| the |
educau‘z:ﬁi::::z: abdus salam
rganizadion international centre for theoretical physics

international atomic
energy agency

SMR.1317 - 4

SUMMER SCHOOL ON PARTICLE PHYSICS

18 June - 6 July 2001

PHENOMENOLOGY OF SUPERSYMMETRY

Lecture 1

H. HABER
Department of Physics
University of California at Santa Cruz
Santa Cruz, CA 95064, USA

Please note: These are preliminary notes intended for internal distribution only.

strada costiera, || - 34014 trieste italy - tel. +39 04022401 | | fax +39 040224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it






I. WHy 1S 1T NVECESSARY To €0 BEYoMD

Tue StAnparp MopeL 7

The Sfudw{ Model of PMffcﬁe P"g""“ s a Supmb

AeSCrfp‘éld.h &'F 14//16/%3“&[4‘/’0«4#16&1 ama/ %&l
interactioms... [se2 Bctores [’c‘f Tehn E'///'J“]

ver with fuo no‘fa“e -ﬂa?‘nofes .

(0) nevtrinos ase not exact /;f mass s s
sugges-étie, Per‘aps, aF a new A%-W” s“_‘& WCA /My«

Ham 1 TeV. Tdore ae swple ‘g § fo account for massive
ﬂeu-frl.l‘ﬁ-fj ard we will W‘Casidhﬂ—% re‘l‘urn - s /ooin'f.

(¢c) T H%J boson has net }0[ been d 1scoverecl
or has 1t 7 [more on Hhas by John Ellis ] |

Sii”, o indecatrons ,Dom"f fo % exis{erce o€ a wea/:(:“(ou/aw

”ggs AOJW\ wh’f a mafs o‘F 0[/00 GeV)J and we mﬁp QfSUme
M{A} s 1 case im tHeose .@c?Lures, '

Precision dbctroweak data is cmsistet witk m, & 200 GeV.

To avoid His omclusion , or to r'eppace e weaéa@%ou,a/eo( 14133.!
bosm with amofles (Soy, S{fm}%-@u,a&o/) mechan'ism for ;M-Ma{u'y
e@ecfroueqk S;ome'ffy éreqéin; , o wov Id neza/ adds toemal hew

Physics fo compire fo produce e Same virtued efocts as He
weakly-covpled Standerd Mool Hygs kason . -



Neventholess, tle Standod Model (inbeciny 2o,
Mﬁs besn) cannol be comsidpred #o be a Fredy
'A/nolm%'{:aj k%”";f/ _%/ Jva/»z(/cje )9_/2;5/'65) Va—&i(
fo acbitrarly hgk enengy sealas .

m—

Jt best, /¥ ¢ am ettectie Hredb! %0@% 4
s valid yp o some scale /) .

At WWJ above A, new ,oéu/'a entey and 7%
f'/MJMﬂ/ Model s no /m\;&r qcéjw)é for o/efWZ/Ag
74"0/%%% ,ﬂfgf/u. |

Bebs [\, o SHtandund Wodel is & very good
a,a//ox%al[z% to observeble p&//.ar. Levie boosn
ae Suppressed é{ A Loart ¢ factor %’ E/ﬂ
oA M;«y o/ £ |

M: ”e(/f"("la maesses m? Ae non-2€10 G a
copfequence .
3 f’f ,ﬁéu/c\rd% Jeall /] .



‘ - What’s missing? I

So far, gravity is not yet included. Quantum gravitational
effects are relevant only at a very high energy scale, called
the Planck scale

MPL = (Ch/GN)l/z =~ 1019 GeV,

which arises as follows. The gravitational potential
energy of a particle of mass M, GNyM?/r (where Gy is
Newton’s gravitational constant), evaluated at its Compton
wavelength, r = h/Mec, is of order the rest mass, Mc?, when

GnM? (__J\_lﬁ_c_) ~ Mc?,
which implies that M? ~ ch/Gy. When this happens,
the gravitational energy is large enough to induce pair
production, which means that quantum gravitational effects
can no longer be neglected. Thus, the Planck scale,
Mpr, = (ch/Gn)Y/?, represents the energy scale at which
gravity and all other forces of elementary particles must be

incorporated into the same theory.



Where does the Standard Model Break

- Down?

The Standard Model (SM) describes quite accurately
physics near the electroweak symmetry breaking scale
= 246 GeV]. But, the SM is only a “low-energy”
approximation to a more fundamental theory.

[v

e The Standard Model cannot be valid at energies above
the Planck scale, Mpy, ~ 10'® GeV, where gravity can
no longer be ignored.

e Neutrinos are exactly massless in the Standard
Model. But, recent experimental observations of
neutrino mixing imply that neutrinos have very small
masses (m,/me < 10~7). Neutrino masses can be
incorporated in a theory whose fundamental scale is
M > v. Neutrino masses of order v2/M are generated,
which suggest that M ~ 10° GeV.



® When radiative corrections are evaluated, one finds:

— The Higgs potential is unstable at large values of the
Higgs field (|]®] > A) if the Higgs mass is too small.

— The value of the Higgs self-coupling runs off to infinity
at an energy scale above A if the Higgs mass is too

large.

