

international atomic

energy agency

the **abdus salam**

international centre for theoretical physics

SMR.1320 - 20

SUMMER SCHOOL on LOW-DIMENSIONAL QUANTUM SYSTEMS: Theory and Experiment (16 - 27 JULY 2001)

PLUS

PRE-TUTORIAL SESSIONS (11 - 13 JULY 2001)

INTERACTING RANDOM DIRAC FERMIONS IN SUPERCONDUCTING CUPRATES

D.V. KHVESHCHENKO University of North Carolina Department of Physics & Astronomy CB 3255 Phillips Hall NC 27599-3255 Chapel Hill U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

strada costiera, 11 - 34014 trieste italy - tel. +39 0402240111 fax +39 040224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

Interacting random Dirac fermions in superconducting cuprates

D. V. Khveshchenko (UNC-Chapel Hill)

in collaboration with: J. Paaske and I.V. Gornyi (Karlsruhe), W.A. Atkinson and P.J. Hirschfeld (Gainesville), and A.G. Yashenkin (Chapel Hill)

Phys.Rev.Lett. 86, 4668, 4672, 5982 (2001)

Outline of the talk

- Fermi surface vs Fermi points: Dirac-like excitations in strongly correlated fermion systems;
- Interacting quasiparticles and subdominant order parameters in layered d-wave superconductors;
- (De)localization theory for disordered Dirac fermions;

SU

• Experimental signatures of quasiparticle localization in high-Tc cuprates .

Dirac fermions in condensed matter physics

• Effective description of statistical (**d+0**-dimensional) systems: Ising model, random magnetic field, network models of Quantum Hall plateau transitions;

- Low-energy excitations in dynamical (d+1- dimensional) systems:
- layered **d-wave** superconductors (high-Tc cuprates);
- p-wave superconductors/superfluids (He3-A);
- semimetals (graphite);
- dichalcogenides (2H-TaSe2,..).

Fermi liquids vs. Dirac fermions

Fermi surface: Isolated Fermi points: PY $\pm \vec{Q_1}; \pm \vec{Q_2}$)≥ P× $\varepsilon = v/\vec{p} - \vec{q}_{1}$ $\gamma(\omega) \sim |\omega|^{d-1}$ 2d V(W) $\mathcal{E} = V_F(P^-P_F)$ $\mathcal{V}(\omega) \simeq Const$ $\gamma(\omega)$ 69 $C(T) \sim T^{d}$ $\chi_{s}(T) \sim T^{d-1}$ ω C(T)~T Xs(T)~ Const (YL) (K) ž In 1d both are equivalent:

(almost)

-4-

VIALAN III

Quasiparticles in planar d-wave superconductors

1 P×

VF)

 $E_{p} = \sqrt{3p^{2}+1}$

 $\frac{V_A}{V_F} \simeq 10 \div 20$

• Gor'kov-Nambu spinors and BdG Hamiltonian:

5

$$\Psi_{\vec{p}}^{i} = \begin{pmatrix} C_{\vec{p}}^{i} \\ \phi_{\vec{p}} \\ \epsilon_{\kappa\beta} \\ c_{\vec{p}}^{+} \\ \phi_{\vec{p}} \end{pmatrix} \qquad H = \sum_{\substack{i=1,2\\ \alpha = \uparrow V}} \psi_{\vec{p}}^{+} \begin{pmatrix} \overline{s} \\ \overline{p} \\ \Delta \\ \overline{p} \\ \overline{s} \\ \overline$$

• Lattice dispersion and gap function: $\underbrace{\overline{sp}}_{=} - 2t(\cos p_x + \cos p_y) + \dots \qquad \Delta \overrightarrow{p} = \Delta \overrightarrow{p} + i \Delta \overrightarrow{p}$ • Low-energy qps: $\Delta \overrightarrow{p} = \Delta \circ (\cos p_x - \cos p_y)$

$$\mathcal{H} = \Psi_{1}^{+} \left(\Psi_{F} \tilde{p}_{x} \hat{e}_{3} + V_{\Delta} \tilde{p}_{y} \hat{e}_{1} + \Delta_{q_{1}}^{"} \hat{e}_{2} \right) \Psi_{1} + \\ \Psi_{2}^{+} \left(V_{F} \tilde{p}_{y} \hat{e}_{3} + V_{\Delta} \tilde{p}_{x} \hat{e}_{1} + \Delta_{q_{2}}^{"} \hat{e}_{2} \right) \Psi_{2}$$

QP interactions (screened Coulomb, AFM fluctuations):

(D.Scalapino et al, '94) $Im\Sigma = \overline{z}^{1}(\omega - T) \sim T$ FFS: Im∏~ ∂ (vq-w) Im $\pi(\omega,q) \sim \Theta(\omega-\nu q)$

Possible quantum-critical behavior in cuprates

Quantum-critical regime:

18-Sel = = <1

 $\tau(\tau) \sim T$

Competing ground states and qp scattering off the fluctuations of the corresponding order parameters (S.Sachdev et al, '00):
 secondary pairing - fully gapped qp spectrum (is, idxy);
 shifted nodes (s, dxy, ig); excitonic order (p, dxy).

Plausible options: $d_{x^2y^2} \rightarrow d_{x^2y^2} + i S$ (*T*-odd, P-even) $d_{x^2y^2} \rightarrow d_{x-y} + i d_{xy}$ (*T*-and P-odd) *NOT DUE TO*: H; maga. imp.; Surface d_{xy}

Nodal qps near second pairing transition

• Incipient order parameter fluctuations:

$$\mathcal{L}_{\phi} = \frac{1}{2c^{2}}(\partial_{t}\overline{\Phi})^{2} - \frac{1}{2}(\nabla_{t}\overline{\Phi})^{2} - \frac{m^{2}}{2}\overline{\Phi}^{2} - \mathbf{M}\overline{\Phi}^{2}$$

$$\mathcal{L}_{\phi} - \mathcal{U}:\overline{\Phi}: + m_{c}^{2}\overline{\Phi}$$

$$\mathcal{L}_{\phi} = \mathcal{L}:\overline{\Phi}: + m_{c}^{2}\overline{\Phi}$$

• Effective Lorentz-invariance (RG):

12

$$\widetilde{V}_F = \widetilde{V}_A = \widetilde{C} \rightarrow 1$$

 \mathbf{Z}_{2} --symmetry breaking in the presence of fermions:

G. 2. (a) Magnetic field dependence of the ZBCP from YBCO/Cu tunnel junction. A magnetic field induces rther splitting of the ZBCP. (b) A compendium of data on e magnetic field-induced splitting of ZBCP's. Data from BCO/Cu and YBCO/Pb [3] junctions are indicated by closed d open circles, respectively. The theoretical curve for the bdominant order parameter being A_{1g} (s wave) is shown as a ll line [14]. As a comparison, data from other junctions with ignetic scattering centers are included. These are represented (Δ) for Ta/Ta₂O₅/Al [8], (\blacktriangle) for Sn/Sn_xO_y/Sn [23],) for Al/Ti-doped Al₂O₃/Al [24], and (\blacktriangledown) for a Au/Si:P hottky barrier tunnel junction [25].

-9-

Figure 5 The spontaneous (at zero field) splitting of the zero bias conductance peak versus $[\Delta_{max}-\Delta]^{1/2}$ (circles) for doping ranging from slightly underdoped ($T_c=83.6$ K down set) to slightly overdoped ($T_c=85.6$ K down set) . $[\Delta_{max}-\Delta]^{1/2}$ is a quantity proportional to the doping level (see text). Triangles: the inverse susceptibility χ^{-1} for the same samples. The upper bound of χ^{-1} for the sample with ($\Delta_{max}-\Delta$)=0 is 0.08[mV/T]⁻¹. Solid lines: linear fits for both the underdoped and overdoped ranges. The lines extrapolate to zero at the same doping level where the spontaneous splitting appears. Dashed line linear fit for $\delta(0)$ on the overdoped side. Inset: $2\Delta/kT_{cW}$ for the samples measured.

Exp. :
$$\beta \approx 1$$
, $\gamma \approx 1$
Th. : $\beta = 0.87$, $\gamma = 1.25$
+1 Ising : $\beta = 0.32$, $\gamma = 1.26$

-10-

Dirac fermion spectral function

Solution of the Dyson eqs:

(1) $\omega, q \gg T$ $G \propto \frac{\omega \gamma_0 - \overline{q} \gamma}{(\omega^2 - q^2)^{1-} \gamma_{+}}$ (2) $\omega, q \lesssim T$ $G \propto T \cdot \frac{\eta}{(\omega + i\Gamma)^2 - q^2}$ (3) $M \neq 0$ $G \ll \frac{1}{\omega^2 - q^2 - M^2}$ uasiparticle damping:

V9

Quasiparticle damping:

ARPES lineshape:

ImG(w,9)

 $\Gamma(\omega, T, \delta-\delta_c) \sim \int \max(\omega, T), |\delta-\delta_c| = T_{T_c}$ $\max(\omega^3, T^3), |\delta-\delta_c| = T_{T_c}$

 $2 = \frac{2}{3\pi^2 N^{+...}}$

Disordered Fermi liquids

Symmetries of the single-particle Hamiltonian: SU(2) and T

Three Gaussian ensembles: Orthogonal (SU(2) & T) \rightarrow WL in 2d (potential impurity scattering);

Unitary (no T) \rightarrow "even weaker" WL in 2d dln = d-2 – (magnetic field or spin-flip);

Simplectic (no SU(2)) \rightarrow "anti"localization (spin-orbit scattering);

- Single-particle DOS remains largely intact;
- Dephasing due to Coulomb e-e interactions:

Ty(T)~ Jugo

Disordered Dirac fermions in *d***-***wave* **superconductors**

2e/ T/

- Extra Hamiltonian symmetry: **p-h** transformation, ٠ Novel coherence phenomena: impurity scattering + Andreev reflection;
- Energy and spin, but no charge, diffusion:
- $J_{i} = -\delta V_{j} V$ $Q_{i} = -\delta V_{j} T$ 2+ P + Vi J: ≠ 0 $\partial_{\mu}h + \nabla_{i}Q_{i} = 0$ $\vec{J}_i = -\boldsymbol{6}_s^{ij} \vec{v}_i \vec{H}$ $\partial_1 \vec{S} + \nabla_i \vec{J}_i = 0$ Seven new universality classes (Altland, Zirnbauer, '97)
- (different patterns of SU(2) and T breaking);
- Strong dependence on the type of disorder;

ŝ

Y(w)

Single-particle DOS is affected by disorder;

 $\frac{V(0)}{V_{\rm F}} \sim \frac{\gamma}{V_{\rm F}} \log \frac{\Lambda}{\gamma}$

"Universal" limit:

Self-consistent Born approximation (P.A.Lee, '93) $Im \Sigma(o) = \gamma \sim \Delta e^{-\frac{n}{\lambda}}$ = $\lambda \sim \frac{h_i |u_{imp}|^2}{V_{-}V_{\Delta}} \ll 1$

FIG. 1. *a*-axis thermal conductivity of the two YBa₂Cu₃O_y crystals, one superconducting (y = 6.9; circles) and one insulating (y = 6.0; triangles). Main panel: κ/T vs T^2 ; lines are fits to $a + bT^2$ for T < 0.15 K. Inset: κ/T vs T.

Universal limit in (super) conducting VBaCuO7-X

-14-

Universal thermal Conductivity

÷

Lattice *d-wave* superconductor near half-filling : yet another discrete symmetry

• Additional doubling of the number of Goldstone diffusion modes

¥-

q

(De)localization properties of random Dirac fermions

yes

 ω

V(w)

V(w)

W

• Isotropic impurity scattering (short-range disorder) (M.P.A.Fisher et al, '98)

H

Predominantly forward scattering (smooth disorder) (A. Tsvelik et al, '94)

Orbital magnetic field alone doesn't kill WL (but Zeeman field does)

[cf.: metallic Q-dot boundered by a superconductor in magnetic field]

 $\gamma(\omega) \sim |\omega|^2 \qquad 6_s(\tau) = 0$ $\tau \rightarrow 0$

$$v(\omega) \sim |\omega|^{\alpha} \qquad \alpha = \alpha(\lambda \sim n_i) < 1$$

• Imputities in unitarity limit (binary alloy) (K.Pepin and P.A.Lee, '98)

Experimental manifestations of different phases

0)

Pure **d** -- "Thermal insulator" phase:

Vanishing

$$\mathcal{E}_{\tau}|_{\tau \to 0}$$
; $\mathcal{E}_{s}(\tau \to$

Positive $\frac{d}{dH} \mathscr{L}(H) \longleftrightarrow \frac{d}{dH} \Delta_{WL} \mathscr{L}$ Linear DOS $\mathcal{V}(\omega) \sim |\omega|$

d+is -- "Even weaker" localization: $\gamma(\omega) \sim |\omega|^2$, $\Delta_{xy} < \omega < \gamma$ Gapping of the nodal excitation spectrum $\gamma(\omega) \sim \overline{e} \frac{C_{oust}}{|\omega|}$, $\omega < \Delta_{xy}$ **d+is** -- "Even weaker" localization:

DOS tails

Quantized

30

d+id' -- "Thermal Quantum Hall" phase:

 $\mathcal{H}_{H} = \frac{2\pi^2 R_B}{\hbar^2}$

 $Q_{X} = - \mathcal{H}_{H} \nabla_{y} T$

Other possible experimental probes: spin injection/detection, tunneling, $C(\tau)$ ۲

[G. 2. Temperature dependence of the thermal conducy $\kappa(T)/T$ with a magnetic field applied above T_c . Note crossing of the 0.6 kOe and 0.0 kOe curves.

FIG. 1. The thermal Hall conductivity κ_{xy} vs. H in BZO-grown YBa₂Cu₃O_{6.99} ($T_c = 89$ K) at high temperatures (85 to 40 K in Panel A), and low temperatures (35 to 12.5 K in Panel B). As T decreases below T_c , the initial slope κ_{xy}^0/B increases sharply. The prominent peak in κ_{xy} below 55 K is a new feature in BZO-grown YBCO. