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We compare the critical multipoint correlation functions for two-
dimensional (massless) Dirac fermions in the presence of a random sn(N)
(non-Abelian) gauge potential, obtained by three different methods. We crit-
ically reexamine previous results obtained using the replica approach and
in the limit of infinite disorder strength and compare them to new results
(presented here) obtained using the supersymmetric approach to the N = 2
case. We demonstrate that this menage a trois of different approaches leads
to identical results. Remarkable relations between apparently different con-
formal field theories (CFTs) are thereby obtained. We further establish a
connection between the random Dirac fermion problem and the c — — 2 the-
ory of dense polymers. The presence of the c = - 2 theory may be seen in all
three different treatments of the disorder.
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I. INTRODUCTION

In this paper we use an exactly solvable model of disorder to compare different theoret-
ical approaches used to investigate the critical behaviour of disordered (possibly electronic)
systems. A prominent example of a disordered critical point, and a source of many challeng-
ing problems, is that governing the plateau transitions in the integer quantum Hall effect
(IQHE) — see for example [1]. Despite the numerous field theoretic approaches to this
problem based on either Pruisken's non-linear sigma model [2-4] or the Chalker-Coddington
network model [5] and its superspin chain descendants [6-10], the nature of the critical point
remains elusive and inaccessible by perturbation theory [11,12]. This is to be contrasted
with the Ising model with weak bond disorder [13-15], for example, where the disorder
renormalizes to zero and may be treated perturbatively. In order to gain insight into such
problems it is imperative to fully exploit, and indeed develop, the methods available for
treating disordered systems, and to obtain as many non-perturbative results as possible.
In low-dimensional systems we may be aided in this pursuit by the availability of powerful
techniques such as conformal field theory [16—18] and the Bethe ansatz [19,20].

Recent studies of disordered critical points have included Dirac fermions subjected to
various random potentials [21-24], the random XY model [25], the plateau transitions oc-
curring in the spin quantum Hall effect and its relation to critical percolation [26-28], and
the Nishimori line in the random bond Ising model [29]. In all of these examples the critical
points are of a non-perturbative nature and are described by non-trivial field theories. Our
knowledge of the critical behaviour in these theories differs somewhat, and the further elu-
cidation of their detailed properties is a valuable enterprise. Indeed, in problems of disorder
related to the localization of quantum particles, one needs to depart from the critical point
in order to calculate the diffusion propagator or (for problems with a singular density of
states) the energy dependence of the density of states; at present this program has been
successfully implemented only for the random XY model [25].

We turn our attention now to the problem at the heart of this paper, namely two-
dimensional (Euclidean) Dirac fermions in a random non-Abelian gauge potential. This
model has the virtue of being amenable to a variety of non-perturbative approaches and was
originally introduced in Abelian form as part of an attempt to describe the plateau transi-
tions in the IQHE [21]. The non-Abelian version of the problem appeared in a treatment of
disordered d-wave superconductivity [30-32] and has been the subject of deeper investigation
and refinement [33-40]. Building on the foundations of these previous studies, we address
this problem by means of three independent non-perturbative field-theoretic techniques:
these are based upon the commonly used replica [41] and supersymmetric methods [42,43]
together with a third (model specific) approach valid in the limit of strong disorder [39]. In
our study of the four-point correlation functions of the local density of states we are able
to demonstrate that the three methods yield coincident results. We note that whilst the
reliability of the replica approach outside of perturbation theory has been frequently and le-
gitimately questioned — see for example [42-45] — we use it here (in a quite straightforward
manner) to reproduce the results of the (mathematically more rigorous) supersymmetric
approach. Although the implementation of the replica method remains a delicate issue in
general, and in many cases one must adopt various (replica) symmetry breaking schemes —
see references [46,4.7] for recent examples in random matrix theory — it is noteworthy that



the disordered non-Abelian Dirac fermion problem renders itself here to a textbook (replica)
treatment — albeit with the benefit of hindsight.

The structure of this paper is as follows: in section II we provide a brief outline of
the disordered non-Abelian Dirac fermion problem. In section III we focus our attention
on the four-point correlation functions of the local density of states (LDOS) as encoded
in the so-called Q-matrix. This section is subdivided into three main subsections, each of
which is devoted to a different non-perturbative field theoretical approach to the disordered
Dirac fermion problem; subsection III A deals with the replica approach, III B deals with
the so-called strong disorder approach and III C deals with the supersymmetric approach.
Within each of these subsections we provide an outline of the theoretical approach and
the form of the appropriate Q-matrix, together with a discussion of the relevant conformal
dimensions and four-point correlation functions. In order to increase the transparency of
these subsections we have relegated many of the important (but arguably involved) technical
details on the solution of the relevant WZNW models into a rather substantial appendix.
The interested reader will find gathered in this appendix the solutions to the Knizhnik-
Zamolodchikov equations which arise in this work. In section IV we continue our study of
the supersymmetric approach and provide a remarkably simple free field representation of
the disorder averaged theory comprising of a two-component symplectic fermion and a pair
of free bosons (one compact and the other non-compact). The two-component symplectic
fermion with central charge c = — 2 arises in the theoretical description of dense polymers and
we demonstrate that the twist operators of the latter theory play a fundamental role in the
non-Abelian Dirac fermion problem. In section V we discuss the convergence of approaches
to the disordered non-Abelian Dirac fermion problem. Finally we present concluding remarks
and technical appendices. In particular, appendix A is devoted to the 3w(iV)& WZNW model
and is subdivided into our considerations of the u(0)k WZNW model — arising in the replica
approach — and the 'su(N)-2N WZNW model — arising in the strong disorder approach.
Appendix B is devoted to the 6sp(2\2)k WZNW model which arises in the supersymmetric
approach.

II. NON-ABELIAN DIRAC FERMIONS

We consider Nc colours of two-dimensional massless Dirac fermions minimally coupled
to a non-Abelian gauge field A^ G su(Nc) :

r NC

s= M2rE ^afV' (2-1)

where the gauge covariant derivative takes the form

P^ = Y{Sa% - iAf). (2.2)

The 7M matrices form a two-dimensional representation of the Clifford algebra {7^,7^} =
2g^ with Euclidean metric g^ = diag(l, 1), and the gauge field Af = A^r^ may be
expanded in terms of the generators ra of su(Nc)> Physical quantities are obtained by



disorder averaging products of Green's functions. We use the distribution functional

<x e - 5 ^ l , S[A,} = - / > £ T r A,(£)AM(f) (2.3)

representing the usual choice of ^-correlated Gaussian white noise for the random vector
potential. In section III we shall compare three different approaches for evaluating the
disorder averaged correlation functions.

III. DISORDER AVERAGED CORRELATION FUNCTIONS

The local density of states (LDOS) of the Dirac fermion problem is given by [30-32]

Nc

(3.1)

In sections III A-IIIC we shall investigate the disorder averaged multipoint correlation func-
tions of the LDOS. In particular, we shall focus our attention on the long distance properties
(obtained for example by integrating out the massive modes) encoded in the so-called Q-
fields:

Nc Nc

c*=l a=l

We shall study the critical correlation functions of the Q-fields by three different approaches;
in each case our Q-fields will be represented by Q-matrices governed by appropriate WZNW
models.

A. Replica Approach

In order to average over disorder we introduce Np flavours (or replicas) of the massless
Dirac fermions appearing in equation (2.1):

f NF No _

R̂eplica = d2£^2Yl ^"''P* V (3-3)

The (replicated) action (3.3) enjoys a global SU(Np) x SU(Nc) xU(l) symmetry and may be
recast using Witten's non-Abelian bosonization rules [48] — for reviews of the bosonization
approach see for example [49,50]. It is well known that the free Dirac action (in the absence
any gauge fields) with the flavour-colour symmetry described above may be represented as
the sum of three critical Wess-Zumino-Novikov-Witten (WZNW) models of the form

Wk[g] = ^jdH Tv'^g-'d^g) + kT[g] (3.4)



where (the WZNW term) T reads

T[9] = 2kjd3x ^ ^l{9-1d.gg-1dugg-1dpg). (3.5)

The celebrated equivalence between the free (flavoured-coloured) Dirac fermion theory and
the bosonic WZNW models may be written in the symbolic form

Free Dirac Fermions — SU(NC)NF X SU(NF)NC
 X ^(1) (3-6)

where it is understood that the chiral blocks of the free Dirac theory are obtained as products
of the chiral blocks of the WZNW models; here ^ denotes the group manifold g and the so-
called level k of the WZNW action (3.4). That this is indeed an equality between chiral blocks
is seen most clearly in the work of Fuchs [51]. Of paramount importance in the application
of (3.6) to our disordered problem is that the disorder — the sn(Nc) gauge potential —
couples only to (currents from) the SU(NC)NF sector. Averaging over disorder (equivalently
integrating over the su(Nc) gauge potential) generates a (quadratic) interaction between
su(Nc) currents only. This interaction scales to the strong coupling regime where a mass
gap M ~ exp[—2TT/NC^\ is dynamically generated in the SU(NC)NF sector of the theory. As
follows from the decomposition (3.6) the massless degrees of freedom are SU(iVc) singlets
and are described by the remaining WZNW models SU(NF)NC

 X U ( 1 ) ~ U(NF)NC- Upon
integrating out the massive (colour) degrees of freedom, the fermion bilinears are expressed
in terms of the so-called Q-matrix

, NC

RlrL*,r- (3.7)

whose indices reside in the flavour (replica) space; this is simply a replicated version of the
Q-Held introduced to describe the LDOS in equations (3.1) and (3.2). The Q-matrix assumes
values in the group \J(NF) and is governed by a (critical) effective action of the WZNW
form (3.4) with level k ==• Nc- The WZNW model thus plays an analogous role to the sigma
model in the conventional theory of localization [42] — it is an effective action for the slow
degrees of freedom, once the fast degrees of freedom have been integrated out.

