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DISORDERED d-WAVE
SUPERCONDUCTORS

in collaboration with C. Castellani (Univ. of Rome)

and L. Dell'Anna (SISSA)

Motivations

• In a d-wave superconductor, like the cuprates, quasiparticles
are gapless.

How does the theory of Anderson's localization work in such
a case ?

• Since charge is not a conserved quantity in a superconductor,
contrary to spin and energy, charge density fluctuations do not
diffuse if disorder is present, while spin and thermal ones do.

How do we evaluate the quantum interference corrections
to the quasiparticle charge conductivity ?

• Fermi liquid corrections to the quasiparticle transport
coefficients are usually invoked to explain the doping and material
dependence of properties like the penetration depth in the
cuprates.

What is the interplay between localization and residual
quasiparticle interaction ?



The Model

Nearest-neighbor tight-binding Hamiltonian with a pairing term
of d-wave symmetry in a square lattice:

(ij)

%a

• tij = t j i G T^e are independent random variables, which are
gaussian distributed with average t and width ut\

• (f>- = — (f)ji is a phase which, if finite, breaks time reversal;

• Aij is the pair function with d-wave symmetry;

• ei is an on-site random energy.

If ei = 0, no onsite disorder, and / i = 0, half-filling, the
Hamferwan posseses a nesting property.

This situation is not completely unrealistic. Indeed, if
the imtpurity scattering is close to the unitary limit, the

disorder effectively reduces to a random hopping.



Nesting property and chiral symmetry

If nesting occurs, the eigenfunctions at site i = ( n , m ) , in the
Nambu spinor representation, have the property:

, m) = (-l)n+m4>E(n, m).

• The operator 0^,-K) shifts by (TT, TT) the momentum.

It follows that the two wavefunctions

— [l ± (-l)n+mJ <t>E_+Q+(n, m),

are both eigenstates of zero energy, and are orthogonal, since they
are defined on different sublattices: sublattice A (n + m even),
sublattice B (n -f m odd).

Therefore, at zero energy, which is the same as at
the chemical potential, an additional symmetry is
present (so called chiral symmetry), which makes
each zero energy level at least twofold degenerate.

Due to the chiral symmetry present at E = 0 when nesting
occurs, the localization properties of the wavefunctions at the
chemical potential differ from those away, which are similar to
those at the chemical potential but in the absence of nesting
(on-site disorder present or fi ^ 0).



Path integral formulation within replica trick
method

We treat the disorder in the random hopping by means of the
replica trick within a path integral representation.

We introduce the Grassmann spinors c\ and c» with components
Ci,a,P,a and Ci^^a, a = 1 , . . . , n is the replica index.

• a = f , 4- refers to the spin, at, (b = #, y, z) are the Pauli
matrices in spin space.

• p = =LJE is the energy index. s& (6 = 1, 2, 3) are the Pauli
matrices in energy space.

The Nambu spinors are defined through

* < = ( ~Ci

and i&i — [c^*]* , with the charge conjugacy matrix c = ioyr\.

• Tj, (6 = 1, 2, 3) are the Pauli matrices in the Nambu space.



Symmetries

The action reads

• Magnetic impurities: SS = i

• Magnetic field Zeeman splitting: SS = i

We consider two different global unitary transformations, one
for sublattice A and another for B:

We must impose for E = 0

cTAc

If £" 7̂  0, in addition also

cTAc SZTA = cTBc S3T.B = 53,

which implies TA =



Symmetry groups

Yes Chiral, Yes T

Yes Chiral, No f

No Chiral, Yes T

No Chiral, No f

Magnetic field

Spin flip

E = 0

U(4n)xU(4n)

U(4n)

Sp(2n)xSp(2n)

Sp(2n)

U(2n)

O(2n)

E # 0

U(4n)

O(4n)

Sp(2n)

U(2n)

U(n)xU(n)

U(n)

[See A. Altland and M.R. Zirnbauer, PRB 55, 1142 (1997); T.
Senthil, M.P.A. Fisher, L. Balents, C. Nayak, PRL 81, 4704
(1998); T. Fukui, cond-mat/9905388]



Without disorder

In the absence of random hopping the action in momentum
space reads

k

ek = — 2£ (cos kxa + cos kya)

2A (cos kxa — cos kya)

k cos 20k',

k sin 26k,

with

By the unitary transformation

k

The quasiparticle spectrum has four nodes at ( ± /CF? dokp)- Close
to these nodes

El'3 ~

show a Dirac-like behavior.

