~ 6‘—0. In general, the F-term contributions are not expected to be universal, unless
the Kihler potential possesses a certain symmetry (see remarks below). Even then, and
even if A = (%—1) (say), these F-term contributions are suppressed compared to the
D-term contribution (Eq. (3.19)) by about a factor of (60-30), for € ~ 515. Degeneracy
to this extent suffices to account for the smallness of at least the real part of the K°-K°
transition amplitude, if m; = ms > (700-1400) GeV [29].2 Understanding the extreme
smallness of the imaginary part of the K°-K? amplitude, which we do not address here
would need additional considerations, based perhaps on symmetry properties, which may
explain why the relevant phase angle is so small < 1072.3

At this stage, the following property of the string solutions under study is worth
noting. We have observed that the family permutation symmetry is exact at the level of

2In quoting lower limits on squark-masses, we have used a value for the product of mixing angles
(cos 8,) (sin84) =~ (4-75), for the down quark-sector, which seems reasonable.

3The problem of SUSY CP-violation, in the context of models of SUSY breaking as proposed here, is
discussed in a forthcoming paper by K.S. Babu and J.C. Pati, where a natural explanation for the extreme
smallness of the e-parameter is given.
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the NAHE set in that it holds for the gauge interactions as well as for the super and
Kihler potentials. Even after the introduction of the additional boundary condition basis
vectors (a, B,7v) the permutation symmetry is still retained in the gauge interactions, as
well as in the cubic Yukawa interactions of the quarks and the leptons with the Higgs
fields and in the hil—zjd'iij-terms of the superpotential W (see Eq. (3.1)). It is lost in
W only through (a) O(®?)-terms, (b) terms involving Higgs and the exotic fields but
not quarks and leptons (these are not shown in (3.1)), and (c) possibly some higher
dimensional terms. As a result, the effect of this loss of the permutation symmetry
on the quarks and leptons and their superpartners is extremely mild in that it is felt
by them only through at most two-loop effects and higher dimensional terms (whose
contributions to the masses of the (d, s)-squarks are less than or of order 200 MeV). If
the Kihler potential retains the family permutation symmetry to the same extent as the
superpotential W, which is plausible, but which is an issue that needs to be examined,
even the F-term contributions given by (3.20) would be very nearly family universal.
In this case, and/or if A < 1‘—0, the degree of squark-degeneracy would be far better (in
this case, one would have [ (] — /?)/Mm*] < 107%) than that indicated above. We
defer the study of the Kihler potential to later work. For the present, we will proceed
by taking the squark degeneracy ratio to be no better than 315—5 as obtained above.

The gauginos of the Standard Model gauge sector (i.e. gluinos, winos etc.) could,
in general, receive masses through operators of the form A’ [ d%6 @45@4sW, W,/ M2,
(a=1,2,3) [5] which yields

m(Ay) = N (F(®ss5)(Das) /M3 = Nem, (3.21)
where A’ < O(1). We see the hierarchy
(m*(§) =~ QL(3V3m?)] > [Am}, ~ Ae(3m®)] > [m], ~ Né*m?). (3.22)

Because of this hierarchy, it is clear that if SUSY breaking proceeds entirely through
anomalous U(1), the gluinos typically would be rather light. From (3.21), one obtains
mg = 2) em; ~ A'(20-60) GeV, for mz ~ (1-3) TeV; this may be too light, compared
to the observed limit on mgz of 130 GeV, unless A > 2 and mg = 3 TeV. To make
matters worse, for string solutions, as considered here, A’ vanishes at tree level and
can only arise through quantum loops; thus it is expected to be small. This suggests
that SUSY breaking through anomalous U(1), quite plausibly, is accompanied by an
additional source which provides the dominant contribution to gluino masses (~ (1-
few) (100 GeV)), while preserving the squark-degeneracy, obtained through U(1) 4. We
comment on this possibility in Section 6.

We should note that, for the sake of convenience, we have evaluated the VEVs of
®Dys, Dus, and P)s and the auxiliary fields in the flat limit. It has, however, been shown
in Ref. [5], that the inclusion of supergravity effects does not restore supersymmetry,
though they shift the VEVs of fields; e.g. ($4s5) acquires a non-zero value which is
typically bounded above by (@4s). Such shifts, however, do not alter the pattern of soft
masses and the hierarchy shown in (3.22).
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Before discussing the origin of the mass term m and certain phenomenological issues,
we first discuss SUSY breaking in solution I (Ref. [13]).

SUSY breaking in solution 1

This case is more comple\x than the one presented above, because it has six U(1)’s
(in contrast to three relevant ones for solution II), four of which are non-universal, and
typically several fields (not merely two) must acquire VEVs of order /£ to satisfy
the F- and D-flat conditions. The instructive example presented above prompts us
nevertheless to ask: (i) can one still find at least a local minimum of the potential V
which leads to nonzero VEVs for the D-terms of only the family-universal charges - i.e.
Q4 and Q,? (ii) If so, is that a global minimum? We find that the answer to the first
question, interestingly enough is in the affirmative, and that to the second, though hard
to assess in general, is also found to be the same for the limited subset of field-space,
considered here.