1. Conformal Dimensions

In the replica approach, the conformal dimension of the Q-matrix is that of a primary field
of the (Np ->• 0) U(NF)NC WZNW model transforming in the fundamental representation
— see equation (A15) of appendix A:

As we shall see in subsections III B 1 and III C 1, the conformal dimension of the Q-matrix
(LDOS) is given by (3.8) in all three treatments of the disorder. This ensures the equality
of their two-point and three-point correlation functions. It is well known in CFT however,



that the four-point correlation functions are not determined solely by scaling dimensions,
but in general have a non-trivial dependence on the so-called anharmonic ratios (A3) [52]; in
CFTs of the WZNW form, this dependence is obtained by solving the appropriate Knizhnik-
Zamolodchikov equations [53]. In order to compare different theoretical approaches to the
random Dirac fermion problem it is thus essential to study the four-point correlation func-
tions of the Q-matrix.

2. Correlation Functions of the Q-field

The correlation functions of the (^-matrix are those pertaining to the U(NF)NC WZNW
model in the replica (Np ~> 0) limit, and are thus obtained by solving the U(NF)NC

Knizhnik-Zamolodchikov equations [53]. This fact was recognised in the early replica treat-
ment of the random Dirac fermion problem [30,31]. The approach was subsequently refined
to accommodate tKe logarithmic solutions to the Knizhnik-Zamolodchikov equations which
appear in the replica limit [33]. Despite the advances made in these works they suffer (in
places) from a naive implementation of the replica trick; an extraneous trace over replica
indices was performed in a number of instances. In order to address these issues, and to
demonstrate the convergence of approaches to the random Dirac fermion problem, we red-
erive a number of results and adopt a uniform notation throughout.

The four-point correlation function of the Q-matrix admits the U(Np) x U(Np) invariant
decomposition [33,53] (see appendix Al) :

2

J^F^z) (3.9)

where r denotes the ordered sequence of flavour (replica) indices n , r2, r3, r4, and where the
invariant tensors I\ and I2 are defined as /[ = Sri'r25r3'r4

 a n ( j jr _ ^ n ^ ^ r ^ together with
similar equations for 7i and I2- The anharmonic ratio z is defined as z — ^12^34/̂ 14^32 and
similarly for z. The functions F{j(z, z) are single-valued combinations of the solutions to the
U(NF)NC Knizhnik-Zamolodchikov equations, which in the replica limit [NF —> 0) are given
by equ&tions (A22) with k ~ Nc- For example, setting all replica indices equal to 1 yields

(Qil(l)Q\iWQ\i(3)Qil(4)) ^ |T|2 [KNc(z)KNc(l - z) + KNc(l - z)KNc(z)] (3.10)

where T = [̂ 14^23 (̂1 ~ z)\~llNc and KNC(Z) and ENC(Z) are natural generalizations of
the complete elliptic integrals — see equation (A19). In addition one may consider 'mixed'
correlation functions of the form:

(Q1I(l)QlI(2)Q+
22(3)Q22(4)) ~ |T|2 [ENc(z)(KNc(l - z) - ENc(l - z)) + cc] (3.11)

where c.c stands for complex conjugation — replacement of z by z. Correlation functions cal-
culated with respect to this effective (replicated) action correspond to correlation functions
averaged with respect to the initial action with quenched disorder [39,54]:

(3.12a)

rf- / r3 (3.12b)



The left hand side of (3.12a) represents the four-point correlation function of the Q-field
(calculated with respect to the original action in the presence of quenched disorder) averaged
over disorder (denoted by an overline); the left hand side of (3.12b) represents the product
of two two-point correlation function of the Q-field (again calculated with respect to the
original action in the presence of quenched disorder) averaged over disorder.

We note that as a direct consequence of the rather simple replica index structure of (3.9)
the results (3.12a) and (3.12b) are independent of which replicas are actually considered;
this is a manifestation of replica symmetry — see for example §3.3 of reference [55]. The
correlation functions of the LDOS may be obtained from these results by means of the
decomposition (3.1) together with crossing symmetry. We emphasize that one does not
perform a trace over replica indices in order to extract the LDOS; the traces over replica
indices appearing in equation (60) of reference [31] and equation (5) of reference [33] are
erroneous. We further draw attention to the simplicity and manifest crossing symmetry of
the results (3.10) and (3.11) as compared with those obtained in reference [33].

B. Strong Disorder Approach

As was first discussed in [34,39], and subsequently developed in [37], the random Dirac
fermion problem is amenable to a direct treatment in the limit of infinite disorder strength
(gA -* oo) without invoking either replicas or supersymmetry. We note that in this limit
the probability measure (2.3) is absent. We summarize here only the important details. We
separate the action (2.1) into its chiral components

s = / ^
J ' a-\

and parameterize the gauge fields in terms of group elements #(£) £ SUC(N) ~ SL(N; C)
residing in the complex extension of SU(N)

A = idgg~\ A = idgg-1. (3.14)

This enables one to perform the chiral gauge transformations

L->.gC, R-^gTZ, (3.15)

so as to render a theory of free fermions (7£,£) decoupled from the gauge fields. An im-
portant feature of this procedure is that the Jacobian of the transformations (3.15) is pro-
portional to the partition function of the original action (2.1) at fixed disorder, Z[A^] —
this cancels the normalizing partition function in (fixed disorder) correlation functions and
removes the need to invoke replicas or supersymmetry in order to perform disorder averag-
ing. The Jacobian associated with the change of variables (3.14) is well known to involve
the WZNW action (3.4) on the (non-compact) manifold h = g]g G SUC(N)/SU(N) at level

[34,39,56,57]:

VA - Vg exp (2NcW^Nc[g^)) (3.16)



In reference [37] the Wakimoto free-field representation of the SUC(N)/SU{N) WZNW
model at k — —27V was constructed, and it was shown to generate the su(N)-2N Kac-
Moody algebra; in other words, the correlation functions of the /i-fields may be obtained
from the solution of the SU(N)-2N Knizhnik-Zamolodchikov equations — see appendix A 2.
In this approach the Q-fields of the random Dirac fermion problem with Nc colours are
expressed as primary fields of the su(Nc)-2Nc WZNW model 'dressed' by free fermions:

Nc Nc

Q= E KhaaCS9 g f = ]T r U U , (3.17)
a,a=l or,a=l

We shall study the conformal dimensions and correlation functions of these fields in the
subsections below.

1. Conformal Dimensions

It is readily seen from the strong disorder decomposition (3.17) that the conformal di-
mension of the Q-field is that of free Dirac fermion (h = 1/2) and an su(Nc)~2Nc primary
field — see equation (A4) and set N = Nc and k — —2Nc'.

h l ^ " 1 l
Q 2NC(NC-2NC) ~~ 2N2

C

This agrees with the replica result (3.8) and ensures the equality of the two-point and
three-point correlation functions in both approaches. The coincidence of higher correlation
functions will be discussed below.

2. Correlation functions of the Q-field

The correlation functions of the Q-field are thus obtained by a fermionic 'dressing' of
the correlation functions of the su(Nc)-2Nc WZNW model. We note that whilst the chiral
solutions to the su(Nc)~2Nc WZNW model given in [37] are correct, their normalization
constants are erroneous — they do not satisfy the conformal bootstrap. We provide the
correct conformal blocks in equations (A25) and their expression in terms of generalized
elliptic integrals in equations (A26). Moreover, in the light of the new results obtained
in the replica approach, we shall find it convenient to generalize the decomposition (3.17)
slightly so as to accommodate disorder averages of products of quenched correlation functions
such as those appearing in equation (3.12b). To this end we introduce as many additional
fermionic species (denoted by an index p) as quenched correlation functions we wish to
disorder average. We emphasize that these additional indices are not required to perform
the disorder averaging (as would be true of replicas) but simply encode which combinations
of quenched correlation functions are to be averaged over disorder — in this approach we
do not perform an Nv —> 0 limit. The Q-matrix acquires a pseudo-replica index structure



(labelled by the index p) analogous to that appearing in equation (3.7):

Nc Nc

^P'P ~ / v '^a.p^oi.a ba,p-> Qp,p ~ / J ^a,p ^a.a 'V*,p5

The correlation functions of the fields (3.19) may be written in the form

Cab9la)(zi)gj?\zi) (3.20)
a,6=l

where h — (1 — NQ)/2N^ is the conformal dimension of the s^(Nc)-2NC primary field ha^
as given by equation (A4). Gp (zi) is the (holomorphic) product of the free Dirac and
su(Nc)-2Nc correlation functions traced over the colour indices:

