united nations educational, scientific and cultural organization

international atomic energy agency the **abdus salam** international centre for theoretical physics

SMR.1317 - 25

SUMMER SCHOOL ON PARTICLE PHYSICS

18 June - 6 July 2001

SUPERNOVA NEUTRINOS

.

G. RAFFELT Max-Planck-Institut für Physik München, GERMANY

Please note: These are preliminary notes intended for internal distribution only.

•

-

-

Sudbury Neutrino Observatory (SNO), Canada Heavy-water Cherenkov detector (1000 tons) 9500 PMTs Data taking since May 1999

Ta Parting, Max-Parker

Particle-Physics Limits from Supernovae

In macroscopic magnetic or electric fields, neutrinos spin-precess if they have a magnetic moment μ . Spin-reversal after a distance

 $L_{flip} = 5.36 \times 10^3 \text{ cm} (\mu_B \text{ Gauss})/(\mu B)$

with $\mu_B = e/2m_e$ the Bohr magneton and B the transverse field.

Galactic magnetic field ~ 1 μ Gauss, coherence length ~ 1 kpc = 3×10^{21} cm Significant spin reversal if $\mu > 2 \times 10^{-12} \mu_B$ Stellar cooling limits $\mu < 3 \times 10^{-12} \mu_{B}$

- · Magnetic field between neutron star and shock wave could be large - Relevant length scale ~ 100 km
- \cdot Significant spin reversal for μB > 10⁻³ μ_B Gauss \cdot Easily satisfied if μ ~ 10⁻¹² μ_B and B > 10¹² Gauss
- · However, suppressed by medium weak potential, except if resonance condition can be satisfied.

See for example Akhmedov et al., PRD 55 (1997) 515. Nunokawa, Tomas & Valle, astro-ph/9811181

vick-darf day for Physics (Burn the

ે ત

Conclusions
Type II supernova explosions probably explained by neutrino-driven delayed explosion mechanism, but thus far no working numerical standard model. Convection key to successful explosion? Completely new physics needed?
If neutrino mixing parameters in currently favored regions • Neutrino flavor oscillations not important for SN physics • But crucial for detector signal interpretation • Sterile nus and/or dipole moments can have strong effects
High-statistics observation of a galactic SN is • crucial for empirical study of core-collapse event • not sensitive to sub-eV neutrino masses • probably differentiates between some mixing scenarios • information on possible late phase transitions and such
Particle emission by supernova cores continues to provide most restrictive limits on various theories (axions, r.h. neutrinos, extra dimensions) High-statistics observation would put these on firm grounds.

Further Reading		
 HT. Janka, K. Kifonidis & M. Romop Supernova Explosions and Neutron Star Formation astro-ph/0103015 A. Burnows Supernova Explosions in the Universe Nature 403 (2000) 727-733 E. Cappelloro & M. Turrato Supernova Types and Rates astro-ph/0012455 G.E. Brown, H.A. Bethe & G. Baym Supernova Theory Nucl. Phys. A 375 (1982) 481-532 A. Burrows Neutrinos from Supernova Explosions Ann.Rev.Nucl.Part.Sci. 40 (1990) 181-212. A. Burrows & T. Young Neutrinos and Supernova Theory Phys. Rept. 333-334 (2000) 63-75. 	A.G. Petschek (ed.) Suparnovce (Springer, 1990) G. Raffeit Stars as Loboratories for Pundamental Physics (University of Chicago Press, 1996) M. Koshiba Ciosenvarional Neutrino Astrophysics Physics Reports 220 (1992) 229-402	