Consider now a solution to the D- and F-flat conditions (Egs. (3.2)-(3.5) for the
case of solution I (Ref. [13])), which assigns non-zero VEVs of order /& to the
following set of fields:

{¢45’¢?l3’@3—aéra @2_951}> = O(\/E)- (323)

All other fields have zero VEVs at the scale /£.
The contributions of these fields to the D-terms of the symmetries listed in Egs. (2.2)
and (2.3) are given by (compare with Egs. (3.7)-(3.9))

_—_-——K—02+4¢>2 D4s|?) + £1, 3.24

\/— A (|Pas|” — |Pas|) + €] (3.24)

v =—= [Ky — 3|P13]* + (|@as]” — |Pas[*) 1, 3.25

\/—[ v — 3|P13]" + (|Pas]” — |Pas|*) ] (3.25)

Dy = % [Kiz — |13]* — 2|®12* + 30? — 18% - 8°), (3.26)
1

Dys = 7 [Kas + 1871, (3.27)

D;= % [K; + 8], (3.28)

Dy= \/_[KX+201+2<1¢45|2 {@as|*) 1. (3.29)

Here £ = v/15£. As before, the K-terms contain fields like squarks, sleptons and Higgs-
bosons which have zero VEVs. Anticipating that a field like @;, (or @,3) which is
charged under Uy, and possibly Uy, but not the other U(1)’s, may need to acquire
a VEV of order m < +/€, in the presence of a mass term m, we have exhibited its
contribution. The combinations o, 8 and 6 are defined by
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o’ =0t + |85 |* + 185 1, (3.30)
B =197 + |85 |* - 2|85 %, (3.31)
8=\t — |85 (3.32)

It may be verified that all the F- and D-flat constraints (F; = D4 = D, = 0) are satisfied
for the m = 0 cubic-level superpotential, with |(®4s)]* = %é, and |(@13)o]* = (&7 )of? =
D5 Yol? = (D5 Yol = K&, e

[{@as)ol” = {o)ol* = 3|(Dra)ol® = 1, (3.33)
(B2)o=(8%)0 = (P12)0 = 0. (3.34)

All other VEVs are zero. As before, the subscript zero signifies that the VEVs are
obtained in the limit of zero-mass for all the fields. The VEV of the singlet &; is not
determined by the F- and D-flat constraints (at least at the cubic level superpotential).
Independent phenomenological considerations including quark-lepton masses and mix-
ings, however, imply that the VEV (&) must be of order /& ~ O(g*°Mg/4m) [26].
In the absence of a complete solution to the vacuum selection in string theory, we will
proceed by imposing this choice.
Allowing for a mass term m as in (3.11), and extremizing the potential

V=18 D2 +m(|®us] +|Pus)), (3.35)

with respect to @45, P13, o and Dy respectively, we obtain (compare with Eqgs. (3.13)-
(3.15))

av
%o =0 = (¢45)T[4(DA+%DX—§\/15m'2) —\/gD,,,] =0, (3.36)
45
1% }
— =0 = () [Dp+V3D,]1=0, (3.37)
0?13
v
55:0 = 0o[(Ds—2Dy) —\/%-D]z] =0, (3.38)
v _
—_ =0 = (¢|2) (Dlz) =0. (339)
P12
Here m” = m?/g>. variations with respect to 8 and & are not exhibited because these

can be satisfied consistently by preserving their zero mass values: 8 = By = 0 and
0 = 8o = 0. Thus, from Eqs. (3.27) and (3.28), D4s = D; = 0. As in the previous
example, we see from Eq. (3.36) that (D), (D,) and/or {D,) must be of order (m?),
and thus SUSY is broken.

Unlike the previous example, however, where @,5 # 0 uniquely led (via Eq. (3.10))
to Dy, =0, we see that Eq. (3.37), can be satisfied, given &3 # 0, by choosing either
(a) D1 =Dy =0, or (b) Dy3 = —\/§D,/, = O(m?) # 0. In short, the solutions for
the D’s do not appear to be unique. Case (a) would, of course be phenomenologically
preferable, because it would lead to family-universal squark masses. We consider these
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two cases by turn and show that minimization of the potential in fact favors case (a)
over case (b).

Case (a): D12 =Dy =0
Given Dj; = 0, Eq. (3.39) can be satisfied by choosing <ither @, = 0 or @), =
O(m) # 0. We will see that internal consistency will fix @y, = O(m) # 0, if Dn =0.
Given Dyp = Dy = 0, Egs. (3.36) and (3.38) imply: (i) D4+ 4Dy =} 15m” and
(ii) D4 = 2D, which in turn imply

DA=\/§m'2, DX=\/§(%m'2). (3.40)

Now, given 8 = § = 0, looking at the compositions of the D-terms (Egs. (3.25)-(3.29)),
Dy =0 and D3 = 0 imply

|B13]% = §1®as |, (341)
07 = |@as|* + 6]Pya ). (3.42)

Substituting (3.42) in D, (see Eq. (3.29)), and putting D, = 1/(3/5) (3 m’z) (see
(3.40)), we get

|B1af? = Lm". (3.43)

Thus, internal consistency for case (a) (Dj2 = Dy = 0) implies that a field like @,
(alternatively @,3 will also be adequate), which had a zero VEV to begin with (i.e. for
m = 0), must acquire a non-zero VEV of order m.

Solving for the nonzero VEVs, and collecting the results, we obtain

K@us)2=1E—3m", f@u)P=Fé-im", ()= (3.44)
(B12)2 = 1m”, (3.45)
(Bas)* = (B%) ={8%) =0, (3.46)

{Da)= \/ém“, (Dy) = \/§<%mﬂ>, (347)

Dy =Dy =D;=Dys =0, (3.48)
(F(@4s)) =(F(D13)) = (F(a)) = (F({)) = (F(8)) =0, (349)
(F(Pas))=my[LE - 3m”. (3.50)

It may be verified that the solution presented above is in fact a minimum of V. We see
that there exists at least a local minimum for which the D-terms of only the universal
charges Q4 and Q, are non-zero. This solution thus has the desirable feature that the D-
term contributions to the squark-masses, which dominate over F-term contributions, are
family universal. The rest of the phenomenological discussions (i.e. the gaugino masses
and the hierarchy) are qualitatively the same as in solution II (see Egs. 3.19)-(3.22). To
be specific, now TrQ, = 180/v/15, but £ = V15 ¢, so € = £/M}; ~ . The contributions
of D4 and Dy are given by [m} ;10,0 = 8 [QaDy + QyDy] = gm*, where we have
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put V1504 = § and V150, = —1 (see Table 1) and Dy = \/(3/5)m” = 2D,.
The F-term contributions (see Eq. (3.20)), which may in general be non-universal, are
given by [mi-,u.,] F = AlF(P4s)|? /M2, = A(im?)e, which are thus suppressed by about
a factor of (g5~35) (for A & (3-1)) compared to the universal D-term contributions
of g2[QaDy + QyD,1 = 3m?*. As for solution II, this is compatible with the constraints
from the real part of the K°-K° amplitude, if m;; 2 (700-1400) GeV.

Case (b): D1y =0O(m?) # 0
In this case, Eqgs. (3.39) and (3.37) respectively imply
$1,=0, and D, =-Dp/V3, (3.51)

substituting (3.51) into (3.36) and using (3.38), we get

2
Dy=finf.  Dy=3(in" - \[iDy). (352)

Given @1, = B = 8 = 0, the expressions for D4, D), and Dy and D, given in
Eqgs. (3.24)-(3.29) respectively yield

4 @us|? + o* =€ — 3m”, (3.53)
—|®132 + Lo =v2 Dy, (3.54)
—3|B13[? + |Pas* = —V2 Dna, (3.55)
5
0% — |Bys2=3m" ~ 773 D (3.56)
Combining (3.54) and (3.55), we get
|®4s|?> — 0 = —4v2 Dy (3.57)
Combining (3.53)-(3.57), one obtains
s 1
|@us2 = LE— 2m” + 775 D (3.58)
S|
o' =56~ —= D, (3:59)
) . 3 .
|Pi3)* = L€ - %m'z + 4—\7—51)12- (3.60)
Comparing ‘(3.56) and (3.57), we get
Dy = 3v2 m”. (3.61)

37

One can verify that the solution for the VEVs presented above again corresponds to a
minimum of V. To compare the minimum obtained in case (a) with that of case (b) we
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need to study the variation of V with respect to Dj;. To do so we evaluate the potential
at the string unification scale, where the couplings of the U(1)’s are unified,

V = 1¢2(D} + D% + D} + D}) + m*(|®ss|” + &3s). (3:62)

Substituting for D4, Dy, Dy, and |®4s|? from Egs. (3.52), (3.51), and (3.58), we get*

g‘:;— = 2%m" + O(m") + 8D} + m" (—2-37_5 + ﬁ)l)lz. (3.63)
We see that the coefficient of the linear term in D, cancels owing to contributions from
D? and |@45|%, and thus V would increase for D, # 0. This shows that the minimum
of V corresponding to case (a), with D2 = Dy =0, is preferred over that of case (b),
with Dy; = —\/§D./, # 0. This in turn means that even for the more realistic, though
complicated, case of solution I, there exist viable solutions for the pattern of VEVs
for which only the family-universal contributions to squark masses, arising through D4
and D,, survive, but the non-universal D-term contributions, associated with the family-
dependent U(1)’s, vanish owing to minimization of the potential. While this result may
not hold in general, it is remarkable that it does for the solutions considered here,
which are viable. The conditions for emergence of this result, which are worth studying,
will thus provide an important new guideline for selecting the string solutions, and the
associated patterns of zeroth order VEVs which satisfy the F- and D-flat conditions.
The degeneracy in squark-masses, obtained as above at the string-unification scale,
would of course be affected, as would be the ratios of the various gauge and Yukawa
couplings, when they are extrapolated to low energies through the use of the renormal-
ization group equations. This would not, however, have a significant effect at least on
the degeneracy of the squarks of the first two families, which is relevant to the Ko—Ko
transition. >