#°(*) = E ( ^ ~ ^ ) x

The coefficients Cab appearing in equation (3.20) have the values C i2 = C21 = 1, C'n = C22 —
0 to ensure single-valuedness and their off-diagonal form reflects the logarithmic nature of the
underlying su(Nc)-2Nc LCFT. We use the symbol p here to denote the ordered sequence
of pseudo-replica indices P\,P2IP^IPA and the invariant tensors I\ and I2 are defined as
JP = ^PI,P2^P3,P49 JP = ^PI,P3^P2,P4. analogous expressions hold for a. Performing the trace
over colour indices appearing in (3.21) by means of the identities

Nc Nc

Y,I?I? = N2
C ^IflZ^Nc (3.22)

a=l a=l

and utilizing the relations (A29) satisfied by the su(Nc)-2Nc chiral blocks one obtains:

A { l * E ( ) + I > [ K { ) E { ) ] } (3.23a)

\ENC(Z) - KNc(zj\ - P2ENc{z)\ (3.23b)

where d — cN(N2 — 1) is a normalization constant, A = [z(l — z))'1^?, and where we have
adopted the notation that f(z) = / ( I — z) for an arbitrary function f(z). In particular
by inserting the explicit results (3.23) into the decomposition (3.20) and collecting the
coefficients of If I? one may recast (3.20) so as to read:

(^^(1)^(2)^(3)^(4)) = -~\z14z23\-
2/Nc £ IfljF^z) (3.24)

where the F{j(z,z) are (both fortunately and remarkably) single-valued combinations of the
solutions to the U(0)ATC Knizhnik-Zamolodchikov equations as given by equations (A22)
with k =• Nc> That is to say (upto an irrelevant normalization) we have recovered the
replica result (3.9) in which our psuedo-replica indices play the role of replica indices. In
particular the results (3.10) and (3.11) together with their interpretations (3.12) follow
straightforwardly.

9



C. Supersymmetric Approach

In the supersymmetric approach to disordered fermionic systems one introduces bosonic
copies of the original Grassmann fields [42,43]. The partition function of the resulting
supersymmetric theory is equal to unity due to the inverse relationship between ordinary
c-number Gaussian functional integrals and their Grassmann counterparts. The absence of a
disorder dependent partition function normalizing quenched correlation functions drastically
simplifies their disorder averaging. The supersymmetric approach to the random Dirac
fermion problem has been outlined by Bernard and LeClair [58] who, following the general
principles of the supersymmetric approach, have introduced bosonic copies of the Grassmann
fields coupled to the same gauge potential. The resulting action is given by (3.3) where the
summation over replicas is replaced by a summation over fermionic (Grassmann) and bosonic
(c-number) fields:

r 2 Nc

= / d2^ J2 Y, ^ > « V ^ ' (3.25)
^ t = i <*,/?=I

The symmetry of the free supersymmetrized Dirac action (in the absence of any gauge
fields) is OSp(2Nc\2Nc) [39] and it may be recast as the osp(2Nc\2Nc)i WZNW model. In
particular, the random su(Nc) gauge potential couples only to currents Ja (and Ja) residing
in the *su(Nc)o subalgebra of the complete 6sp(2Nc\2Nc)i Kac-Moody algebra:

SSVSY = 6sp{2Nc\2Nc)i + Id2£(JaAa + JaAa) (3.26)

In the special case Nc = 2, Bernard and LeClair have demonstrated that the Suguwara
energy momentum tensor for 6sp(2Nc\2Nc)i may be decomposed into the sum of two com-
muting pieces pertaining to different symmetries [58]:

+ Tsu(2)0 (3.27)

Exploiting the decomposition (3.27) one may rewrite equation (3.26) in the decoupled form

SSUSY = <53p(2|2)_2 + 3^(2)o + f d2( {JaAa + JaAa) (3.28)

We note that the role of the decomposition (3.27) in this approach closely mirrors that of
the decomposition (3.6) employed in the replica approach — both allow us to decouple the
effects of the gauge potential disorder. Indeed, the latter two terms appearing in equation
(3.28) are precisely those which appear in the replica approach as Np —» 0. As was rigorously
proven in references [30,31], and utilized to our advantage in section III A, this su{2) sector
becomes massive for the simple Gaussian distribution of the gauge fields given in equation
(2.3); a perturbative renormalization group argument was given in reference [58] wrhere
the one loop beta function was calculated with the result that the coupling constant QA

10



flows to strong coupling.1 That is to say, the low-energy effective theory governing the Q-
field is the 63>(2|2)_2 WZNW model. Fortunately, the 6sp(2\2)k WZNW model has been
discussed quite extensively in the work of Maassarani and Serban [59]. In particular the
model undergoes a dramatic simplification at k = —2 [60] and we provide a rather extensive
discussion of this model in Appendix B. In this approach the Q-field may be represented as

Q = Q1'1, g t = Q4,4 ^ 2 9 )

where the Qa'a are primary fields transforming in the [0,1/2] representaion of osp{2\2) —
see Appendix B.

1. Conformal Dimensions

In the supersymmetric approach to the random su(2) Dirac fermion problem, the con-
formal dimension of the Q-field coincides with that of a primary field transforming in the
fundamental [0,1/2] representation of asp(2|2)_2 — see equation (B7) and set k. = —2:

This is in agreement with the replica result (3.8) and the strong disorder result (3.18) when

2. Correlation functions of the Q-field

The four-point correlation function of the Q-matrix admits the osp[2\2) x osp{2\2) in-
variant decomposition— see equations (B4), (B5) and (B8):

3

«I«F13{z,z) (3.31)

where a denotes the ordered sequence of indices a i , a 2 , a3 ,a 4 , which label the basis states
of the four-dimensional representation of osp(2|2), and where the invariant tensors / i , I2
and /3 are defined in equations (B9) together with similar equations for Ji, I2 and J3. The
anharmonic ratio z is defined as z = ^12^34/̂ 14^32 and similarly for z. The functions F^(z, z)
are single-valued combinations of the solutions to the 65p(2|2)_2 Knizhnik-Zamolodchikov

1 Although a formal proof of the gap generation exists only for the case when the disorder distri-
bution is Gaussian, it appears reasonable to assume that the s^(2) sector remains massive for a
broader choice of disorder distributions. At scales smaller than the gap, the effective action is given
by the critical oip(2|2)_2 WZNW model. The critical point is stable with respect to variations of
the disorder: all such variations affect only the massive modes and hence do not generate relevant
perturbations of the critical action.

11



equations, which are summarized by equations (B29) — (B33). For example, focusing on
the correlation function pertaining to the decomposition (3.29):

(Qll(l)Q4\2)Q4i(3)Qn(4)) ~ |T|2 [K{z)K{\ - z) + K(l - z)K(z)}. (3.32)

where here T = [̂ 14̂ 23 z{l — z)]~~llA and K(z) and E(z) are the complete elliptic integrals.
This is in agreement with both the replica result (3.10) and the strong disorder result (3.24)
when the number of colours Nc — 2,

IV. DENSE POLYMERS AND TWIST OPERATORS

It turns out that the supersymmetric description provides an extremely economical and
straightforward approach to the disordered Dirac fermion problem. It follows from the work
of Rasmussen [61], that the action of the o3p(2|2)_2 WZNW model may be represented as
the direct sum of three simple theories:

j J (4.1)
where <p is a non-compact bosonic field, \a ls a two-component symplectic fermion [62],
and e^ is a two-component antisymmetric tensor. As expected in this supersymmetric
theory, the bosonic sector (c = 2) and the symplectic fermions (c = —2) together yield
a total central charge of zero. We note that the presence of the Sw(2)i WZNW model in
the decomposition (4.1) of the o?p(2|2)_2 WZNW model reflects an underlying Sw(2)_&/2
Kac-Moody subalgebra residing in the 6sp{2\2)k algebra [63]. The decomposition (4.1) may
be simplified even further by noting that the 5t/(2)x WZNW model admits the following free
field representation:

^ J (4.2)
where <j> is a compact free boson; note that our choice of normalization is for latter conve-
nience in equation (4.9). That is to say, the 6sp(2\2)-2 WZNW model may be represented
as the sum of a compact bosonic field <j> (c = 1) a non-compact bosonic field tp (c — 1) and
a two-component symplectic fermion (c = — 2):

] (4-3)

In view of the decomposition (4.3) one anticipates a representation of the o3p(2|2)_2 primary
fields in terms of the primary fields of the models appearing on the right-hand side of equation
(4.3) — namely vertex operators eQ<^ and e ^ and the primary fields of the c =. —2 theory.
As we shall discover in sections IV A - IV C this is indeed possible. The non-unitary c — —2
minimal model has received a great deal of attention in recent years as a theory of dense
polymers [64,65], as a celebrated example of a logarithmic conformal field theory [62,66-70],
and as a conformal ghost system [71]. The structure of this theory is rather rich and is
known to consist of several sectors. As we shall see below, the so-called Z2 twisted sector
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of the c — — 2 theory will play a crucial role here; this sector consists of a scalar primary
field fi of conformal dimension —1/8 and tensor primary fields v± of conformal dimension
3/8. The correlation functions and operator product expansions of these fields have been
studied in reference [64] and more fully in reference [69]. In section IV A we shall recast
the four-point correlation functions of the oSp(2|2)_2 WZNW in a form which facilitates
the elucidation of the desired operator correspondence. In section IV B we shall discuss the
Z2 twist operator correlation functions of the c = — 2 model [69]. In section IV C we shall
compare the correlation functions (summarized in Table I and Table II of sections IV A and
IV B respectively) and arrive at the aforementioned correspondence.

