

international atomic

energy agency

united nations

Sonal, scientific **Conduct Conduct Con**

the

international centre for theoretical physics

SMR.1320 - 20

SUMMER SCHOOL on LOW-DIMENSIONAL QUANTUM SYSTEMS: Theory and Experiment (16 - 27 JULY 2001)

PLUS

PRE-TUTORIAL SESSIONS (11 - 13 JULY 2001)

INTERACTING RANDOM DIRAC FERMIONS IN SUPERCONDUCTING CUPRATES

D.V. KHVESHCHENKO University of North Carolina Department of Physics & Astronomy CB 3255 Phillips Hall NC 27599-3255 Chapel Hill U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

strada costiera, I I - 34014 trieste italy - **tel.**+39 04022401 I I fax +39 040224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

Interacting random Dirac fermions in superconducting cuprates

D. V. Khveshchenko (UNC-Chapel Hill)

in collaboration with: J. Paaske and I.V. Gornyi (Karlsruhe), W.A. Atkinson and P.J. Hirschfeld (Gainesville), and A.G. Yashenkin (Chapel Hill)

Phys.Rev.Lett. 86, *4668, 4672, 5982* (2001)

Outline of the talk

- Fermi surface vs Fermi points: Dirac-like excitations in strongly correlated fermion systems;
- Interacting quasiparticles and subdominant order parameters in layered \bullet **d-wave** superconductors;
- (De)localization theory for disordered Dirac fermions; \bullet

 ∞

Experimental signatures of quasiparticle localization in high-Tc cuprates .

Dirac fermions in condensed matter physics

Effective description of statistical $(d+0$ -dimensional) systems: Ising model, random magnetic field, network models of Quantum Hall plateau transitions;

- Low-energy excitations in dynamical **(d+1-** dimensional) systems:
- layered **d-wave** superconductors (high-Tc cuprates);
- - **p-wave** superconductors/superfluids (He3-A);
- semimetals (graphite);
- dichalcogenides (2H-TaSe2,..).

Fermi liquids vs. Dirac fermions

Fermi surface: Isolated Fermi points: $\pm\overrightarrow{Q_1}$; $\pm\overrightarrow{Q_2}$ $\sum_{\mathbf{P}}^{\infty}$ $\mathcal{E} = V/\overline{P} - \overline{\hat{\alpha}}_{i}$
 $\gamma(\omega) \sim |\omega|^{d-1}$ $2d$ $\sqrt{(\omega)}$ $E = V_F(P-PF)$
 $V(\omega) \simeq$ Const $\gamma(\omega)$ $C(T) \sim T^{d}$
 $\chi_{s}(T) \sim T^{d-1}$ ω $C(T) \sim T$ $\chi_{s}(\tau) \sim$ Const $\binom{4}{5}$

In 1d both are equivalent: $(a \overline{ \text{ (} \text{most})})$

 \rightarrow

 \cong

Ouasiparticles in planar d-wave superconductors

V*

 $\bm{\mathcal{E}}_{\rho}$ =

 \div 20

Gor'kov-Nambu spinors and BdG Hamiltonian: \bullet

 \mathfrak{O}

$$
\psi_{\vec{p}\alpha}^{i} = \begin{pmatrix} C_{\vec{p}\alpha}^{i} \\ \epsilon_{\alpha\beta} C_{\vec{p}\beta}^{+} \end{pmatrix} \qquad H = \sum_{\substack{i=1,2 \\ \alpha \equiv T\psi}} \psi_{\vec{p}\alpha}^{+} \begin{pmatrix} \overline{p} \overline{p} & \Delta \overline{p} \\ \Delta \overline{p} & -\overline{p} \overline{p} \end{pmatrix} \psi_{\vec{p}\alpha}^{i}
$$

Lattice dispersion and gap function:
 $\xi \overline{P} = -z \xi(\cos \rho_x + \cos \rho_y) + ...$
 $\Delta \overline{P} = \Delta \overline{P} + i \underline{\Delta} \overline{P}$

Low-energy qps:
 $\Delta \overline{P} = \Delta \overline{P} (\cos \rho_x - \cos \rho_y)$ Low-energy qps:

$$
H = \psi_{1}^{+} \left(v_{F} \tilde{\rho}_{x} \hat{\epsilon}_{3} + v_{\Delta} \tilde{\rho}_{y} \hat{\epsilon}_{1} + \Delta_{\hat{\theta}_{1}}^{\prime \prime} \hat{\epsilon}_{2} \right) \psi_{1} +
$$

$$
\psi_{2}^{+} \left(v_{F} \tilde{\rho}_{y} \hat{\epsilon}_{3} + v_{\Delta} \tilde{\rho}_{x} \hat{\epsilon}_{1} + \Delta_{\hat{\theta}_{2}}^{\prime \prime} \hat{\epsilon}_{2} \right) \psi_{2}
$$