Sign of (Da) - Contribution to squares of scalar masses

Before discussing the origin of the mass term m, one special property of both solutions
I and 1I is worth noting. Given that the overall sign of U(1) 4 is chosen such that TrQ4
is positive, the signs of the anomalous charges of all the fields are fixed. For instance,
if the sign of Q4 for squarks and/or sleptons in any solution happened to be negative,
it must of course be discarded because the corresponding D, would lead to negative

4 The question of why the vacuum energy (cosmological constant) is so small or zero of course remains
unanswered, as it is in all other analogous approaches leading to SUSY breaking.

3 We should also add that even though (Dj2) and (D) vanish at the level considered above, the VEVs of
Higgs fields (like H,) of electroweak scale will still induce a non-vanishing (D2} =~ Q2 (Hu)|{H.)? =
(1/V2)(Hu)|, and likewise a non-vanishing (Dy). This leads to a mass spliting |om? — m3| =~
()%, -0 (D12} = (188)(1/(2v2)) (1/V2)|(Hu)|* ~ (50 GeV)? < (k:)m?, for i > 700 GeV,
where we have put (H,) ~ 200 GeV. As discussed in the text, lack of squark degeneracy to this extent is
of course compatible with the constraint of the real part of the Ko-Ko amplitude. We thank K.S. Babu for
raising this point.



42 A.E. Faraggi, J.C. Pati/Nuclear Physics B 526 (1998) 21-52

contributions to the (mass)? of these fields (see Eq. (3.19) and thereby to a breaking
of SU(3)-color and/or electric charge. As may be seen from Tables 1 and 4, it is indeed
remarkable that all the squarks and the sleptons have positive Q4 for both solutions |
and I1.

One must still ensure that none of the other fields carrying color and/or electric charge
acquire net negative (mass)?2. Note first of all that the hidden sector fields V;, V; as well
as T; and T; (which are of course standard model singlets) have positive Q4. The fields
of possible concern for solution I are the conjugate pairs (Dys, D4s) and (Hoy, Hy)
which carry color. Clearly one member of each such pair would have positive Q4 but
the other member would have negative Q4, as do Dys and Ha;. Thus (D) would give
negative (mass)? to Dys and Hyj. We have, however, checked that higher dimensional
operators for solution I as well as solution II give sufficient positive contribution to the
(mass)? of each member of these conjugate pairs, by utilizing the VEVs of standard
model singlets of order /£ (as in Eq. (3.23)) and hidden sector condensates. This more
than compensates for the negative contribution of (D,). Specifically, for solution I, one
obtains the operators Hy; H»é; and D45D45H19H20§-;’ at N =3 and N = 7 respectively
in the superpotential W. With & ~ /& (see Eq. (3.23)), and assuming that the
(H,y Hyg)-pair condenses due to the SU(5)y force which confines at a scale of 103
10'* GeV [30], these operators provide positive contributions to (mass)? of H,; and
Hy, as well as of D,s and Dys, that far exceed the negative contributions of {D4), which
are of order m? (it is worth mentioning in advance that m itself is induced only at N = 8
by utilizing condensate of the same type as above (see next section)).

Now each member of a conjugate pair of Higgs doublets like (k;, #;) would also
get negative contribution to its (mass)? ~ (1TeV)? through (D,). As mentioned in
Section 3, the (mass)? matrix of the Higgs-sector, including contributions from the
string-generated higher dimensional operators has many entries. This matrix has been
analyzed in detail in Ref. [26], which showed that only one pair of doublets remains
light, while the others acquire heavy or medium heavy masses. While a reanalysis of the
Higgs mass-matrix including the (D4)-contributions of order (1 TeV)? deserves study
in a separate work, it is clear that the latter contribution will affect only the light Higgs
spectrum. (In general, it is possible that such a light Higgs may even acquire a VEV
of order 1 TeV due to the {D4)-contribution at a high scale; this by itself need not,
however, be objectionable.)