A. The Ssp(2|2.)_2 WZNW model

In view of the large number of components of the generic osp(2|2)_2 non-chiral four-point
correlation function and the rather cumbersome and opaque invariant tensors (B9) we shall
refashion the correlator somewhat.2 In particular the c — —2 operator correspondence will
follow quite naturally. We study the four-point correlation function of the supersymmetric
Q-matrix:

F^izuzi) = {Qa^{zxrz,)Qa^{z2rz2)Qai'a3{z^zz)Q
a^{zA,ZA)), (4.4)

where on the left hand side we use the symbol a to denote the ordered sequence of indices
c*i, o% c*3> <Xj- The indices a,- assume the values 1,2,3,4 and label the basis states of the
four-dimensional [0,1/2] representation of osp{2\2); in the notation of [59] states 1 and 4 are
bosonic, whilst states 2 and 3 are fermionic. As may be seen from our more detailed studies
in Appendix B, this correlation function may be written in the (off-diagonal) form

r'^zuzi) = -F*-W(zi)F
i-W{zi) - r'^\zi)T

5^\zi), (4.5)

in which we have set the overall normalization of the four-point function to minus unity for
latter convenience, and where

3

f / f1^). (4.6)
t = l

Using the explicit form of the chiral blocks F}a'(z) appearing in equations (B23), (B26) and
(B27) together with the known transformation properties of the invariant tensors — see
equations (B48) and (B50) — we deduce that

) . (4.7)

2Restricting our attention to four-point correlation functions pertaining to the four-dimensional
[0,1/2] representation we have a total of 48 components. Since the vast majority of these vanish
however, and many are related by symmetry, it is desirable to distill them further.
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Sector

Bosonic

Fermionic

Mixed

a

1144

1414

1441

2233

2323

2332

1234

2413

1243

2431

1423

2341

1324

3412

1342

3421

1432

3241

4411

4141

4114

3322

3232

3223

2143

4231

2134

4213

2314

4123

3142

4321

3124

4312

3214

4132

Fa<W(zi)

(Ae-f)-rTzK(z)

(467)"1 T (1 - z)K(z)

-(467)-
1T/i'(z)

(4e7) T [2E(z) - (2 - z)K(z)]

(4ey)T[2E(z)-(l-z)K{z)]
(4ey) T [2E(z) - K{z))

±J[E(z)-(l~z)K(z)}

±r[K(z)-E(z)]

±TE(z)

TABLE I. Chiral correlation functions of the osp(2\2)-2 WZNW model displaying regu-
lar behaviour in the vicinity of z = 0 and logarithmic behaviour in the vicinity of z — 1;
T = [Z14Z23 z{\ — z)]'1/4 and z — z^z^jz\±z?,2 — see Appendix B for further details.

We use the tilde to denote the interchange of the coordinates or indices 2 and 3, and V
to denote the fermionic parity of this permutation; note that this permutation induces the
transformation z —>• 1 — z in these functions. Substituting equation (4.7) into equation (4.5)
we obtain the result

Ta^(z' z) — /PJFa'(1)(V)47
r^'(1)(f •) -f- V^'^iz^J-^'^iz-). (4-8)

That is to say, one may build the full quota of single-valued and crossing symmetric non-
chiral correlation functions of the o5p(2|2)_2 WZNW from our knowledge of the chiral func-
tions" ^ ' ( ^ ( z t ) which display regular behaviour in the vicinity of z — 0 and logarithmic
behaviour in the vicinity of z — 1. Using the explict results for the chiral blocks (B23),
(B26) and (B27) together with the invariant tensors (B9) we are able to gather these non-
trivial functions in Table I. We emphasize that the functions ^'^(zi) are not simply the
conformal blocks of the oSp(2|2)_2 WZNW model, but also embody the non-trivial tensorial
structure of osp{2\2) — see equation (4.6).

B. Twist Operator Correlation Functions

The correlation functions of the twist operators /n and 1/ in the non-unitary c — —2
minimal model have been extensively studied by Gaberdiel and Kausch [69]. Their non-
chiral four-point functions are built from linear combinations of their chiral counterparts
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Sector

A*

V

Mixed

Correlator

(AWA*)

(JMIA^IJL) X Zi"4
1 / 241 / 2

/ + x\ +1/2 -1/2
(j/^fX/jil/^) X 2 1 4 ' ^ 3

(ixi/^fxi/*) x ZM/2Z£/2

/ 4- x- \ +1/2 -1/2
•{y*liu+ix) X z 1 3 2:24

/ 4- x\ - I / 2 +1/2
(^/iz/tZ/+) X Z12/ Z 3 /

< , ± ^ > X 41/2-34l/2

Regular contribution

T " 1 AT(*)

T3z[2£(2r)-(2-z)A-(z)]

T3(l-*)[225(*)-(l-*)#(*)]
T3 [2E(z) - K{z)\

±T[E(z)-(l-z)K(z)}

±T [JJT(s) - £(*)]

±T£(z)

TABLE II. Chiral correlation functions of the Z2 twist operators of c = —2 displaying reg-
ular behaviour in the vicinity of z = 0 and logarithmic behaviour in the vicinity of z = 1;
T = [Z14Z23 z{\ — z)]"1/4 and z = 2:12̂ 34/̂ 142:32 — see Gaberdiel and Kausch for further details [69]
and note that our definition of the anharmonic ratio differs from theirs.

so as to respect the stringent constraints of single-valuedness and crossing symmetry. As
may be seen from §4 of their work, the contributions from either chiral sector are typically
composed of two elliptic integral solutions posessing logarithmic branch cuts; one of these
solutions displays regular behaviour in the vicinity of z = 0 and logarithmic behaviour in
the vicinity of z = 1, whilst the other displays regular behaviour in the vicinity of z — 1
and logarithmic behaviour in the vicinity of z — 0. As in section IV A, in order to establish
our correspondence (4.9) we find it convenient to focus on the chiral contributions to the
four-point functions which exhibit regular behaviour in the vicinity of z = 0. The chiral
four-point functions most relevant to our discussion and displaying such regular behaviour
in the vicinity of the origin are summarized in table II.

C. Twist Operator Correspondence

Comparing our correlation functions for the oSp(2|2)_2 WZNW model (summarized in
Table I) with those of Gaberdiel and Kausch for the Z2 twist fields of the c — — 2 minimal
model [69] (summarized in Table II) we see a clear correspondence at the level of their el-
liptic integrals. In particular we see that the bosonic and fermionic states of the osp(2\2)-2

WZNW model are naturally associated with the Z2 twist fields fi and ua respectively. The
remaining powers of z^ which distinguish Table I from Table II are provided by bosonic ver-
tex operators as suggested by the decomposition (4.3). Explicitly, we establish the following
equivalence between the chiral operators of the o3p(2|2)_2 WZNW model and the 'dressed'
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chiral operators of the c — — 2 minimal model:3

Qi ^ A"1 e{*/M9 Q2~Ae~*is-, Q3~Ae*v+, Q4 ^ A'1 e^* ^, (4.9)

where A = (467)1/4 is a free parameter corresponding to the arbitrary relative normaliza-
tions of the su(2) doublet (Qi, Q±) and the two singlets (Q2l Q3) in the four-dimensional
representation of osp{2\2) [59,72]. With the normalization chosen in equation (4.3) the
compact bosonic exponents e±Z(^ have conformal dimension h^ = 1/4, and the non-compact
bosonic exponents e±(p have h^ = —1/4. It is thus straightforward to see that the dimensions
add up to the correct value of 1/8 — equation (B7) — in the decomposition (4.9).

We have now highlighted the important role played by the c = — 2 model in the chiral
structure of the osp(2|2)_2 W.ZNW model, and have provided a prescription for construct-
ing the non-chiral correlation functions (4.8). Although there are many interesting and
notable exceptions, we emphasize that in general, the non-chiral correlation functions of the
6sp(2\2)-2 WZNW are not simply related to single non-chiral correlation functions of the
Z2 twist operators dressed by non-chiral bosons. For example, it follows from our solution
of the osp(2\2)-2 Knizhnik-Zamolodchikov equations that

(g2''(i)g3'5(2)g2''(3)Q3'5(4)} - c{\{\ - Z)K - 2E)[{I + z)k - 2E\ + c . c . } , (4.10)

where C = (16e272)2 \zi4Z23\~1^2 A, and A is given by equation (B33). We note that this is
not simply related to a single correlation function of the non-chiral operators \x{z,z) and
^,5(2,2). That is to say, no single non-chiral four-point function of the Z2 twist operators
gives rise to this particular single-valued combination of the elliptic integrals. We invite the
reader to verify this statement with the aid of §4 of Gaberdiel and Kausch [69]. It may be
interesting to study the non-chiral aspects of this correspondence in greater detail.

V. CONVERGENCE OF APPROACHES

In section III we demonstrated that three different approaches to the random Dirac
fermion problem yield identical results for the four-point correlation functions of the local
density of states. In section IV we have further demonstrated that the supersymmetric ap-
proach inherits its non-trivial logarithmic structure from the c = — 2 non-unitary minimal
model. In this section we shall discuss the convergence of the these approaches — summa-
rized in table III — and the emergence of the c = —2 theory in a little more detail. Indeed,
we shall point to a remarkable proliferation of c = — 2 theories and effects. In table III we
have highlighted the separation of the active (critical WZNW) degrees of freedom from the
passive (massive or decoupled Jacobian) degrees of freedom in each approach.