QP interactions (screened Coulomb, AFM fluctuations):

$$
\boxed{\text{Im}\Sigma = \vec{\tau}^1(\omega \sim \tau) \sim T^3}
$$
\n
$$
\boxed{\text{Im}\ \pi (\omega, q) \sim \Theta(\omega - \nu q)} \qquad \boxed{\text{FS}: \ \text{Im}\ \Pi \sim \Theta(\nu q - \omega)}
$$

Possible quantum-critical behavior in cuprates

Quantum-critical regime:

 $|\delta-\delta_c| \leq \frac{T}{L} < 1$

 τ (τ) ~ T

• Competing ground states and qp scattering off the fluctuations of the corresponding order parameters *(S.Sachdev et al,'00)* secondary pairing - fully gapped qp spectrum (is, idxy); shifted nodes (s, dxy, ig); excitonic order (p, dxy).

Plausible options: d *7* \vec{c} **5** (*T*-odd, P-even) $\begin{array}{c} \n+ i \, d_{xy} \,(T\text{-and P-odd})\n\end{array}$ **A/OT to -. H;**

Nodal qps near second pairing transition

Incipient order parameter fluctuations: \bullet

$$
\angle_{\phi} = \frac{1}{2} \left(\partial_{\xi} \Phi \right)^{2} - \frac{1}{2} \left(\nabla_{\xi} \Phi \right)^{2} - \frac{m^{2}}{2} \Phi^{2} - \mathbf{W} \Phi^{4}
$$
\n
$$
\frac{\Delta'' \mathbf{g}}{\Delta'' \mathbf{g}} = \frac{\Phi \rightarrow -\Phi}{\text{Using } (Z_{2}) \text{ symmetry breaking at } m^{2} \leq m \geq 1}
$$
\n
$$
\frac{\Delta'' \mathbf{g}}{\Delta'' \mathbf{g}} = \frac{\sum_{\alpha=1}^{M} \Psi_{\alpha} (\mathbf{g}) \mathbf{g}}{\sum_{\alpha=1}^{M} \Psi_{\alpha} (\mathbf{g}) \mathbf{g}} = \frac{1}{2} \left(\mathbf{g} \Phi_{\alpha} (\mathbf{g}) \mathbf{g} + \mathbf{g} \Phi_{\alpha} (\mathbf{g}) \Phi_{\alpha} (\mathbf{g})
$$

Effective Lorentz-invariance (RG): \bullet

 \mathcal{L}

$$
\widetilde{V}_F = \widetilde{V}_\Delta = \widetilde{C} \longrightarrow \mathcal{L}
$$

۵,

 Z_2 --symmetry breaking in the presence of fermions:

$$
\vec{L}S: \quad \hat{\vec{\Gamma}} = \hat{\vec{u}} \otimes \hat{\vec{u}}, \quad \vec{\Phi}_{s} \rightarrow -\vec{\Phi}_{s} \quad \text{-- Chiral symmetry} \n\mathcal{L}_{\vec{\kappa}} \rightarrow (\hat{\vec{u}} \times \vec{\sigma}_{z}) \mathcal{L}_{\vec{\kappa}} \n\vec{d}_{xy}: \quad \hat{\vec{\Gamma}} = \hat{\vec{u}} \otimes \hat{\vec{u}}_{s} , \quad \vec{\Phi}_{d} \rightarrow -\vec{\Phi}_{d} \quad \text{-- Parity} \quad \vec{\kappa} \rightarrow -\vec{\kappa} \n\mathcal{L}_{\vec{\kappa}} \rightarrow (\vec{\sigma}_{1} \times \hat{\vec{u}}_{1}) \mathcal{L}_{\vec{\kappa}} \quad \vec{J} \rightarrow \vec{J}
$$

 ∞

'G. 2. (a) Magnetic field dependence of the ZBCP from YBCO/Cu tunnel junction. A magnetic field induces rther splitting of the ZBCP. (b) A compendium of data on
e magnetic field-induced splitting of ZBCP's. Data from e magnetic field-induced splitting of ZBCP's. BCO/Cu and YBCO/Pb [3] junctions are indicated by closed d open circles, respectively. The theoretical curve for the bdominant order parameter being A_{1g} (s wave) is shown as a 11 line [14]. As a comparison, data from other junctions with ignetic scattering centers are included. These are represented (\triangle) for Ta/Ta₂O₅/Al [8], (\triangle) for Sn/Sn_xO_y/Sn [23],) for Al/Ti-doped $Al_2O_3/A1$ [24], and (\blacktriangledown) for a Au/Si:P hottky barrier tunnel junction [25].

 $-9-$

Figure 5 The spontaneous (at zero field) splitting of the zero bias conductance peak versus $\left[\Delta_{max}-\Delta\right]^{1/2}$ (circles) for doping ranging from slightly underdoped (T_c=83.6K) down set) to slightly overdoped $(T_c=85.6K$ down set) $\left[\Delta_{max}\Delta\right]^{1/2}$ is a quantity proportional to the doping level (see text).Triangles: the inverse susceptibility *%^l* for the same samples. The upper bound of χ ¹ for the sample with $(\Delta_{max} - \Delta) = 0$ is Solid lines: linear fits for both the underdoped and overdoped ranges. The lines extrapolate to zero at the same doping level where the spontaneous splitting appears. Dashed line linear fit for $\delta(0)$ on the overdoped side. Inset: $2\Delta kT_{\rm cw}$ for the samples measured.

$$
E_{xp.}
$$
 : $\beta \approx 1$, $\gamma \approx 1$
\nTh. : $\beta = 0.87$, $\gamma = 1.25$
\n π **Using** : $\beta = 0.32$, $\gamma = 1.26$

 $-(0-$

Dirac fermion spectral function

Solution of the Dyson eqs:

 $\mathcal{X} \subset \mathcal{X}$

Qr-

Quasiparticle damping:

ARPES lineshape:

 Γ (ω , T, δ - δ c) ~ $\left\{\max(\omega, \frac{T}{2}) , \sqrt{(\delta - \delta_c)^2 + \sum_{\ell \in \mathbb{Z}} \sum_{\ell \in \mathbb{Z}} \mathbb{Z}} \right\}$
 $\left\{\max(\omega^3, \tau^3) , \sqrt{(\delta - \delta_c)^2 + \sum_{\ell \in \mathbb{Z}} \sum_{\ell \in \mathbb{Z}} \mathbb{Z}} \right\}$

 $\gamma_{+} = \frac{2}{3\pi^{2}v} + ...$

Disordered Fermi liquids

Symmetries of the single-particle Hamiltonian: SU(2) and *T*

• Three Gaussian ensembles: Orthogonal (SU(2) $\& T$) \rightarrow WL in 2d (potential impurity scattering);

Unitary (no T) \rightarrow "even weaker" WL in 2d $dhS = d-2$ (magnetic field or spin-flip);

Simplectic (no SU(2)) > "anti"localization $\frac{d^2x}{dx^2} = d-2$ (spin-orbit scattering);

- Single-particle DOS remains largely intact;
- Dephasing due to Coulomb e-e interactions:

(

Disordered Dirac fermions in *d-wave* superconductors

 $\frac{\alpha}{\pi}$

- Extra Hamiltonian symmetry: p-h transformation, Novel coherence phenomena: impurity scattering + Andreev reflection;
- Energy and spin, but no charge, diffusion:
- $\mathbf{J_i} = -\mathbf{S} \mathbf{J}_y \mathbf{V}$
 $\mathbf{Q}_i = -\mathbf{Z} \mathbf{V}_y$ $D_t \rho + \nabla_t \mathbf{J}_t + \mathbf{O}$ $D_+ h + \nabla_i Q_i = 0$ $\vec{v}_t = -\vec{S} + \vec{v}_t \vec{T}_t = 0$ $\vec{T}_t = -\vec{S} \vec{S} \vec{V} \vec{H}$ • Seven new universality classes *{Altland, Zirnbauer, '97)*
- (different patterns of $SU(2)$ and T breaking);
- Strong dependence on the type of disorder ;
- Single-particle DOS is affected by disorder;
- Self-consistent Born approximation $(P.A. Lee, '93)$
 $\frac{2}{9}$
 $\frac{7}{2}$
 $\frac{1}{2}$
 $\frac{1}{2$

"Universal" limit:

 ω

 $\mathcal{V}(\omega)$ $\frac{\gamma(0)}{2} \sim \frac{\gamma}{v_F v_A} \log \frac{\Delta}{\gamma}$
 $\gamma = \sqrt{\frac{1}{v_B} - \sqrt{1}}$

FIG. 1. a-axis thermal conductivity of the two $YBa₂Cu₃O_y$ crystals, one superconducting *(y —* 6.9; circles) and one insulating ($y = 6.0$; triangles). Main panel: κ/T vs T^2 ; lines are fits to $a + bT^2$ for $T < 0.15$ K. Inset: κ/T vs T.