This is evidence that the Standard Model must break
down at energies above A.
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' Problems with Elementary Scalar Fields I |

In 1939, Weisskopf computed the self-energy of a Dirac fermion and
compared it to that of an elementary scalar. The fermion self-
energy diverged logarithmically, while the scalar self-energy diverged
quadratically. If the infinities are cut-off at a scale A, then Weisskopf

argued that for the particle mass to be of order the self-energy,

® Forthe e™, A ~ me® > Mpy [where @ = e?/(4mhc) ~
1/137]; |
® For an elementary boson, A ~ m/g, where g is the coupling of

the boson to gauge fields.

In modern times, this is called the hierarchy and naturainess probiem.
Namely, how can one understand the large hierarchy of energy scales
from v to Mpg, in the context of the SM? If the SM is superseded by a

more fundamental theory at an energy scale A, one expects
2 2 2,2
myy = (Mmy)o+ Kg'A

(m2;)o is a parameter of the fundamental theory, K ~ O(1) is
determined by low-energy physics. The natural value for the scalar
squared-mass is g?A2. Thus,

A>~my/g ~ O(1 TeV)

What new physics is lurking at the TeV scale?
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Paper 6

On the Self-Energy and the Electromagnetic Field of the Electron

V. F. WEIsskOFF
University of Rochester, Rochester, New York

(Received April 12, 1939)

The charge distribution, the electromagnetic field and
the self-energy of an electron are investigated. It is found
that, as a result of Dirac’s positron theory, the charge and
the magnetic dipole of the electron are extended over a
finite region; the contributions of the spin and of the
fluctuations of the radiation field to the self-energy are
analyzed, and the reasons that tle self-energy is.only

legarithmically-infinite in-positron theory ase given. It is
proved that the latter resuit holds to every approximation
in an expansion of the self-energy in powers of e3/kc. The
self-energy of charged particles obeying Bose statisties i
found to be quadratically divergent. Some evidcase
given that the “critical length” of positrom theesy is a5
small as h/(mc)-exp (—kc/e3).

I. INTRODUCTION AND DISCUSSIONS OF
REsULTS

HE self-energy of the electron is its total

energy in free space when isolated from
other particles or light quanta. It is given by the
expression

W=T+(1/8x) f (H*+Endr. (1)
Here T is the kinetic energy of the electron; H
and E are the magnetic and electric field
strengths. In classical electrodynamics the self-
energy of an electron of radius ¢ at rest and
without spin is given by W~mct+-¢?/a and con-
sists solely of the energy of the rest mass and of
its electrostatic field. This expression diverges
linearly for an infinitely small radius. If the
electron is in motion, other terms appear repre-
senting the energy produced by the magnetic
field of the moving electron. These terms, of
course, can be obtained by a Lorentz transforma-
tion of the former expression.

The quantum theory of the electron has put
the problem of the self-energy in a critical state.
There are three reasons for this: ’

(a) Quantum kinematics shows that the radius
of the electron must be assumed to be.zero. It is
easily proved that the product of the charge
densities at two different points, p(r—¥/2)
Xp(r+&/2), is a delta-function ¢'3(£). In other
words: if one electron alone is present, the
probability of finding a charge density simultane-
ously at two different points is zero for every
finite distance between the points. Thus the
energy of the electrostatic field is infinite as

W.g = lim (....,,e’/ a.
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(b) The quantum theory of the relativistic
electron attributes a magnetic moment to the
electron, so that an electron at rest is surrounded*
by a magnetic field. The energy

Unag=(1/87) f Hdr

of this field is computed in Section III and the
result is

Unag= €2h2/ (6xm3c?a?).

This corresponds to the field energy of a magnetic
dipole of the moment ekh/2mc which is spread
over a volume of the dimensions a. The spin,
however, does not only produce a magnetic field,
it also gives rise to an alternating electric field.
The closer analysis of the Dirac wave equation
has shown? that the magnetic moment of the spin
is produced by an irregular circular fluctuation
movement (Zitterbewegung) of the electron
which is superimposed to the translatory motion.
The instantaneous value of the velocity is always
found to be c. It must be expected that this mo-
tion will also create an alternating electric field.-
The existence of this field is demonstrated in
Section 111 by the computation of the expression

U= (1/87) f E.dr.

There E, is the solenoidal part (div. E,=0) of the
electric field strength created by the electron:
The fact that the above expression does not
vanish for an electron at rest proves the existenc®

1 E. Schroedinger, Berl. Ber. 1930, 418 (1930.)..
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zero'in the one-electron theory, is negative and
quadratically divergent in the positron theory.
This is because of the negative contribution of
the magnetic field and the interference effect of
the electric field of the vacuum electrons.

(c) The energy Wue of forced vibrations
under the influence of the zero-point fluctuations
of the radiation field. The energies (b) and (c)
compensate each other to a logarithmic term.

It is interesting to apply similar considerations
to the scalar theory of particles obeying the Bose
statistics, as has been developed by Pauli and
the author.” Here the probability of finding two
equal particles closer than their wave-lengths is
larger than at longer distances. The effect on the
self-energy is therefore just the opposite. The
influence of the particle on the vacuum causes a
higher singularity in the charge distribution
instead of the hole which balanced the original
charge in the previous considerations. It is shown
in Section V that this gives rise to a quadratically
divergent energy of the Coulomb field of the
particle. Thus the situation here is even worse
than in the classical theory. The spin term
obviously does not appear and the energy Wie
is exactly equal to its value for a Fermi particle.

A few remarks might be added about the
possible significance of the logarithmic divergence
of the self-energy for the theory of the electron.
It is proved in Section VI that every term in the
expansion of the self-energy in powers of €?/hc

W=} W @A)

diverges logarithmically with infinitely small
electron radius and is approximately given by

W~z mc?(e?/he) g (h/mca)]t, 1=mn.

Here the z, are dimensionless constants which
cannot easily be computed. It is therefore not
sure, whether the series (3) converges even for
finite g, but it is highly probable that it converges
if 8=e2/(hc)-lg (h/mca) <1. One then would get
W=mc?0(5) where O(8)=1 for a value of §<1.
We then can define an electron radius in the same
way as the classical radius ¢2/mc? is defined, by
putting the self-energy equal to mc?. One obtains
then roughly a value a~h/(mc)-exp (—hc/e?)

(1;3\2/). Pauli and V. Weisskopf, Helv. Phys. Acta 7, 709

which is about 10~* times smaller than the
classical electron radius. The “critical length” of
the positron theory is thus infinitely smaller than
usually assumed.

The situation is, hawever, entirely different
for a particle with Bese statistics. Even the
Coulombian part of the self-emergy diverges to a
first approximation as W,,~eb/(mca?) and re-
quires a much larger critical length that is
a=(hc/e?) 4 -k/(mc), to keep it of the order of
magnitude of mc¢®. This may indicate that a
theory of particles obeying Bose statistics must
involve new features at this critical length, or at
energies corresponding to this length ; whereas a
theory of particles obeying the exclusion prin-
ciple is probably consistent down to much
smaller lengths or up to much higher energies.

I1. THE CHARGE DISTRIBUTION OF
TRE ELECTRON

The charge distribution in the neighborhood
of an electron can be determined from the.
expression

G(¥) = f o(r—E/Dp(e+E/Ddr;  (4)

here p(r) is the charge density at the point
r. G(¥) is the probability of finding charge simul-
taneously at two points in a distance . If ap-
plied to a situation in which one electron alone
is present, direct information can be drawn from
this expression concerning the charge distribution
in the electron itself. The charge density is
given by

(5)

where ¢(r), the wave function, is a spinor with
four components y,, u=1, 2, 3, 4. We write

p(r) =e{y*(n)¢(r)} —o,

{y*¥l= ).i.'ﬁ-‘%

[

for the scalar product of two spinors. ¢ is the
charge density of the unperturbed electrons in
the negative energy states which is to be sub-
tracted in the positron theory. In the one-
electron theory o is zero. The wave function ¢
can be expanded in wave functions ¢, of the



l A lesson from history I

The electron self-energy in classical electromagnetism goes
like €2/a (a — 0), i.e., it is linearly divergent. In quantum
theory, fluctuations of the electromagnetic fields (in the
“single electron theory”) generate a quadratic divergence. If
these divergences are not canceled, one would expect that
QED should break down at an energy of order m./e far
below the Planck scale (a severe hierarchy problem).

The linear and quadratic divergences will cancel exactly if
one makes a bold hypothesis: the existence of the positron
(with a mass equal to that of the electron but of opposite
charge).

Weisskopf was the first to demonstrate this cancellation in
1934. .. well, actually he initially got it wrong, but thanks
to Furry, the correct result was presented in an erratum.



The self-energy of the electron

V. WEISSKOPF
Zeitschrift fiir Physik, 89: 27-39 (1934). Received 13 March 1934,

The self-energy of the electron is Jerived in a closer formal
connection with classical radiation theory, and the self-energy of
an electron is caiculated when the negative energy states are
occupied, corresponding to the conception of positive and nega-
tive electrons in the Dirac ‘hole’ theory. As expected, the self-
energy also diverges in this theory, and specifically to the. same
extent as m ordmary smgle-electron theory.

N——— i

1 Problem definition

The self-energy of the electron is the energy of the electromagnetic field which is
generated by the electron in addition to the energy of the interaction of the electron
with this field. Waller,! Oppenheimer,? and Rosenfeld® calculated the self-energy of
the free electron by means of the Dirac relativistic wave equation of the electron and
the Dirac theory of the interaction between matter and light. They here used an
approximation method which represents the self-energy m powers of the charge e.
They found that the first term, which is proportional to e?, already becomes infinitely
large. The essential reason for this is that the theory of the interaction of the electron
with the electromagnetic field is built on the classical equations of motion of a point-
shaped flectron whose self-energy, as is well known, also becomes infinite in classical
theory.

In the present note, the expressions for the self-energy shall be derived without direct
application of quantum electrodynamics, but by means of the Heisenberg radiation
theory,® which is linked much more closely to classical electrodynamics. The radiation
field is calculated classically from the current and charge densities of the .atom;
however, the amplitudes of the electromagnetic potentials are regarded as non-com-
muting in the final result. Just as was shown in a corresponding paper by Casimir®
concerning the natural linewidth, this method yields the same result as explicit quantum

! 1. Waller, ZS. f. Phys. 62,573, 1930.

2 R. Uppcnhexmer, Phys. Rev. 35, 461, 1930.

3 L. Rosenfeld, ZS. f. Phys. 70, 454, 1931.

4 Recently, G. Wentzel (ZS. f. Phys. 86, 479, 635, 1933) has shown that one can circumvent the -
divergence of the self-energy in classical electron theory by suitable limiting processes. The
transfer of these methods 1o quantum theory has failed, however, since, according to Waller,
the degree of infinity in quantum theory is highe:- than in classical theory. The hope expressed
there that the degree of infinity will become smaller in the Dirac formalism of the ‘hole’ theory,

-does indeed hold for the electros:atic part but not for the electrodynamic part, so that the
Wentzel method must fail here too.