An interesting aspect of this marriage of approaches is the agreement between the weak
coupling (replica and supersymmetry) limit and the strong coupling limit. Although such an

3We use the (overused and rather abused) symbol ~ to emphasize that we have derived the
correspondence from the chiral regular solutions and that it is valid up to phase.
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Approach

Replicas

Strong Disorder

Supersymmetry

Fermions

NcxNF

Nc

2

Bosons

0

0

2

Active

u(l) + ™{NF)Nc

U(l) + Su{NC)l + SU(NC)-2NC

oip(2|2)_2

Passive

SU(NC)NF

(c = - 2 ) ^ - 1

S^(2)o

TABLE III. Current algebra approaches used to investigate the critical behaviour of the random
non-Abelian Dirac fermion problem and the separation of the active (critical WZNW) degrees of
freedom from the passive (massive or decoupled Jacobian) degrees of freedom. The central charges
and the conformal dimensions may be seen to add up correctly in each approach.

agreement might have been anticipated purely on physical grounds, its emergence is quite
remarkable from a field-theoretic perspective. At the very least, it is quite surprising that
such superficially different conformal field theories may nonetheless yield equivalent results,
albeit for a specific subset of physically motivated correlation functions. In particular, the
resultant central charge of the active degrees of freedom in the strong disorder approach
differs from that in the replica and supersymmetric approaches, namely zero. As we have
discussed in section III B — and indicate in table III — the active degrees of freedom in the
strong disorder limit may be expressed as the sum of three different models:

S = su(Nc)i + su(Nc)-2Nc- (5.1)

where the first two models describe Nc colours of free massless Dirac fermions, and the
remaining model encodes the non-trivial logarithmic structure. We use the well known
result fpr the central charge of the g& WZNW model [53]

fcdimg
(5.2)

where gw is the dual Coxeter number of the algebra g (equal to N for su(N)) together with
the fact that a free boson u(l) has central charge 1, to find the resultant central charge of
(5.1):

c = l N2c ~ 1 , -

Nc
(5.3)

That is to say, the active degrees of freedom in the strong disorder approach yield a positive
central charge, in contrast to the replica and supersymmetric degrees of freedom which yield
a net zero central charge.

As we have discused in section IV, the supersymmetric approach to the disordered Dirac
fermion problem reveals a hidden substructure which is inherited from the c = — 2 minimal
model. In view of the convergence of approaches outlined in this paper it follows quite
naturally that the active degrees of freedom in the replica and strong disorder treatments
also inherit non-trivial traits from the c — — 2 model. In addition to the rather natural
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proliferation of elliptic integrals in the conformal blocks presented in this paper, we note
that a relation between the Su(2)_4 WZNW model (which arises in the strong disorder
treatment with Nc — 2) and the c — —2 theory has already been discussed in the string
theory literature [73]: the 5u(2)_4 WZNW model is cohomologically equivalent to an N = 4
supersymmetric bosonic string with c = — 2 matter.4

A curious by-product of these investigations is that the presence of the c — — 2 theory
may apparantly be seen in the 'passive' degrees of freedom outlined in table III. Indeed, a
number of c = — 2 models (arising as Jacobians) explicitly decouple in the strong disorder
approach and play a passive (or spectator) role in regards the LDOS. A possible explanation
for the closely related structure of the active and passive theories indicated in table III may
arise from the requirement of the mutual cancellation of their logarithmic singularities [60].
In particular we anticipate a relationship between the St/(2)0 WZNW model and the c — — 2
theory and a correspondence analogous to equation (4.9). We note that the four-point
functions of the 'su(2)0 model have been studied in references [76,77] and assume a simple
form in terms of the complete elliptic integrals [60]. The investigation of the 3t2(2)o WZNW
model will be continued in reference [78].

As we close this section we comment briefly on the stability of the critical point with
respect to variations of the disorder distribution. In the replica and supersymmetric ap-
proaches the gauge potential disorder is coupled directly to the massive sector and it is natu-
ral to assume that the critical theory is protected from such variations. In the strong disorder
approach, however, the disorder variations are coupled directly to the critical 'su{Nc)-2Nc

subsector, and its stability is far from obvious. It is therefore interesting to study the sta-
bility properties of this critical theory. A simple perturbation of the critical theory that one
might consider is the deformation of the WZNW action by its kinetic term. This operator
has scaling dimension zero and is strongly relevant. However, at level k — —2N (or more
generally —2gv) this operator commutes with all the Kac-Moody currents and therefore
does not affect the correlation functions — see Appendix 6 of reference [12] and note the
different sign conventions for the level k. In a more general framework, the WZNW models
at level k — —2gv arise quite naturally in both two-dimensional (c = 0) topological field
theories possessing a non-Abelian current algebra [79], and in the strong disorder treatment
of arbitrary WZNW models coupled to random vector potentials [39]. The critical level
arises from a BRST (Becchi-Rouet-Stora-Tyutin) [80,81] symmetry nilpotency condition
and is required for the coexistence of a Kac-Moody algebra symmetry and a topological
algebra symmetry [79]. We emphasize that the level of the underlying Kac-Moody algebra,
the existence of a topological algebra and the stability of our strongly disordered theory are
therefore intimately related.

4We note that this matter + string theory admits a description in terms of the c — —2 model
dressed by c — 28 Liouville theory and c — —26 string ghosts. We remind the interested reader
that this (and other) Liouville LCFTs [35,74,75] emerged in a very natural way in the closely
related problem of prelocalization in disordered conductors [35,38].
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VI. CONCLUSIONS

We briefly summarize here a number of our main results:

• We have solved the random non-Abelian Dirac fermion problem by means of three
different non-perturbative procedures based on the replica approach, supersymmetry,
and in the limit of strong disorder. We have demonstrated that this menage a trois of
approaches yields identical results (for the four-point correlation functions of the local
density of states) in this relatively simple, but quite non-trivial model of disorder.

• We have emphasized the special role played by the level k of the Kac-Moody algebra.
As we have seen both here and in reference [60] the level fc = —2 is rather special for the
6sp(2\2)k WZNW model which arises in the supersymmetric treatment of the random
Dirac fermion problem: an entire conformal block decouples from the spectrum and
the resulting theory is drastically simplified.

• We have established that the c = —2 minimal model plays an important role in the
random non-Abelian Dirac fermion problem. We have found a rather simple and
suggestive form for the supersymmetric critical action (4.3):

o3p(2|2)_2 - u(l) + gl(l) + [c = - 2 ] .

We have highlighted the relevance of the twist operators of the c = — 2 theory in
the disorder averaged correlation functions of the Dirac fermion problem. The c — —2
symplectic fermions are ubiquitous in the construction of supersymmetric sigma models
[42,43]; this example indicates that this sector may well be responsible for many
remarkable features of disordered critical points including the presence of logarithmic
operators [66]. We draw attention to the fact that the c — —2 theory emerges in the
theoretical description of dense polymers [64,65]. We hope that this connection may
ultimately yield a more intuitive picture of the random non-Abelian Dirac fermion
problem and other disordered critical points.

• We have argued for the stability of the critical point with respect to variations in
the disorder, and noted that the level of the underlying Kac-Moody algebra, the
existence of a topological algebra and the stability of our strongly disordered theory are
rather intimately linked. It is an interesting open question whether such considerations
may yield Kac-Moody level selection mechanisms in models displaying lines of critical
points [11].
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APPENDIX A: THE su{N)kWZNW MODEL

In this appendix we consider the appearance of logarithms in the correlation functions of
the su(N)k WZNW model. Following §4 of Knizhnik and Zamolodchikov [53] we compute
the four-point functions

rx'a(zi,zi) = (g(z1,z1)g^z2,z2)g\z3,z3)g(z4,z4)), (Al)

of the field g(zi,Zi) — ga*>at(zi,Zi) transforming in the fundamental representation of
SU(N) xSU(N). We use the symbol a to denote the ordered sequence of indices ai, a2, a3, a4.
Global conformal invariance restricts this correlation function to have the form

Fa'Sl(zz,zt) = (z14z23zl4z23)-
2hFa's'(z,z) (A2)

where z and z are the anharmonic ratios

^12^34 _ ^12^34 , , oN

z = , z = _ (A3)

and the conformal dimension h of the field g is

N2 -I
h = wWT¥) (A4)

The correlation function (A2) admits the su(N)xsu(N) invariant decomposition

tlfFifaz) (A5)

where the invariant tensors I\ and I2 are defined as

with similar equations for Ii and I2. The four scalar functions Fij satisfy the coupled first-
order differential equations [53]

where the matrices P and Q are given by

1 (N2-l N\ 1 / - I 0
• N(N + k)\ 0 - l j ' V " iV(iy + fc)^iV N2-

There are similar equations for the antiholomorphic dependence. Suppressing the antiholo-
morphic index j from the functions F\j and i^j, one may obtain the second-order differential
equation satisfied by F\{z):

N2{N + k)2z2(l-z)2F?(z)-

N(N + k)z{\ - z) [2 - N(2N + k) + (3iV2 + Nk - 4)z] F[(z) + (A9)

[1 - iV2 - (N4 - QN2 -Nk + A)z + (N4 - 5N2 + 4)z2] Ft(z) = 0.
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The corresponding i^(^) may be obtained from the F\(z) solutions:

F2{z) = -(N + k)zF[{z) + N~\l - z)-1 [l - JV2 + (JV2 - 2)z] Fx{z). (A10)

Upon the change of variables

Fl{z) = z-N^N+k\z{l-z)\llN^+k^G1{z) (All)

one obtains an equation of the hypergeometric form:

^0. (A12)

where a = —l/(N + k), f3 = l/(N + k) and 7 = k/(N + k). For non-integer values of 7
the solutions of these equations are given by Knizhnik and Zamolodchikov — see equations
(4.10a) and (4.10b) of [53]. For integer values of 7, however, the solution involves logarithms
— the roots of the indicial equation corresponding to (A12) (namely 0 and 1 —7) differ by an
integer. Of particular importance in the study of the disordered Dirac fermion problem are
the cases AT --» 0 (7 = 1) appearing in the replica treatment (section III A) and k = — 2N
(7 = 2) appearing in the strong disorder treatment (section III B). We consider both of
these cases below.