In summary, we note that the higher dimensional operators could not in any case
have given masses to standard model non-singlet chiral fields like squarks and sleptons
by using VEVs of only standard model singlet fields like those in Eq. (3.23) and
hidden sector condensates. It is thus fortunate that these fields carry positive anomalous
charges and thereby receive only positive contributions to their (mass)? from (D,) for
both solutions I and II. On the other hand, higher dimensional operators can and do
contribute positively to the (mass)? of fields belonging to conjugate pairs, and more
than compensate for negative contributions from (D,) to such fields.
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1 can arise through higher dimensional operators
sider first solution I (Ref. [13]). The allowed

2,
23 (4.1)
VadssDysé, LT Vi Va®ysPasés, (4.2)

- @13Py3 + ‘15234-’23)] ,

- D13P13 + 45234_523)] ,

Ws;
194sP; &2 —— | 4.3
19ss 152(3‘15]2) (4.3)
ViVsus®@ysPné,
VsV @D4sPus Pt (4.4)
45PasT33PasP13P3 &5. (4.5)

attern of VEVs listed in Eq. (3.23), no mass
ilinear mass terms like @35 could arise, only if
s like (T>T3) as well as {V3¥3) could form. For
- {ds)) are forbidden. Even if they do form, the
irder (As/Mg)?(As3/Mgy)*M’, where As and A;
ifinement scales, respectively, and M’ is of order
Vs of the singlet &-fields in Eq. (3.23). Taking
" and A3 ~ 108-10'° GeV, which are suggested
¢ solution I [30]. With My ~ 10'® GeV and
arms are < 107° GeV, and are thus insignificant
1ing that at least the diagonal condensates in the
ly relevant mass term is given by the N = § term
s term m®,sP4s which is neutral with respect to

/N 3
“’-) M. (4:6)
1y
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It is remarkable that m receives contributions only at N > 8. Since As is 4 to 5 orders
of magnitude smaller, and M’ is about 10 to 30 times smaller than My, it is clear that
the SUSY mass splitting m is naturally strongly suppressed compared to M. As regards
its numerical value, for values of As and M’ lying in the range mentioned above, i.e.
(As/Mg)? ~ 1078-10719, (M'/My)? ~ 107* and M’ ~ £(10'7 GeV), say - which
are most plausible, we get

m ~ (1-50) TeV. (4.7)

Since m represents the scale of supersymmetry breaking and thus the mass scale of the
Higgs scalars, and in turn of my, we see that the string solutions under consideration
do explain why the electroweak scale is so much smaller than the string scale.

5. Some phenomenological aspects

An interesting phenomenological distinction, first between the two solutions I and
II, considered above, is worth noting. Although the anomalous charge Q4 for solu-
tion I [13], given by Eq. (2.2), is family universal, it distinguishes between different
members of a family (see Table 1), and therefore leads to intra-family mass splittings
among the scalars. Including contributions from the leading D4-term only, these are
represented, by the following relative values, at the scale of 1/Z, for any given family:

[m*(QL) : m*(iig) : m*(dg) : m*(L) : m*(ég)], =3:1:3:1:1 (Sol.I).
(5.1)

For solution IT [14], on the other hand, Q4 given by Eq. (2.6), is the same for
all members of a family. As a result, in so far as the leading contributions from the
Dy-term, one obtains intra-family-universal scalar masses at the scale /£, which are
given by

[m*(QL) : m?(iig) : m*(dg) : m*(L) :mz(éR)]DA =1:1:1:1:1 (Sol. I).
(5.2)

Thus, eventually empirical study of the squark spectrum can in fact distinguish between
the two string solutions I and II.

It is also worth noting that both string solutions 1 and II lead to approximately
universal scalar masses (at the scale of /&) for all three families. At the same time,
owing to spontaneously induced asymmetric Higgs mass spectrum (see discussion in
Section 3) they lead to hierarchical fermion masses [26]. By contrast, the model of
Ref. [5] assumes that U(1) 4 couples universally only to the first two families and thus
predicts heavier squark masses (~ 5 TeV) for the first two families and lighter mass
(~ 500 GeV) for the stop, while the gauginos are lighter still (~ 50-100 GeV). It has
been pointed out in Ref. [31], however that models of this class [5,7] with two-family
universality (of the anomalous U(1)) typically lead to color- and electric charge-
breaking, assuming that the spectrum of the type noted above is generated near the
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Planck- or the GUT-scale. This is because contributions from two-loop renormalization
group evolution to the scalar masses contain terms which are proportional to the larger
squark (mass)? of the first two families, and are negative. This negative contribution
turns the initially smaller positive stop (mass)? ~ (500 GeV)? to negative values
at the TeV-scale and thereby induces color- and charge-breaking. Models with three-
family universality (of the anomalous U(1)), as discussed here, do not however face
this problem because the squarks of all three families are nearly degenerate, with only
moderately heavy masses. Several considerations suggest that they should have a mass of
about 1 TeV, within a factor of two, either way, at the electroweak scale. This reduces
the RGE-induced negative contribution to the squark (mass)? by about an order of
magnitude, while increasing the initial positive value of mtg at the GUT or the string
scale, compared to the case of two-family universality. It thereby eliminates the problem
of color- and charge-breaking. Thus it seems that phenomenological considerations favor
three-family universality, for SUSY breaking through anomalous U(1). It is intriguing
that string solutions of the type considered here yield precisely that.

6. Remarks on supersymmetry breaking through anomalous U(1)

Before concluding the following remarks are in order:

(1) Desirability and origin of family permutation symmetry. If supersymmetry break-
ing occurs entirely or dominantly through an anomalous U(1), as noted in the last
section, the need to avoid color- and charge-breaking suggests that the U(1) 4 must be
universal with respect to all three families. At the same time, the hierarchical masses
and mixings of the three families suggest that there ought to exist flavor or horizontal
gauge symmetries, beyond GUTs in the underlying theory, which distinguish between
the families and are ultimately responsible for the hierarchy in their masses. The virtues
of flavor symmetries in the string context (like U; to Us for solution I and U; to
Us for solution II), in this regard has been noted in previous works [34,26], and in
the non-string context by several authors [35]. Furthermore, these flavor symmetries
have been shown to play a crucial role in addressing certain naturalness problems of
supersymmetry, such as the enormous suppressions of (a) the d =4 and d = 5 rapid
proton-decay operators [17,18], (b) v;-H mixing mass [19], and (c) the mass term m
of relevant fields which triggers SUSY breaking (see Section 4). We suspect that they
are also responsible for the desired suppression of the u-parameter. )
As alluded to above, such family-dependent flavor symmetries, which are clearly
absent in GUTs, do in fact emerge quite generically in string theory (e.g. from an
underlying SO(44) in the free fermionic construction). Now, typically, at least a subset
of these family-dependent U(1)’s would appear to be anomalous in a general basis
(compare with U; to Ug for solution I and U, to Us for solution II); these can be
grouped to give anomaly-free combinations (like Uy, Uz, Uy, Uss and U, in solution I
(see Egs. (2.3)-(2.5)); except for one unique combination that remains anomalous
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and gives the U(1)4 (see Eq. (2.2)). Similar situations arise in all other semi-realistic
string-derived models which exist to date; see e.g. Refs. [9-15,32,33].

The question then arises how there can be these flavor-symmetries, which distinguish
between the families and are thus family-non-universal, and yet there be an anomalous
U(1) 4, arising from linear combinations of the same flavor-symmetries, which is family
universal? The only way, it appears to us, is that the flavor symmetries, although family-
dependent, must still respect the permutation symmetry (mentioned in Sections 1 and
2) with respect to all three families. In this case U(1) 4 would automatically be family
universal, as borne out by the examples of Egs. (2.2) and (2.7).

Thus, SUSY breaking through U(1) 4, together with the presence of flavor symmetries,
seem to suggest the need for the stated permutation symmetry. As stated in Section 2,
such a symmetry is in fact an internal property of at least the NAHE set of boundary
condition basis vectors {1, S, by, by, b3}, for which the cyclic permutation symmetry
corresponds simply to the symmetry between the three twisted sectors of the Z, x
Z, orbifold, which arise from the sectors b;, b, and b3, respectively. In view of the
importance of the permutation symmetry, as noted above, it would be interesting to
know whether such a symmetry could arise without utilizing the NAHE set. While it
is premature to ascertain the answer to this question at present, we note that there do
in fact exist three-generation string solutions based on the free fermionic construction
which utilize only a subset {1, S, b, b} of the NAHE set of basis vectors (see e.g.
Ref. [15]); these, however, do not possess the cyclic permutation symmetry.

It is also worth noting that while the NAHE set (by itself) yields the permutation
symmetry, it of course does not guarantee that the symmetry will be retained in the
presence of additional boundary condition basis vectors, which are needed to reduce
the number of generations from 48 to 3. As noted before, all four solutions exhibited
respectively in Refs. [9,11,13,14], utilize the NAHE set; but only the last two retain
the permutation symmetry, while the first two do not. Thus, string solutions of the type
obtained in Refs. [13] and [14] appear to be particularly suited to break supersymmetry
through an anomalous U(1), while providing the squark degeneracy.

(2) A scenario of combined anomalous U(1)-dilaton SUSY breaking. It has been
noted in Section 3 (see the discussion following Eq. (3.22)) that if SUSY breaking
proceeds entirely through a family-universal U(1) 4, it would lead to the desired squark
degeneracy, but it is likely to lead to unacceptably light gluinos. At this point, two
apparently unrelated issues, both associated with the dilaton, are worth recalling. First,
there is the well-known problem of dilaton-stabilization. Regardless of whether SUSY
breaking utilizes the VEV of the dilaton-auxiliary component, Fs, or not, one needs to
avoid its generic weak-coupling runaway behavior (i.e. S — 00), and obtain instead a
stable minimum of its potential at a value of S = So ~ 10-20, rather than at infinity or
1 (for a discussion of this issue and references to various attempts for its resolution in
the field-theory and string-theory/M-theory context, see e.g. Ref. [36] and references
therein). Second, if SUSY breaking is dominated by the VEV of Fg, it seems that one
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would encounter the problem of color- and electric charge-breakings (see e.g. last paper
of Ref. [2]).

It seems to us, however, that in a mutually coupled system such as ours, super-
symmetry-breaking may well proceed through multiple sources whose effects on soft
masses may in general be comparable. In some cases, one of the sources may be
viewed as primary and the other(s) secondary, and the former may in fact induce the
latter. We have in mind the mutual couplings between (a) the dilaton superfield S and
the non-perturbatively generated hidden sector SU(5) z gaugino and matter condensates
(whose scale As is proportional to e(=525)) on the one hand, and (b) that between S
and the anomalous U(1)4 gauge field via the Green-Schwarz term that generates the
Fayet-Iliopoulos term ¢ on the other hand (see e.g. Ref. [6]). Because of the mutual
couplings, these three components - i.e. the dilaton, the hidden sector condensates and
the anomalous U(1) - can influence each other’s role significantly and thereby the
nature of SUSY breaking. The task at hand therefore is the minimization of the full
effective potential for this coupled system, which receives contributions from (a) and
(b), as well as possibly from additional non-perturbative terms in the Kahler potential.
Such a minimization is to be carried out in the presence of the SUSY-preserving VEVs
of standard model singlet fields {dii} (see e.g. (3.23)), which are induced because of
the Fayet-Iliopoulos term, and which generate the mass term m, by utilizing the hidden
sector condensates, as in Section 4.

One particularly attractive possibility which we defer for further study is this. The
hidden sector condensates, involving in general matter and gaugino pairs, in conjunction
with the SUSY-preserving VEVs of the {®;}-fields generate the mass term m as in
Section 4, which in turn triggers SUSY breaking through a family-universal U(1) 4, as
in Section 3. This could provide at least a major contribution to squark-masses ~ (-31;—
2) TeV (say), which is approximately family universal. Simultaneously, the coupling
of the dilaton to the hidden sector condensates as well as to the gauge field of U(1) 4,
together perhaps with non-perturbative terms in the Kéhler potential, stabilizes the dilaton
at a desired value Sy, while inducing a VEV for the dilaton auxiliary field (Fs,) # O.

Such a scenario, if it can be realized, would have the following advantages: (i) The
dilaton-induced SUSY breaking ({Fs) # 0) would not upset the squark-degeneracy that
was obtained through the family-universal U(1) 4, because the dilaton contributes univer-
sally to the scalar masses (barring smaller loop-corrections). (ii) Since dilaton SUSY
breaking assigns comparable masses to squarks and gauginos (unlike U(1) 4), following
the relations (Amg) r, = \/5(8m¢7)ps =3 (ms/2) g, however, it could provide the lead-
ing contribution to gluino and wino masses: (Am;) r; =~ V3(1 to few) (100) GeV ( say)
- while providing significant contributions to squark-masses.® This would remove the
problem of light gluino for U(1)4-SUSY breaking. (iii) SUSY breaking through the
combination of a universal U(1) 4 and dilaton mechanisms, as described above, would

6 While (Fs)- and (D, )-contributions to squark-masses may be comparable, their relative proportion will
be constrained by the need to avoid color- and charge-breaking (see Ref. [2]). Quite clearly, dominant
contribution from (Fs) would be excluded on this ground.
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of course avoid the danger of color- and charge-breaking, that confronts the scenario
of purely dilaton dominated SUSY breaking (see the last paper in Ref. {2]). In short,
the combined SUSY breaking mechanism involving a family-universal U(1)4 and the
dilaton has the advantage that each component cures the vices of the other, without
upsetting any of its virtues. The feasibility of this combined source of SUSY breaking,
including its effects on dilaton-stabilization, is clearly worth further study [37].

(3) Unlike the models of Refs. {51 and [7], which introduce very few fields and just
the single anomalous U(1) 4 , but without any accompanying flavor-symmetries, string
solutions generically contain many fields (see e.g. Tables 1-3 and 4-6) and typically
several U(1)’s, some of which are family-dependent. In spite of this more elaborate
(though fixed) structures, it is interesting that minimization for the string solutions
considered here, led to a hierarchical pattern of soft masses (see Eq. (3.22)) which
is very similar to the cases of Refs. [5-7], barring of course the distinction of three-
versus two-family degeneracy that arises from the differences in U(1) 4 (see Section 5).
In particular, it is remarkable that, for the string solutions considered here, the VEVs
of D,’s associated with family-dependent U(1),’s turned out to vanish, owing to the
requirement of a relatively global minimum of the potential. But for this feature, SUSY
breaking through anomalous U(1) in string models would not be viable.