5 W. Heisenberg, Ann. d. Phys. 338, 1931; see also W. Pauli’s article in Geiger-Scheel, Handb.
d. Phys. XX1C/1, 2nd edn., pp. 201-10.

6 H. Cesimir, ZS. f. Phys. 81,496, 1933.
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Correction to the paper: The self-energy
of the electron

Zeitschrift fiir Physik, 90: 817-18 (1934). Received 20 July 1934.

On [p. 166] of the paper cited above, there is a computational error which has seriously
garbled the results of the calculation for the electrodynamic self-energy of the electron

according to the Dirac hole theory. I am greatly indebted to Mr Furry (University of
California, Berkeley) for kindly pointing this out to me.

The degree of divergence of the self-energy in the hole theory is not, as asserted in
[the preceding paper], just as great as in the Dirac one-electron theory, but the
divergence is only logarithmic. The expression for the electrostatic and electrodyr-xamxc
parts of the self-energy E of an electron with momentum p now correctly reads, in the
notations used in {the preceding paper}:

E=ES+EP,
2 ® dk
S _ € 2.2 2 f — + finite t .
= A g phyR @miet P |, Ty T e e
ED = e’ (m2c? -4 p? e + finite terms.
h(mzcz +p2)1/2 N 3P k k

For comparison, we cite the expressions obtained on the basis of the single-electron
theory:

2 =N
ES = %L dk + finite terms,

e? m3¢? m2c +p)72 + p r‘
EP =— 2.2 21/21°g( 7.2 & p2)2 — =2y, 9k
h |p(m*c?® + p?) (m*c* + p°) p
+ 27 rkdk
h(m2c? + p?)2 Jo )

_The computational error arose in the transformation of the electrodynamic portion
EP for the case of the hole theory:

EP=1X@) - I¥@), k=102,
where J%(B) is defined on [p. 166] whereas

L PP, + ;12—0:3)2 + (®P) + m*¢c?

. 2 dk
@y =-= f ==
@) 2rh 1 k PP.(P+ P:+ k)
and is not equal to the quantity J*(3), from which it differs only by a sign. Likewise,
one must set

ES.= 3 [1*@)ap
k=12

for the self-energy of the vacuum. .

As a consequence of the new result, the question raised in note 4 of the paper
requires a new examination, whether the Wentzel method,” to avoid the infinite
self-energy by suitable limiting processes, might not still lead to the objective in the
hole theory.

13 G. Wenuzel, ZS. f. Phys, 86, 479, 635, 1933.
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A remarkable result:

The linear and quadratic divergences of a
quantum theory of elementary fermions are
precisely canceled if one doubles the particle
spectrum—for every fermion, introduce an
anti-fermion partner of the same mass and
opposite charge. |

In the process, we have introduced a new CPT-symmetry
that associates a fermion with its anti-particle and guarantees
the equality of their masses.

12



! Low-Energy Supersymmetry I

Will history repeat itself? Let's try it again. Take the Standard
Model and double the particle spectrum. Introduce a new symmetry—
supersymmetry—that relates fermions to bosons: for every fermion, there
is a boson of equal mass and vice versa. Now, compute the self-energy
of an elementary scalar. Supersymmetry relates it to the self-energy
of a fermion, which is only logarithmically divergent [or logarithmically
sensitive to the fundamental high energy scale]. Conclusion: quadratic

divergences cancel! The hierarchy problem is resolved.

No analogy can be precise. In this case, a serious flaw arises. No super-
partners have ever been seen. (There is no scalar-electron degenerate in
mass with the electron.) Supersymmetry, if it exists in nature, must be

a broken symmetry. Previous arguments imply that:

The scale of supersymmetry-breaking must be of order
1 TeV or less, if supersymmetry is associated with the

scale of electroweak symmetry breaking.

Still to be understood—the origin of supersymmetry breaking.
Nevertheless, TeV-scale physics could provide our first glimpse of the

Planck scale regime.

13



Benefits of Low-Energy Supersymmetry

® In low-energy SUSY theories, quadratic sensitivity to A
is replaced by quadratic sensitivity to the SUSY-breaking
scale.

® Provides a framework for the hierarchy of energy scales
between the scale of electroweak symmetry breaking and
the Planck scale (Mpy, ~ 10 GeV), which characterizes
the fundamental scale of gravity.

e Unification of the three gauge couplings at ~ 106 GeV.
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Titrodue e contragradiest representation (M~
;d N /a(:__ [M-Ijro(/g gﬂ ‘
= [«o*MliocT]% 57

w‘lc‘ me"'«?a tes % Je‘{}n i{/dh:

o = 02 = o !
ETT =40 ‘(-( O)

ce. Eg!*= “f“"‘ [ .