1. The u(N)k WZNW Model asiV-^0

As may be seen from equation (A4) the conformal dimensions of the su(N)k WZNW
model diverge as N —)• 0, as do some of the prefactors in the chiral blocks (All); the iV —» 0
limit of the su(N)k WZNW model alone fails to yield a well defined CFT. However, the
replica approach to the random Dirac fermion problem instructs us to consider the u(N)k
WZNW*model. As we shall demonstrate below, the u(N)k WZNW model does have a well
defined N -> 0 limit.

An arbitrary element tz, of the group U(N), may be expressed as an element of SU(N), g,
multiplied by a phase: u = eta^g. Using the Polyakov-Wiegmann identity for the WZNW
model [83]

Wk[ab) = Wk[a] + Wk[b] + £- [ d*£Ti'(a-1 dabdb-1) (A13)
Zn J

with a — e101^ and b — g one obtains5

a2Nk f
Wk[u] - Wk[g] + -j— J d2t d^d^ (A14)

5We have used the facts that the current gdg : residing in the su(N) algebra is traceless, thereby
eliminating the second term in (A13), that the WZNW term (3.4) vanishes for the U(l) element
eia*, and that Tr' = 2Tr.
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The u(N)h WZNW model is therefore seen to be the su(N)k WZNW model augmented by
a free scalar field of prescribed normalization. The conformal dimension of the field exav is
fixed by this normalization to be6 ha = l/(2Nk). The conformal dimension of the composite
field u = eia*g is thus

• 1 iV2 — 1 1
h +

and is seen to have the finite replica limit l/2k2. In addition, the (non-vanishing) holomor-
phic four-point correlation function of the U(l) fields Va — eta(^ is given by

(Va{l)V-a(2)V-a{Z)Va{A)) = {z1^2)-
llNk[z{l-z)]~XlNk (A16)

The divergences occuring in the SU(N)*; results (A2) and (Al l ) as iV —>• .0 are seen to
be compensated by those of the U(l) phase (A16). In the replica (N —> 0) limit the
hypergeometric equation (A12) reads

z{l~z)G/; + (l-z)G/
1+k-2G1=0 (A17)

and one is able to find the TV.—>• 0 limit of the u(N)k conformal blocks:

7 2 J P I [ - I , I ; 1 ; * ] (A18a)

1{l-z)2Fl[\-\,l + \-2-l-z\ (A18b)

7 ^ 2 F 1 [ l - i , l + i;2;z] (A18c)

1k2F1[-l\-l;\-z] (A18d)

where 7 — [z{\ — z)}~l^k . We find it convenient to introduce generalizations of the complete
elliptic integrals of the first and second kind [84]:

K^^^il-l^-l-z] (A19a)

Ekizy^^F^-ll;!^} (A19b)

In terms of these functions (and rescaling) the N —> 0 u(N)k conformal blocks read:

F^^-rEkiz) (A2.0a)

F x
( 2 ) = 7 k [Kk(l - z ) - E k { \ - z)] (A20b)

Hl) = 1 \Kk{z) ~ Ek(z)] (A20c)

F2
(2) = 7 k Ek{l - z) (A20d)

6For a free scalar field governed by the action S — \g J d2£ d^fd^tp, the field eiav has ha — a2/8ng
— see for example equations (5.73) and (6.60) of [17].
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The full U(N) x U(N) invariant correlation function is built from single-valued combinations
of these conformal blocks; it is straightforward to see that one can only have

Fifaz) = Xl2 [F?\Z)F}2)(Z) + F?\z)F?\z)] (A21)

Substituting the explicit forms (A20) into (A21) one obtains

Fn^X12k\^\2[Ek(Rk-Ek) + Ek(Kk-Ek)] (A22a)

F12 = X12 k |7 |2 [EkEk + (Kk - Ek){Kk - Ek)] (A22b)

F21 = Xl2 k |7 |2 [EkEk + (Kk - Ek)(Kk - Ekj\ (A22c)

F22 = X12 k |7 |2 [Ek(Kk - Ek) + Ek(Kk - Ekj\ (A22d)

where we have adopted the notation that f(z) = / ( I — 2), /(z) = f(z) and f(z) = / ( I — z)
for an arbitrary function / .

2.Thesu(JV). 2 JvWZNWModel

As may be seen from equations (All) and (A12) with k = —2iV, the Fi(z) chiral blocks
for the su(N)-2N WZNW Model are given by

G1(z) (A23)

where G\ satisfies the hypergeometric equation with a — 1/iV, /3 — — I/A/", 7 = 2:

z(l-^)C?; / + (2~^)G /
1 + yV-2G?i=0. (A24)

Solving this equation and applying the relation (AlO) enables one to obtain the full set of
su(N)-2N chiral blocks:7

•F1
(1) = A « 2 F 1 [ - i , i ; 2 ; 2 r ] (A25a)

Fi2) = A(l-z)*2F1{l-jf,l + jr,S]l-z]- (A25b)

Fi1) = ~ 2 F 1 [ l - ^ l + ̂ ;3;z] (A25c)

l - 2 r ] (A25d)

7We note that (A25b) may be obtained by substituting G\{z) — z l(l- z)2Hi(z) into (A24) and
replacing z by 1 — z — this yields a hypergeometric equation. The result (A25c) may be obtained
by straightforward application of (AlO) to (A25a). In deriving (A25d) one may utilize the result
(N2-l)z(l-z) 2F1[2- ±,2 + ±;4;z] + 3N2{2-z) 2 F x [ l - i , l + ^;3;z]
which is easily verified by means of the Gauss recursion relations.
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where A = [z(l — z)] x' . In terms of generalized elliptic integrals the sw(iV)_2jv chiral
blocks read:

[x) = cA [[1 + (N - \)z\ EN-{\- z)KN] (A26a)

F[2) = 2NcA [[1 + (N - 1)*] EN - NzKNj (A26b)

F2
(1) = - c A [[N -(N- l)z] EN - N(l - z)KN) (A26c)

F2
(2) = -2 iVcA \[N -(N- l)z] EN - zKN] (A26d)

where c = N2/[TT(N2 - 1)]. We have used the Gauss recursion formula GR 9.137(13) [85]

z)2F1[a + l,/3;T,z}

+ l;*] = 0. l '

with a = — 1/iV, (3 = 1/N, 7 = 1 to obtain (A26a), and GR 9.137(6) [85]

7(7 + l ) 2 F 1 [ a , / ? ;7 ;z ] -7 ( 7 + l ) 2 F 1 [a , / ? ;7+l ;z ] A

-a /?z 2 F 1 [a + l,/? + l ; 7 + 2;z] = 0 [ '

with a = -1/iV, /3 = 1/iV, 7 = 1 to obtain (A26b). One may obtain (A26c) and (A26d)
by noting that F2

(1)(z) = - ^ ( l - z)/2N and F\2\Z) = -2NF[1\I - z) as follows from
(A25). In particular we note that

] = c'AzEN (A29a)
) = c'A(l - z)[KN - EN) (A29b)

) = _2Nc'Az[KN - EN] (A29c)
) = -2Nc'A(l-z)EN (A29d)

where c' = cN(N2 — 1) is simply another constant.

APPENDIX B: THE oip(2|2)fcWZNW MODEL

1. Representations of osp(2|2)

The Lie superalgebra osp(2|2) ~ spl(2|l) consists of four bosonic generators Q3, Q+, Q-,
B, and four fermionic generators W+, W-, V+, VI. The bosonic subalgebra is si(2) © w(l):

[Q3,Q±] = ±<5±, [Q+,Q-] = 2Q3, [B,Q±] = 0, [B,Q3}=0 (Bl)

and the eigenvalues of Q3 and B (called isospin and baryon number respectively) are used
to classify the basis states of finite-dimensional representations [72,86]. A representation
.[&,#] contains at most four multiplets of states:

\b,q), | 6 + I , 9 - I > , 1 6 - 1 , 9 - 1 ) , \b,q-l), (B2)
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the states within a given multiplet \b,q) being labelled by their third component of isospin
|6,9,93). In particular the [0, | ] representation is four-dimensional and contains a doublet
and two singlets (the multiplet |6, q — 1} being absent):

|0 , § ,£>, . |0, § , - § ) , | i , 0 , 0 ) , | - | , 0 , 0 > . (B3)

Following [59] we denote these states as |1), |4), |3) and |2) respectively. In addition to their
isospin and baryon number, the basis states carry a grading denoted by e = .±1 . States |1)
and |4) are even/bosonic and have e = 0, whilst states |2) and |3) are odd/fermionic and
have e — 1. On this basis of states one may construct 4 x 4 matrix representation [0, | ] of
the generators of osp(2|2).

2. Knizhhnik-Zamolodchikov Equations

Let us study the four-point function of the supersymmetric Q-matrix:

where on the left hand side we use the symbol ex to denote the ordered sequence of indices
ai,a2,0^3,0:4. Global conformal invariance restricts this correlation function to have the
form

where z and z are the anharmonic ratios

z = , z = (B6)

and the conformal dimension h of the field 0 is

h = 4=2k ( B ? )

The correlation function (B5) has the osp(2|2)xosp(2|2) invariant decomposition

?i?FZ]{z,z) (B8)

The tensors / a n d / are given in appendix A of [59]:
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h = (1144) + (1234)4e7 + (1324)4e7 - (1414) + (2143)4e7

+ (2233)16e2
7

2 + (2323)16e2
7

2 - (2413)4e7 + (3142)4e7 + (3232)16e2
7

2

+ (3322)16e2
7

2 - (3412)4e7 - (4141) - (4231)4e7 - (4321)4e7 + (4411) (B9a)

h = (1234)4e7 - (1243)4e7 + (1324)4e7 - (1342)4e7

- (1414) + (1441) - (2134)4e7 + (2143)4e7 + (2233)32e2
7

2 + (2323)16e2
7

2

+ (2332)16e2
7

2 - (2413)4e7 + (2431)4e7 - (3124)4e7 + (3142)4e7

+ (3223)16eV + (3232)16e2
7

2 + (3322)32e2
7

2 - (3412)4e7 + (3421)4e7

+ (4114) - (4141) + (4213)4e7 - (4231)4e7 + (4312)4e7 - (4321)4e7 (B9b)

h = (1234) - (1243) + (1324) - (1342) + (1423) + (1432) - (2134) + (2143)

+ (2233)8e7 + (2314) + (2323)8e7 + (2332)8e7 - (2341) - (2413) + (2431)

- (3124) + (3142) + (3214) + (3223)8e7 + (3232)8e7 - (3241) + (3322)8e7

- (3412) + (3421) - (4123) - (4132) + (4213) - (4231) + (4312) - (4321) (B9c)

and the nine scalar functions Fij satisfy the coupled first-order differential equations [59]

dF fl 1 1 (Fli\
X — = \ - P + —-Q\F, where F = \ F2j \ Vj (BIO)dz [z z-\ j yFj

There are similar equations for the antiholomorphic dependence. Suppressing the anti-
holomorphic index j from the functions F\j • • • F3j, one may reduce this first-order matrix
differential equation to the following set of equations [59]

x)z(lz)]^+
dz

2z + 2xz(l - z)]F3(z) = 0

F2(z) = - - . l- [x2D2F3(z) + 2x(l - z)DF3(z) + (1 - 2z)F3(z)] (Bllb)
4eyxz{l — z)

(Bile)

where D — z{\— z)djdz. Equation (Blla) has three independent solutions which we denote
i<3 where a = 1,2,3. Equations (Bllb) and (Bile) yield the corresponding solutions F2

and F[ . The nine scalar functions Fij appearing in equation (B8) may be expressed as a
linear combination of these nine functions (the so-called chiral/current blocks.)

XahFla\z)Ff\z) (B12)
a,6=l

The values of the coefficients Xah are determined by single valuedness (monodromy invari-
ance) and crossing symmetry to be discussed later.
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a. Factorization at Level k~ 1

At level k = 1 (x — 1) the Knizhnik-Zamolodchikov equation (B11 a) takes the form

z*(l-z)F'z +Zz2(l-2z)Fz - 2*(1 + 3z)F3 - 2F3 = 0 (B13)

This may be factorized to read

V(2)V{l)F3 = 0 ' (B14)

where

(1) ^ (B15)

3z2-^--2 (B16)
CLZ

It is straightforward to see that the equation V^Fs == 0, and thus (B14) has the solution

z
(B17)

Applying the formulae (Bllb) and (Bile) to this single solution of the Knizhnik-
Zamolodchikov equation (B14) one obtains:

Analysis of the full set of solutions of (B14) reveals that it is only these blocks which enter the
physical.correlator - a fact which is intimately related to the factorization of the Knizhhnik-
Zamolodchikov equation (B14). In the su{2) WZNW model the factorization properties of
the differential operators are related to a finite closure of the underlying operator algebra [87].

b. Factorization at Level k = —2

At level k = — 2 (x = 4) the differential equation (Blla) takes the form

[4z(l - z)]*F;' + 9[4z(l - z))\l

4z(l - z)[-5 + Sz - 48z(l - z)]F'3 + (B19)

[-5 + 2z + 8z{l - z)}F3 = 0

This equation may be factorized to read

V^V^F3 = 0 (B20)

where this time the differential operators T>^ and V^ take the form
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= 4z(l - z) j - - (5 - 6z) (B21)

= [4z(l - z)}2-^ + Sz(l - z)(3 - 4z)^- + (1 - 4z) (B22)

In the light of the factorization which occured at k = 1 one might expect that the subset
of solutions obtained from T)^2^ F% — 0, which are closed under analytic continuation on the
Riemann sphere, might serve as a reduced basis on which to perform the conformal bootstrap.
This indeed turns out to be the case. It is easily seen that the equation T>(2'Fs = 0, and
therefore the full Knizhnik-Zamolodchikov equation (B20) admits the two solutions8

where K(z) is the complete elliptic integral of the first kind and E(z) is the complete elliptic
integral of the second kind:9

Jo y \ l ~ z^)(l —
V ~ dx K(z)= dx (B24)

The representation (B23) is particularly useful owing to the very simple manner in which
the elliptic integrals behave under differentiation with respect to the parameter z:

dE(z) = E(z) - K(z) dK(z) = E(z)-{l-z)K(z)

dz 2z dz 2z(l-z) [ ]

Applying (Bllb) and (Bile) to these solutions yields:

(1) _ K(z) (1) zK(z) _
2 • 4ey[z(l z)]1'* l 4c7[^(l z)}^ l }

(2) _ K{\-z) (2) _ zK(l-z)
2 " 467[z(l Z)Y/* l ~ 467[z(l z)p/4 V ^

As we shall subsequently demonstrate, one may satisfy the demands of single-valuedness
and crossing symmetry on the subspace of functions (B23), (B26) and (B27). Once again
this is intimately connected with the factorization of the Knizhnik-Zamolodchikov equation
(B20). Having found closed form expressions for the chiral blocks, one must now construct

8Upon the change of variables F3 = [z(l - z)] llAH(z), the equation X>(2 F̂3 = 0 reduces to
the canonical form of the hypergeometric equation z(l - z)H" + [c - (a + b + l)z]H - abH •= 0
with a = -1/2 , b = 1/2, c = 1. This has solutions H^ = '2FX [-\, | ; l\z\ and H& = (1 -
z) 2Fi [i, | ; 2 ; 1 - z\. Using the well known fact that 2F\\-\,\', 1;̂ ] = f ^ ^ ) together with it's
derivative, the result follows.

9Note that many texts on the theory of elliptic integrals denote the parameter z by k2 - the
so-called modulus. This is purely a mater of convention.
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the physical correlation functions to be single-valued on the whole Riemann sphere. It is
enough to ensure this property at the two singular points z — 0 and z — 1. The blocks F{ (z)
are regular at z = 0 and logarithmic at z — 1, whilst the blocks F/ (Z) are logarithmic at
z = 0 and regular at z = 1. It is straightforward to see that in this subspace of functions
one can only have10

F^z, z) = X12 \Fl1\z)Ff\z) + i f >(*)if >(*)] (B28)

One may gather the explicit expressions for the Fij at level k — —2 in the Hermitian matrix:

(\z\2F22 -zF22 -zF23\
FZJ= \-zF22 F22 F23 (B29)

\—zF23 F23 F33 J

in which we have singled out the elements

F22 = -A [KR + Kk\ (B30)

F23 = Ae7A^KK + kE-KF^ (B31)

F33 = (4e7)
2A [E& - EK + EE - EI<\ (B32)

where

• v

A

and wh^re we have adopted the notation that f(z) = / ( I — z), f(z) = f(z) and f(z) =
/ ( I — z) for an arbitrary function / . One may also demonstrate that this combination is
consistent with the crossing symmetry constraints on the correlator:

Fa^(z,z) = VVF^8[(l-z,l-z)1 F^iz.^^z-^z-^VVF^il/z.l/z) (B3.4)

where a denotes the permuted sequence of indices a i , a 3 , a 2 , a4 , 6c denotes the sequence
ai , a4, a3, a2, and V denotes the parity of the permutation:

f> — (_1)£«2£«3? p — (__ 1)^2(^3+^4 )+£«3£«4 (B35)

The proof of this requires the use of the analytic continuation formulae of the elliptic integrals
and is presented in appendix B 4.