Universal limit *Ti* **o**

 $-14-$

"Universal" thermal conductivity e vojne programa i programa.
Programa i programa i
Programa i programa i programa i programa i programa i programa i programa i progra

 15

È

 $\tilde{\sigma}$

Lattice d-wave superconductor near half-filling : yet another discrete symmetry

Additional doubling of the number of Goldstone diffusion modes \bullet

 \overline{H}

 $\overline{\mathfrak{D}}$

(De)Iocalization properties of random Dirac fermions

Isotropic impurity scattering (short-range disorder) *{M.P.A.Fisher et al, '98)*

$$
\mathcal{Y}(\omega) \sim |\omega| \qquad \mathfrak{S}_{\mathsf{S}}(\tau)| = 0
$$

 $\hat{y}(\omega) \sim |\omega|^2$ $6s(T)\Big|_{T\to\infty} = 0$

Predominantly forward scattering (smooth disorder) (A. Tsvelik et al, '94)

• Orbital magnetic field alone doesn't kill WL (but Zeeman field does)

[cf.: metallic Q-dot boundered by a superconductor in magnetic field] $\sqrt{\omega}$

 $\chi \bar{e}$ ⁶⁵

 ω

$$
V(\omega) \sim |\omega|^{c}
$$
 $\propto = \propto (\lambda \sim n_{i}) < 1$

Imputities in unitarity limit (binary alloy) *(K.Pepin and P.A.Lee, '98)*

$$
V(\omega) \sim \frac{n_i}{|\omega| \log^2 \frac{\Delta}{\omega} \sqrt{\mu = 0}}
$$
\n
$$
Spin-orbit scattering (T. Senthil et al'99)
$$
\n
$$
V(\omega) \sim \left(\log \frac{\Delta}{\omega}\right)^{1/2} \quad \epsilon(\tau) \sim \log T
$$

Experimental manifestations of different phases

Pure **d** -- "Thermal insulator" phase:

^v ...'

Vanishing ^ L . *<£ (T'•+ o)*

Positive $\frac{d}{d}$ $\frac{d}{d}$ $\left(\frac{H}{H}\right)$ \longleftrightarrow $\frac{d}{d}$ $\Delta_{i,j}$ $\frac{d}{d}$

Linear DOS $\gamma(\omega) \sim / \omega/$

• d+is -- "Even weaker" localization: $\gamma(\omega) \sim |\omega|^2$ $\Delta \lt \omega$

Gapping of the nodal excitation spectrum $\omega < \Delta$

DOS tails

 $\frac{8}{5}$

• d+id' -- "Thermal Quantum Hall" phase:

Quantized \mathcal{X}_{H} $_{\mathcal{T}}$ $_{$

Other possible experimental probes: spin injection/detection, tunneling, $C(\tau)$ \bullet

•G. 2. Temperature dependence of the thermal conduc*y* $\kappa(T)/T$ with a magnetic field applied above T_c . Note crossing of the 0.6 kOe and 0,0 kOe curves.

 ∂ (

FIG. 1. The thermal Hall conductivity κ_{xy} vs. *H* in BZO-grown YBa₂Cu₃O_{6.99} (T_c = 89 K) at high temperatures (85 to 40 K in Panel A), and low temperatures (35 to 12.5 K in *Panel* B). As T decreases below T_c , the initial slope κ_{xy}^0/B increases sharply. The prominent peak in κ_{xy} below 55 K is a new feature in BZO-grown YBCO. Panel C compares the zero-field $\kappa_{xx} \equiv \kappa_a$ in the BZO-grown crystal (solid circles) with a detwinned non-BZO grown crystal (open).

P.A. Lee + Simon '97

 $=$ T^2 \digamma $\left(\frac{1H}{T}\right)$ \sim $T \cdot 1H$

To<<*

10

Conclusions

- The observed linear temperature dependence of the inverse qp lifetime \bullet in the superconducting state of the high-Tc cuprates suggests a possible quantum-critical behavior;
- Insights from relativistic theories allow one to identify the nature of the relevant QCP and its properties;
- The qp interactions specific for **the** this QCP do not necessarily alter the (de)localization scenarios proposed for the non-interacting random Dirac fermions;

 ∞ ω

> Experimental signatures of the conjectured QCP and associated effects of disorder can, in principle, be found in ARPES, tunneling, specific heat, and thermal/spin transport.