(4) The necessary ingredients. From the preceding discussion and those in Sections 3
and 4, it is clear that the following set of ingredients are in fact needed in order that
supersymmetry breaking through anomalous U(1) can be implemented consistently,
especially in the string-context: (i) family-universality of the U(1), and therefore the
family permutation symmetry of the flavor gauge symmetries as discussed above; (ii)
suitably suppressed effective mass term m of relevant fields carrying the anomalous
charge; (iii) positivity of the anomalous charges of the chiral squark and slepton fields;
and (iv) vanishing (or adequate suppression) of the undesirable D-terms, associated
with family-dependent U(1)’s, because of minimization of the potential. It seems truly
remarkable that there do exist string solutions, as discussed here, for which all four
ingredients are realized. If the anomalous U(1) would turn out to provide an important
source of SUSY breaking, realization of these necessary features, as well as meeting the
non-trivial constraints from issues such as proton longevity [17,18] and fermion masses
and mixings, together would clearly provide a very useful set of criteria in severely
limiting the desired class of solutions from the vast set that is available.

(5) Gravitino mass. An important effective parameter of SUSY breaking is the mass
of the gravitino. With SUSY breaking through only anomalous U(1), as described
in Section 3, the gravitino would receive a mass msj; ~ (F(P45))/Mp =~ m/e =
(]'—qu) ~ (1 to few) (100 GeV). With additional sources of SUSY breaking, involving
for example the dilaton and possibly hidden sector condensates, as motivated above,
m3/, would get further contributions. While the relative contributions of these different
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sources of SUSY breaking to mj3/,, squark and gluino masses are not easy to ascertain
at present, we would still expect m3/, to lie in the 100 GeV- to a few TeV-range.

7. Summary

In summary, an anomalous U(1) gauge symmetry, together with an effective mass
term for certain relevant fields, offers a very simple mechanism to implement SUSY
breaking. It is shown here that this mechanism can in fact be derived consistently, leaving
aside the question of dilaton-stabilization, from an underlying string theory. While string
solutions invariably possess an anomalous U(1) symmetry, the requirement of three-
family universality of squark masses and therefore of U(1), is not easy to satisfy.
We have shown that there do exist certain three-generation string solutions for which
supersymmetry breaking through an anomalous U(1) leads to both the desired three-
family squark-degeneracy and the large hierarchy between the string and the electroweak
scales. More specifically we have noted that these solutions, in contrast to most, possess
a cyclic permutation symmetry between the three families, which automatically yields a
set of non-anomalous but family-dependent flavor gauge symmetries on the one hand,
and a family-universal anomalous U (1) gauge symmetry on the other hand. It is the non-
anomalous flavor symmetries, unavailable in GUTs, which are ultimately responsible for
hierarchical fermion masses and CKM mixings as well as for the desired suppression
of both the rapid proton decay operators and of the effective SUSY breaking mass
parameter m. The anomalous U(1) 4 is, however, family universal. In other words it is
not a horizontal symmetry, unlike the models of Refs. [5] and [7], and it is this feature
that makes it suitable for the purposes of SUSY breaking without encountering color-
and, electric charge-breaking. We further note that family universality of the anomalous
U(1) has also been found to be desirable in recent attempts to fit the fermion mass
spectrum by the use of Abelian horizontal symmetries [38].

We have remarked that the family permutation symmetry of the solutions of inter-
est [13,14], is a joint consequence of (a) the NAHE set of boundary condition basis
vectors which corresponds to a Z, x Z; orbifold compactification, and (b) the special
choice of additional boundary condition basis vectors, beyond the NAHE set, which
serve to reduce the number of generations from 48 to 3. While suitable variations in (b)
could still allow the permutation symmetry to be retained, it is far from clear whether
the same can still be realized without the NAHE set. )

As regards the issue of supersymmetry-breaking, we have noted that the marriage of
the two sources for such a breaking - i.e. through U(1),4 and through the dilaton - if
it can be realized, would be most attractive because it would combine the advantages
of both, while each would remove the disadvantage of the other. Realization of this
combined mechanism, would thus be of major importance.

To conclude, if the D-term of the anomalous U(1) makes a major contribution to
squark masses, it must be family universal. In this case, if the NAHE set turns out to
bc a necessary ingredient to obtain a family-universal anomalous U(1), it would be an
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indication that the string vacuum is in the vicinity of the Z, x Z, orbifold, with the
standard embedding of the gauge connection. Thus, the question about the necessity
of the NAHE set for obtaining the family permutation symmetry is an interesting and
important one, worth further study.
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Note added in proof

After the submission of our paper, an interesting work has recently appeared [39],
where the authors demonstrate the emergence of the combined anomalous U(1)-dilaton
SUSY breaking picture (i.e. (Da) # O and (Fs) # 0), which was motivated in
Section 6 of our paper, because of the mutual coupling between the two systems and
also on phenomenological grounds. While the dilaton-contribution seems to dominate
over that of (D4) in the cases studied in Ref. [39], as the authors note, the relative
contributions of (D,) and (Fs) to squark masses would of course depend upon the
manner of dilaton-stabilization. Following remarks in Section 6, a desirable solution
would seem to be one in which the (D) contribution is at least comparable to that of
(Fs), so that the problem of color/hypercharge breaking is avoided. This issue needs
further study.
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