E2
k'

4

1 = 2tasin(kpa)

? = 2Aasin(kpa)

BZ



Average over disorder

Averaging over the random hopping leads to an additional term

(ij)

•a/3
i

Simp = 2u2t2 J2 Xfxf
(ij) q£BZ

= 2u t• Wq = 2u t (cos qxa + cos qya) .

If q is within the Magnetic BZ (MBZ), then Wq

n^ > 0. We need to introduce two auxiliary fields

to decouple the quartic term into

Simp — — 2
V

-T7 E Tr [
qEMBZ

In the long wavelength limit, the auxiliary field in real space

is not hermitean and contains both a uniform and a staggered
component.
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Non linear a-model. I

For smoothly varying QR, the integral over the Grassmann

fields leads to

-T-TTTfTr \Q(R)Q(R)^\ --Tr In (iEs3 - H + iQ)

a2 4Wo L J 2

1. We look for a saddle point Q(R) = £s3 . We find

2. We project out longitudinal fluctuations. Apart from
corrections of order u2, this amounts to take

Q(R) = cTiRYJssZTiR), Q(R)Q\R) = E2.

T(R) belongs to the coset group and describes the transverse
modes.

The action of the transverse modes is then

S[Q] = Tr In (iEs3 - H + iQ)

~ - -Tr In (iEs3 - H + iQ) (-iEs3 - H] -

The last equivalence holds since we expect an hermitean action



(0

Non linear cr-model. II

We need to calculate

D = (iEs3 - H + iQ) (-iEs3 - H* - iQ^
+ 0 0 / + \ + +

= Jrl Ii + 2 J +11/ +.C/I S3(J -\- (Js3 I -f- tJtiU — iLJrL ,
\ /

We notice that

y - iQ(R)HRRl

= -iHRR, [ < '
~ -iHRR, (fi - R')

where J = dtR = — i[R, H] is the quasiparticle spin current,

•HH + S = Go is proportional to the identity.

By expanding in E and V Q we find, apart from constants,

Tr In D ~ Tr (<30Qs3)

8
fG0J • VQ f ) ,

which is the desired action for the transverse modes and, as
expected, has the form of a non-linear cr-model.
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Non linear a-model. Ill

Since

we can easily calculate the coefficients in the non-linear cr-model.
We get

f d2RTr(Q(R)s3),

where the quasiparticle spin conductance

a =
TTV

k

1 V

VAfej

2 , 2

4TT2

= 5,n, for 4 nodes 2 U2 nodes 1 and 2

and f 1 and ^2 are the velocities parallel and perpendicular to
the nodal direction.

is the density of states within the saddle point approximation.



Non linear cr-model. IV

In the presence of chiral symmetry, another term is found by
integrating out the longitudinal modes

7T

8 • 16E4 dR Tr
2

?

where I I is a parameter which controls the staggered density of
states fluctuations.

It is important to notice that the logarithmic terms which appear
upon integrating the gaussian propagator for 1 or 2 opposite nodes

a k = Z7T V\V2 I dki

I
fiv^f J ^ 1 1 ' ^2 2

1

Pi-f

do not depend, within log-accuracy, on the velocity ratio ! We
define the NLcrM coupling constant

= —V- for 4 nodes

Up to terms of order u2, for 1 or 2 opposite nodes 9

We can use the standard Wilson-Polyakov renormalization group
to derive the ^-functions for the coupling constant g and for the
density of states.



/3

/^-functions

When chiral symmetry is present, we have to consider another
running parameter

c ==

and

9 o '

ngz

9
c + ng

Yes Chiral, Yes f

Yes Chiral, No f

No Chiral, Yes f

No Chiral, No f

Magnetic field

Spin flip

P g

Sng2

4ng2

2(2n-hl)#2

(2n + l)g2

2ng2

(n - l)g2

(r/4 - 8n)g

( - l + T/4-4n)^

( - l + 4n)flf

( - l + 2n)p

-2n^

(l-n)p-

• Delocalized phases with diverging DOS

• Localized phases with vanishing DOS

• Universality class of the IQHE.



The above RG equations describe the flow of the running
parameters for small enough g. However, in the 1 or 2 node case
g = 1 up to corrections of order u2 !

As showed by Nersesyan, Tsvelik and Wenger, Nucl. Phys.
B 438, 561 (1995), this model can be mapped onto a 1+1
dimensional model of interacting electrons. They showed that the
density of state maps onto a mass term, which, if finite, would
break the chiral symmetry between right and left moving fermions.
As it is known, this operator has dimension a. = 1. Keeping into
account the electron-electron interaction generated by disorder,
NT&W showed that the dimension gets the standard Luttinger
liquid corrections, namely 1 — a oc u2. Since we have neglected
terms of order u , which are due to the longitudinal modes, it is
not at all surprising that we get, in the case they considered (no
lattice chiral symmetry), an exponent exactly equal to 1 !

However, thanks to their analysis, we know that longitudinal
fluctuations reduce the value of g below 1, so that we can still
give a sense to the above RG equations.
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Some comments

If E =. 0, namely No = 0, then cr
known fact that

= 0. This is the well

limlimZraxjj(g, a;) = 0
0 g0

for a pure system. Indeed, in an ideal metal, the conductivity
displays only the Drude peak which derives from the diamagnetic
term of the current. However, in our case, a is the spin
conductance which, at zero magnetic field, has no diamagnetic
term. Therefore delocalized quasiparticles with zero DOS
= > a = 0, localized qp with zero DOS => a = 0, and
delocalized qp with diverging DOS = > cr = const..

O(CG)

0)



Charge conductance

The d-wave gap function is a mass term for the charge-density
diffusive modes. Charge conductance is still defined through the
coefficient of the gradient square term in the action of the charge
modes.

• Therefore we have re-derived the non-linear a-model with

Q -> c*T*cQTc,

where
T -eWc

describes the charge modes which are gapless in the absence
of superconductivity;

• expanded the action at second order in Wc;

• finally we have integrated out the massless modes at the
gaussian level.

Within the Drude approximation, the charge conductance

The one loop corrections to crc are those of a if chiral symmetry
is not present, including both spin flip and magnetic field cases.
When chiral symmetry holds, we find that

5erc = — ac2gln s.

Namely, while quasiparticle spin is delocalized, charge is localized.



Interaction effects

Since we have already set up all the machinery of the non-linear
cr-model, we can easily take into account residual quasiparticle
interaction along the same line of the Finkelstein approach. [See
A.M. Finkel'stein, Z. Phys. B 56, 189 (1984).]

Since Coulomb interaction spoils nesting symmetry already at
the Hartree-Fock level, unless the density is not really close to
half-filling, we can assume that chiral symmetry is absent. [Work
is in progrees for the case in which chiral symmetry is present.]

Within the Landau Fermi liquid theory, we introduce three
scattering amplitudes between the quasiparticles:

• Us p — h singlet channel,
• Ut p — h triplet channel,
• Uc p — p Cooper channel.

The projection of the p-h singlet channel onto the diffusive
modes is zero, since charge is not diffusive. For the same
reason, only the p-p T\ channel contributes, which corresponds to
fluctuations of an is-component to the pair order parameter [see
Khveshenko, Yashenkin and Gornyi, PRL 86, 4668 (2001)].
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nteraction effects

The one loop corrections to a and to the DOS can be easily
derived and we find

5a
-

SN
0

If time-reversal symmetry is broken, the Uc contribution drops
out. A Zeeman terms removes 2/3 of the triplet contribution,
while spin-flip scattering removes the whole correction.

Therefore, interaction acts as a delocalizing mechanism,
and enhances the DOS. Moreover, spin fluctuations are
enforced, which suggests that the system may have a
quite efficient magnetic response.



Wess-Zumino-Witten term

The original Hamiltonian is not invariant under A -> - A . On
the contrary, the effective NLcrM is invariant. Did we miss some
terms ? Since, at E = 0, A - * - A implies H -> Hj, the
missing term should arise from

Sr[Q] = --Tr In (-H + iQ) + -Tr In (-i^f + Z )

We can easily evaluate its variation along a massless path

• SQQ + Q8Q = 0, no chiral symmetry.

S5 r = _ l T r ( G K ^ Q ) + 7 ^ r In
4 4

where

1 (\ )

We notice that

(-H+
 T tQ) (-H ± iQ) ~ Go * T

hence

1 ^ -iQ)

- iQ) Go [l + VQ • JG0] " ' .

At leading order in the gradient expansion, we find

SST ^ -Tr



Since

(de -de + dA

SST = iT I d2R Tr

where

Here /c counts the number of vortices minus antivortices in the
Brillouin zone. Introducing a coordinate which parametrizes the
massless path, we find the standard expression

In the time reversal invariant case, the massless modes belong
to Sp(2n), while Q is a Sn x 8n matrix. Hence, if we write
the above expression in terms of the massless modes, we expect a
factor four to appear. This would imply that the effective action
corresponds to a Wess-Zumino-Witten model Sp(2n)fc.