10A detailed proof of this statement in terms of monodromy matrices is given in appendix B 3.
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3. Monodromy Invariance

A monodromy transformation of a function of z consists in letting z circulate around
some other point (typically a singular point). We define

Co F(z, z) = lim F{ze2l7r\ ze"2^) (B36)

CiF(z,z)= lim F(l + (z"l)e2ivt,l + (z-l)e'2ivt) (B37)

Using the standard analytic continuation formulae for the hypergeometric series, it is easily
seen that the elliptic integrals have the following nontrivial monodromy properties:

z) (B38)

2i[E(z)-K(z)] (B39)

dK(z) = K(z)-2iK(l-z) (B40)

CxE(z) = E ( z ) + 2 i [ E ( l - z ) - K ( l - z)] (B41)

together with the trivial transformations C0K(z) = K(z), CoE(z) = E(z), C\K{\— z) —
K{\ — z\ C\E{\ — z) — E{\ -~ z). Using these results it is straightforward to see that

C0Fla\z) = (g0)abF(h\z), a = 1 , 2 , 3 ' (B42)

C1Fia\z) = (ff1UF?\z), i = 1,2,3 (B43)

where (on this reduced subspace) the matrices g0 and g\ are given by

Under the monodromy transformation Co, the combination

^a)(z)Fib)^ (B 4 5)
a,b=l

transforms in the following manner

' CoFij(z,z) = Fl1\z)FJ1\z) [Xn - 2i(X12 - X21) + 4X22] + Ft
{2)(z)F™(z) [X22]

+ F^\z)FJ2\z) [X12 + 2iX22] + F[%)F}1\Z) [X21 - 2iX22]

Invariance under the monodromy transformation Co thus requires X\2'= -^21, ^nd X22 = 0.
That is to say

FtJ(z, z) = XllFi1\z)FJ1)(S) + X12 [Fi%)FW(z) + F?\z)Ff (f)j

Under the monodromy transformation C\ this simplified function transforms as

dFij&z) = Fll\z)F\l\z) {Xn} + Fll\z)F\2){z) [X12 - 2iXn]

+ Fl2\z)F^(z) [X12 + 2iXn] + Ff2)(z)FJ2\z) [4XU]
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Invariance under the monodromy transformation C\ therefore imposes the additional con-
straint X\\ — 0. Hence monodromy invariance restricts F{j(z,z) to have the form

[f J\ (B46)
as stated in the text.

4. Crossing Symmetry

a. Invariance under z —> 1 — z

Crossing symmetry requires that

Fa^(z,z) = VVF"^{1 - z,l - z) . (B47)

where ot denotes the sequence of indices ai, #2? #3, c*4, & denotes the permuted sequence of
indices ai, a3, 0*2, a4, P — ( — l)ea2£«3 denotes the parity of the interchange in the holomorphic
sector {ea is 0 for bosons and 1 for fermions.) Introducing the following tensor [59]

(B48)

the crossing symmetry constraint may be written

3 3

jfF^a-^i-^) (B49)

The tensor J admits the following decomposition [59]

/ - 1 0 0 \
J? = C\3If Cx = - 1 1 - 4 e 7 (B50)

\ 0 b - 1 /

Substituting this decomposition into equation (B49) and equating the coefficients of ijj on
both sides, one finds the following nine identities which must be satisfied by the F{j(z,z) if
this crossing symmetry is to be satisfied. Denoting Fij(z, z) by Ftj, and Fij(l — z, 1 — z) by
Fij these are as follows:

Fn = Fn + F12 + F2i + F22 (B51a)

Fl2 = -F12-F22 (B51b)
F13 = Aej(F12 + F22) + Fl3 + F23 (B51c)

F21 = -F21-F22 (B51d)

F22 = F22 (B51e)

F23 = -4e7jP22 - F23 (B51f)

F3i = 4e7(F2i + F22) + F31 + F32 (B51g)

F32 = -4e7F2 2 - F32 (B51h)

F33 = 4e7(4e7F22 + F23 + F32) + F33

It is straightforward to show that these relations are indeed satisfied.
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b. Invariance under z -> 1/z

Crossing symmetry requires that

2 A 2 A p A l / z ) (B52)

where ct denotes the sequence of indices ai , 6*2,0̂ 3, 0:4, ct denotes the permuted sequence
of indices a i 3 a 4 , a 3 , a2 , 'P — (—l)£«2(£«3+e«4)+e«3^4 d e n o t e s the parity of the interchange in
the holomorphic sector (ea is 0 for bosons and 1 for fermions.) Introducing the following
tensor [59]

Kf = Vlf (B53)

the crossing symmetry constraint may be written
3 3

Mz) (B54)

The tensor K admits the following decomposition [59]

/O.I - 4 e 7 \
AT = C%If C2 = 1 0 - 4 e 7 (B55)

\o o -i )
Substituting this decomposition into equation (B54) and equating the coefficients of ijj on
both sides, one finds the following nine identities which must be satisfied by the F{j(z,z) if
this crossing symmetry is to be satisfied. Denoting Fij(z,z) by.Ft-j, and F^(l /z , 1/z) by Fij
these are as follows:

Fu = \z\-2/xF22 (B56a)

F12 = \z\-2'xF2l (B56b)

Fxz = \z\-2/x[-^(F21 + F22) - F23] (B56c)

F21 = \z\~2lxFl2 (B56d)

F22 = \z\-2'XFXX . (B56e)
/ + F12) - F13] (B56f)

+ F22)-JF32] (B56g)
+ F21) - F31] (B56h)

^33 = |^r2 /x[16eV(Ai + A2 + Ai + F22) +
4e7(F1 3 + F23 + F31 + F32) + F33] (B56i)

In order to demonstrate that these identities are satisfied we shall make use of the following
rather simple transformation laws of the elliptic integrals under z —> 1/z:11

nWe note that replacing i by —i in equations (B57a) and (B57b) changes the domain of validity
of the transformation from 3rnz < 0 to 3mz > 0. Since E and K appear together in the F{j it is
essential that their transformations be defined in the same region of the complex plane.
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E(
K(l - l/z)

= Z+1'2 \K{z) + iK(

= z-W[D{z)-iD(:

= z+l'2K{\ - z)

jfm^ < 0

dmz < 0

(B57a)

(B57b)

(B57c)

(B57d)

where

D{z) = E{z)-{\-z)K{z). (B58)

These are easily obtained using the standard analytic continuation formulae for ordinary
hypergeometric functions. Recalling the form of F22 appearing in equation (B30) namely

F22 = - A [K{1 - z)K[z) + K(z)K(l - z)] (B59)

it. is straightforward to see how it transforms under z —>> 1/z:

F22 = \z\s/2F22 (B60)

Since Fu = \z\2F22 from equation (B29) it follows that that constraint (B56a) is satisfied.
Replacing now z by 1/z in (B56a) one may infer the validity of (B56e). Further, since
F21 = —zF22 from equation (B29) it follows by reciprocity that

F21 = -z~1F22. (B61)

Substituting for F22 using (B60) and using the fact that F12 = —zF22 one obtains

(B62)

That is to say, constraint (B56b) is satisfied. By reciprocity we see that constraint (B56d)
is also satisfied. Recalling now the form of F23 appearing in equation (B31) namely

F23 = 4e7A \KR + KE - RE] (B63)

it is straightforward to see how it transforms under z —> 1/z:

F23 = 4e7|z|3/2A [z1/2 [K + %K)zll2K+

f f ( >jf( k ' ) ' " \ (B64)

+izK (E - zK\ - z (l< + ik\ E] (B65)

4e7H
1/2A [|2|2 (K-K + Kk\ + z (RE - KK - KE\\ (B66)

4ei\z\1/2A \\z\2 (KR + KR\ - z (KR + KR\ + z (KR + KE - KE\\ (B67)

4e7 |z |1 / 2 I -\z\2F22 + zF22 + -^-FzA (B68)
L 4e7 J

^ + F^-F^} (B69)
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Replacing z by \jz on both sides of this equation one obtains the relation (B56f). Taking
now the complex conjugate of (B56f) and using the Hermiticity property F^ ~ Fji, one
obtains (B56h). Further, rearranging (B69) for i*\3 and replacing Fu and F i 2 using (B56a)
and (B56b) respectively one obtains (B56c). Taking now the complex conjugate of (B56c)
and using Hermiticity, one obtains (B56g). We consider finally how JP33, namely

F33 = (4e7)
2A \E(E - K) + ex.] (B70)

behaves under the transformation z —» 1/z:

F33 = (4c7)
2|z|3/2A \z~l'2(D - ib)(z-l'2E - zl'2R) + c.c] (B71)

= (4e7)
2|z|1/2A [(£> - iD)(E - zK) + c.c] (B72)

- (4e7)2H1/2A [EE - (1 - z)KE~ zEK + z(l -z)KK + c.c^ (B73)

= (4e7)
2|z|1/2A \EE - EK + (1 - z)(EK - KE + KR) - |1 - z\2KR + c.c] (B74)

= \z\1'2 [(4e7)
2|l - z\2F22 + 4e7 [(1 - ^)F23 + c.c] + F33] (B75)

F n + Fl2 + F2i + F22) + 4e7(F13" + F23 + F31 + F32) + F33] (B76)

= \z\

which may be seen to be the relation (B56i) with z replaced by \jz. This completes our
proof of crossing symmetry in the reduced subspace.
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