§ “= gt §j

Tle. matreces M e~d (M"')T ae rebyted éy .S/mz/m-,)é ﬁms{;rua{/m
oc eswmﬂui:% @ a C;{m?,o, e‘f Aa.r(x '{e«.c.o. 7% caf/afma’ma?

rep re.rem"aﬁas e ZJWV

This s stmeban ™ e well- ,énown resi w SUMR) R 4
2 ond ;—8 representahons ae enga—é&&/

Ethen Sy or §F i a ;aaa/(ma/zé/&é For 7% /7_4}0/

represen fation.
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Fo ’ ‘ﬂe (0);.' ) m,,t_ge,‘k,ﬁ,‘ J gr'ﬂ"rookz.e fﬁ_ g‘?%o{ ”S'ou;or,' /;xo/(c'e.r.’

7L —s gu = (M;,}f:;. -7-,é | yj= i
wis~e .
M)t~ I- (BG + A7
< b X
. +
An egirvalloat dermyz‘zéu & via T an,gcic_reprwenﬁém M™:

s

2, — 7= (M), ,Z:

wio-e

and
,‘. * 2 o . ‘ _ .
e = 0%= /—:a/ v Cyp=—det= () 07
So/ 522_;_.5048) etc.

No{’e M % a“-ﬂ( ’V,/‘ Aave ‘/@ Jame 7"'“15‘4 (‘mq,‘ét.o& [a...u,
o we moy eguote Hewm:
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Tlc*.f/ 5,( and :i.é e T &.Jm*uﬂ éw'/a‘»:? blocks For
c:m.s*fuct,‘choq ://}.-71 K‘c/a«n‘fam M/J 72 Cn-.r‘frr/:‘fa %%%

we reed fo be able to constect Zorar\‘f'-t- invercesdt soalon
Camémb‘ﬁo:kr{ _{aaa’ '?. cor arden o Camstruct 1% [MM

A’ LM (c Pfali&rft'g ai{" ﬂﬁ.; 40"'%{?' f}:»ramé”i mai'f?.;f M s %‘f N
gt M,(yMﬁa.;-' e37det M

— E’_ea-

Tt Al olloss Hak onden £,—5 M5,
X — Mdﬁxp

X§= X5, = e}, 5
IS Niva/\;\qu quL?q leresds ‘erS‘G:(ma{IM. gmjﬂn‘é)

y; = f& §°( - 50-(? fﬁ ?o'( Nete CMQ'GJ“;‘&Q.
- 1« MaF ft&
Is Invariand | ,idfw _
Mofes:

[. Y§:§X) witng £°“8=—£‘e°[ﬁma{a~xf-cdnw§
~ propenties of flo fup~Component ermion ol

——

2. X5=3%

3. (1) (rs )= L X<= 57=1%
ﬁhémlfm ernfugation reverses o orckn
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Conchysion

YS$+ X%
s Lorertz mvariand ard H&mu/ﬁwm . M.} o a candodede for
¢ frm in He [‘ayﬂwfiam.

We still reed a candidate for a kinetic enongy feum .
Tntroduce:

on= (I &)
se= (1,-¢)
Note Hak:
o4- oI - Seg = P"-P-; —P’.-‘”{h)
P F P ° —.P!—'.‘FZ Pofﬂg

is a Hermaan 222 matrix. So o Mpha-‘*Mf T[u: Tl
eiitsa p, Svck fhat: |

[P;M: Mp.oM? |

™ ey

E(ex\ce.SQ.: Uf{rig M{PAO‘A,): Pa-l -elz il a(@*M”‘

shoo et O35 = p2IFI* ond conchie Hat p—s p!
vade, e Larents fv‘au\fﬁvr‘w ationn. M.

Th Spino tindsr Shruefune af ﬂe boxed 65:/4{1&»\ abeve i
PM oL & Mo’ﬁ[mi‘)&é&a‘;}
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Thus ) we have deduced e Spiner Indese 5troctore of o*:

O—/“-
olot

whek m‘medu;l'a@ bbows ore to constroct anolle, Lorents

invaranit 5:/@»%:
z,?"‘a/: RXE = o) ¥

Tj& Ad‘or of ¢ Is m.stnfcr{ since, 4 ZO"“? 2’ /‘Mm(a/t%s ,4}%‘ -

iNo“d. X by a totef a/lr&tymce.) & hermitien and Has o
CMJ:Jat rcar a /tme‘[?c e'mg# '!@wx th ‘IZ Lafmmyam.-

epenctse: Showr Hok [ o4 f') t. S g
& H )

Sindanlly , fle indere chrochune o€ G és:

eXP g g M

5‘-/4&«" =
pA
)7&(, ’ﬁ{.)!' /ﬁ‘ g — g "M[

Cpr L LEE ;
That is, T~ dots net thad to an mc{%w«aéaz‘ Lorenta inirond

pentity.
exercise.. Show that:

.
o : g,
IR, — - L
FHAoY + Yo = . -9
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Lorentz Froms focmations n Twe CL_»;QM ”87“"57:’95

AV'J_. _I_ A“"V;(_ L " uol
g=v, 8 = 7_/0;0.(0' f—as o <)

Tuval, -~ | [Fadol o, _ mveel g

A
hote:
Crpbicith, LI
.: 41‘@ / é ' —_— Qﬂmpo. p: ;‘a;%
— ¢ | - g
0= —ak 9—0’ o< wkere
» &, T +|
=-0% =z $o0t = -0@= oc 123 .
0‘ o > o= O o
e »
5¢=4:948, ,
. = - _p “=pEd]
W —'—4-9 S’“V x~ I.'-f(g'g — o’a: i ‘o::— Pé
P 2 U 7 7 fg p -
b)lﬂrizg,ﬁuj;gj

[s#= ian] for e (0,1) representatiin.

Exencise: Show that :
Xa.mxg Ia( Y "{F __.§ a.mv ﬂXF
Xew§= Hom§8= T XF = ~TaX

(%o**'f)*- Xn§

]}

)
WA
2
N\
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. F;Ur" CMM qu-é‘d-h’

Yz
¥= ()
Y. = (" %,e')

¥ = zmr'r“r* = ("I °

oI
o~z L[y = (J“‘&” o
O 5:’“”".“;
Note: £, 04= 2g,, ST deg (1,-1,-1, 1)

Pr‘o Jeci‘tom op&qﬁ s

b= = (l ¥s) = (52}
sz ltd )= (o0

O T
\}/LE PY = (i")

%E&%:(%
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E (rac CLA\\;O l]/\-‘t_
Sbf_:: (z;(. ’7“)
Tm‘roclace ‘ffe ma‘l""k A |
A - (0 g:(é) Aa/,aA—I: X/“TL

and e Dirac ad J‘ofr\‘f;
T= ¢ = (#* ?f;)

M‘ ”U’”e'"’.‘mﬁ@y, AZ Xf 2 ’ﬂavz}k eah has a ;a/lfv[éﬂd
Spmnor - index sfroctfue .

ation matrix

C/laazf comug
C = g“’/g O. . Cc ~'\rec = —y~T
| o &%

T/Q CAM}Q, Caujéga%ed ‘f;dr—cmufywﬂ'{ \go/;wr /6

ye= CTT= C(YA = (.7‘:‘)
. g',(

remark: pumerccally, C=id°0 aj allongh eacl has a differend
Spraer ticke structvre.
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TRANSLATION TABLE

SRR 1 A R RS T S

v, = 3
(3

Wt = 15 T 5 4
fm% ", | Rtz L%
‘HCPL Yo = §5, EPL s Z?:
?{'P&y,ac___;g —:‘ﬂ’{;- 27/?:
Tont = 5045, i L
Vorope s = f.on4, ! Xad ‘7’”“7’]
Lfoap o = Y0, Fho BB F o,
‘e ht, = o7, |  EWeeRKfEd
Tt Follons ok
W%': 7/{2*?;5-’
AR AN 24 Tf&h‘f:"i"
K= 5544, - ~ .47, e
Crat, = 5,545, 7.5 Ryt
Ya0“ Y

Aot = Aoty e BT

17
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Foor—canfw Ma.];:ramu Sjpl‘nor‘
St =5 . Thn,

G ('55'“) ] (fs)

One cam check et W = %

_W_g\crmc\ 'Tjte,ébl ﬁwrg_v
L= 154 —Lmly¥+F¥F)

= _;._ Ford ¥ — L m¥¥+FE) + fohl diegence
wikere %t‘s & ‘I‘UD“CMM Lermiom .
note:  FoY = P9~ (B.E)¥
'l?ws&éd\g fo ’éur-cmw ho’fa"&;ﬂ | % = /jf)
MGV = PG ~ (0 )y
9 *

|
ﬁz

Fo fthat,
P _
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A Drifag fermion 13 eguiméa,d h Aw mu—a/e}ao\&m'/e

Majarw ferm rons.

Stant with e
L= (5t v Boudts) = tmg ety ~tmI B
vy = (o)
ey (2

and o/lado:onzé-zfe my T Corresperding €ionvaliuosr ap +i
ot

%: %;’Z"Ii SAI

or
s bk

%= -k
’X\ vz Vz

He factor of ¢ i inse-ted here co
Aot 4o 14 *W“Comfmza‘ fermons

have positive mass

)
AN
)
.
3NN

Ten,
oZ/: ‘2/‘725‘9/4(//& +%AE”9A%)
—smbtar Bl rLE+ E T )
Corr efpaxo&'? 1‘» 7(00 Maﬂ-—c/e;h-%ﬂé AU&—WM J/Mé/:r-
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—

L= il F B fED )= Ly ey Ly &

where mi; = / o ’: )
nn

and V’,} 5 ew Jol ﬁlb“mmed/ J‘/m‘of.‘f.
T Dirac Spiner ds

& /ri?)

<

Note 1 : _
Vigedfit o Ya = 0wt — (A E)F ¥,
++DG-Q¢/(V&|5.¢"¢.Q
= BN 4 kel duergen,
and
HETT < Tk
[hus
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T Seg -Saw” mecém'.rm

El}@nm&u qf meg ;{M[/_z‘," l//f— ﬁé’]
, : ,; * ~ Y

: . 2
2. for mD<<M/ e fvo mass WVL&&I ae M, Mo

™M
Ez;'mﬁ&s;-'
k= Y- ey,
fox v
Thew,

é‘mo("’/n%_“@*) + 3_1 ng'{; + h.c.

= 3‘{[ %‘\*@K + MK K 1"/,.(.] + O -M’fé)
WA&CA Corre:pow/J’ 7[0 a %o‘y ,{ ﬁub Mo:jorwna. ‘ér'miml
2 very ght and e very havy [t seesaus).
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TI[. Supersymmetry — exfondsng [oincard symmetry

In (‘t:;v.ééy y a‘/‘lemp‘ﬁs werl chle fo -exﬁna/ Pom’caaé -gﬂmﬂe’*’y
by combining space-tire and internal Symenetries in a non~trivied
way , (o&mu and Mandela ’orove/ At tlose aﬂéayllf would

dwvf Mo TJ@ QSSVMJJSW*Z?MqﬁrJ Jq%,j-{y
Commataton rebations.

Tle breakthroug h was ackesoed by constdoring 2 now chiss ot

?érmq}'w'c”wmﬁff ”7@'{‘ Sa?LIﬁ‘;/ M—Wﬁﬁm\ re{é“é%f
H sag Lopustansly and Sehnmius &//f&au&:.eq’ Ak Lermion s
Sgmemetry Wm‘or; wee allnoed ard preved %o my;!
tramsterm eitlor as / -j, 0) e /Ci'y L) \

Tl above resudt complies RaX
[Qu, T*]= foav B Qg

) .. gp!'h“% wfgafé}f],

e Qu is 2 (1)0) Symmatry operator. Tnaddition,
[®a, P#] =0 |
Suce Qu is tronshuhonallly mariant (1o xplicit x-ckpondines)
Snidaly , 8% it a (0,1) symometry oporator; so
[R%T«]= 15 Q*
[@¥,p#] = ©

Te Qs fa‘l'(fd% M“Cm'/a{wn rels bons. Gesr He Lorenta
propeties of He R, Hew is bittle treodfm e For&Xamffe/
3(\),(, 5P§ Franstorms as (1,0)® (0, 1) = (1, 1) whel is a four-vector.
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fou,Bil= 202 P

whee e J 15 comventronal (anel cam be achrévesl by re-scalimg o &
an v - Rt),
m 07‘%1 aﬂﬁ;mu“‘n'}oﬁ ar g ! i ]

§Cu, Q,gf = {@,@3‘ =0

KACSE Tn A-compone,d votatrin, defime @, = ) e
Hat: F R
[&f’m_,j’m/]: ',zf"'“y M |
P, Ewd = AP whee Bzl A

M

r/(eore/m :

The VanisA/}\a of e vacvom endrgy [5 a necessary end
sufficiend condien £ TZe exis{ence & a un(gua
Supersymmeotric vacoum.

proof : moltiply {Q.{,G_?;f by R and use tr oasFv Q.g""
Zo obtaum:
Fub fQ &1 = 4p~
For m=0, s reads:
4pe = Pro* L ¥
T, £ 1G9 o e, et 20
, Ton

<©]P°lo> 2 &

and

<O/P°/O>:O Y= Q.,(IO>:‘O

_ 7
1 s concdithon rs Jb?é:ﬁe/%»

1% vacoum /s Supersymmetric
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Recall H#o (asimir operators of e Poincasts a&eéra , P tand wt
Mote 1ot :

[PR]=[P @] 0

but, [w5Qx]#0

[Wij (_Q—,; ] o
T/(q;l % lr:reytuc.(.b/e (‘?ff?f@h?lazsf;hj 07[’@ S(fefSy mmé‘?‘g qbeéra
will contain difterent spins. I IBD (5 a bosow ond IF2 &5 a
fermim, Hon,

RulB?= |ED
Qu[F) = [B

ke 1E7 ad [8) ditfer by half & unit of spin , simee
f{*& sa zl 5 o) S&ymme‘t‘rg efer‘cﬂ"or. |

( 3% ‘em a7L{.C)

Deﬁh;‘é(;iz (~0F is ancperator detmed 5o ot
-nFisd>= +(8>
-OFIF> = — (>

Tleo em!

) Ly (-1)F = -~-DFfx,

[U) 1L'r- (“})F: O (‘pot‘ ‘Fn'ced Non— 2.0 P,«.) :

ginS ggum 0'F [lf) N ~S‘Uper.rme'b‘;c Mf@l[f
contain eguw( nhvombers of bosomie and v[érmfwu'e

JEMS of '(}‘Qdom\

Pf‘oo\“o'p (i) evwz‘alz tr [["‘/)P{Q‘x/ 63"?] o Fwo wass.

First Waey ~ USE 1% a«Zch‘lLQﬁm rélatien for e Qs

Serond Wey = expand #p ante Commutator WMW‘é '%_
CrPrEsSim Using L) vatil gou got 2ers .
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K -iavariance
The Sc/,a&r:f»mefry a&ebra can be exTended KZM Ao., noﬁmg

ﬂd Qo/ (s l;\LG/Mt% Wéﬁx Tté J%Symme'?("/c 4,6;06"&
iS5 vncharvged vndeq :

e - "’é,f/h
(Xf)( > €. {-><r~(

Vel

wle ¥ is a el number '77&!, ntroduce a hew f;"""f?"y
}WQ‘ILDI‘ R !ac/ fAat :

e “Xﬁ@d e-—"b’;?: e-"'a/Qu
eib’ea&e —é‘a’ﬂ - f{a/@
'72/(1;? ' IA «}\H*e.mlna—é y
[QEJ Qo(J: —QO(
[R, 53;]: R
Wew\ay Choase [/Q/P'“]—“ [E,j""]-:o 7o exlend
‘ﬂe.ﬂ/p&lSWne?‘Cj a/oqebm.
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g_aﬁmir amfoa 2_{ 'fte -Supeggmmeﬁ;c &ebru

PZ remasms a Casimir af&ua‘/'of Sinee it Comomecter el ol
%Wa'l'ors. TAes means Hat alf Ho states Hat rmake up
a SUP&ammefric nw.@'p@;\‘ /\ave 1743 Sam@ mass .

w? s ne pdh;u a GSMJA o;x&un‘or. /f/e need d .S‘u/a&u.sgmme fffc

Wo&‘que&\ of %o Fadi-Lobumski vector W
d@ﬁn(f\m:
Bu = W= g0, Q:]

note!
Tle tactor of L war chosem 50 1Aak [8.,8.]= ~i, 0 B°PT
[BA)@,(\: —'El'/?u EB/"/P"]:O

Ry
[6,..,5,;,3—“ é PAE;,
Nex?, we defima. :
| Cuv = B.P.—B.P.
I# i easy o check Aot
[ Cu,@x] = [Cu, 7= [C Al=o.

S}u‘.e C:“‘,’ C* (s [ofem‘l’z lnvw&,,.;{/ ot )C;//ow.r A oA

[C,avcavj jd,]:D. |
HM/ C:WC’“V 13 He secomd Lasimir Opesator of 7%
SvPerS;mme'f:rJ a»égebm |

We cam wecte:

Oz A[BBPP— (BB)]
rv |
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(ase 1: P2>O'

—— AT

Ina'Fruﬁe w[ue~P’u=(mj‘5;)J )
coe. = qmr(B“Bu— BS) = —2m*[B]"
'
Moreover, in This frome :
EB‘L B’"] = AME‘J‘QB&

Debne W‘J@ B‘ 72041 the J S("‘l.f@ M;Jaa mmwaq‘/um
CM’/T{ZM\ re&?‘m«s uo(

CMVC/(V = _;m4J'Z
has a}umﬂues —dmylg#1) ,  whee 7205, L. s R

.fuper.fpm . T,é /rreo’acré/e repreren'?luﬁoas R 77«-!‘ /’”JJ>
U;,mg w-— m S

Ao sk ok 13,8

I\ﬁereﬂ'ﬁ’m {&1,5? } {&z,&;}— Zm Ma(a.épo‘/fa,;

ook v-comemactuors venish, Thas, 6 shts 127 = 0,
satisfies the condition Q0> = o 104 /lmj,73 >

»(ewu@; hon—vw}lu'g shtes Mom aw: |
107, QUQD, BHAY ad REIRHND
We con compote e spin of Hlose shades

% é) war/(lh; out TR ec}a-nvnz‘e-r
wil respecf fo S3 and 52
34 5o 4. 2>
d . 2% 45 N
Im)j> /// 43‘ 1-1 -F’trealéx% 53 e SIS
\: : S3245~% Geln>
=4

5374, QIR
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94[44:?,&.' j_: ()
PoS!ibIe vabues of S3:

- o \
536, F 2 ) E)C’

Correspo'nd.r .,L, +wo r‘eaﬂ KCJM& uao/ oOre MQJor‘w ‘pe_rmw'n

scaban 0&34225 ot freedomn = L Eﬁebmimﬁo&é%, e
Lermion cley\e.es of frecolom = oL Complore scali |

@ﬂ&lase Show tRat 4“)’5:;, (wfesy)cmdj k a r‘ea,?uezfor-/'z.a@d
a veal scallan Ae&/ cmd fure Ma o rame. e rmins
[or eguwﬁa«ﬂy e j\if:ac: "Fel‘mw'}\?

Q&_@_‘ P“:O
One cam show Hat for P*= O,
Lz w— oM e, B, ]
setshes:  PUlu=@ .
| [LuLv])= —tEuap L°PF

(He some rebstions sahshed éy Wae) | 77&_;} 4 Pie e,
L-/u s Propzrf‘é(zfma,é 7[2.. ‘f;u ) .

Lu= (et $)B K= syer-heliiify

' RulSD as before, a smple Comfv?‘“a?"lén yeolib
WulQ>= (k+3)P. 12>

However, &r P20, ondy o states surviie. The massfess

_S‘upaﬂwawpw cm3ists of  particlps of helicr ty
K and K+ . We must add e correspandeny antespartrckys

(CPT“(#)«/L;«/&S), whe f yeelds shbs af/e&z/@ — K and 'f/f"‘%.’/)-
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Crampics’
(¢) K=O
heleeites ©, 1 @ hollieitiis O~
Correspomoling Fo 2 massless complly ccabon asd a

massfess Majocana Lermion

(ii) k=4

relicities &,1 @ helicstes —3,-1

e

Corre:/om(dta fo @ massless Mc_)orama Lermien and
aymas‘f»&U ra:l VeC‘{'or 14&21-

o

Forther gomanals datiwns
Extended fupsymme'b;y introduces N Spin~Y
1,0) gmeetors, @A (A=), ) and N (o)1) gostistors
Rin . The d}eém lm/\a&v}y 1% K5 1s more aa”éf;{ed.
In Hese bechoes, we il not male Her addtoned

WLJt égfl&h. e fﬁ&wélf a/rfkﬁffe/ éé/ua ae éqfec/
th N:_? Supens ymine™ |

T wac veason _ér This chorie s due #o 7% 744‘7‘
fhat =1 Heories con doscitle o tral fermons

./aS Seln in haﬁ%é). For N>l/( aﬁ/%-/ua@a[

fm‘ans Aqve rW‘Aaoméo/ /DlenmJ , So % Cmuj/rl/t?s;h
mc rea/Zth ‘I%eor/'ef of -/ﬂ; ﬁ"é ane much more 0477[45«»5( .
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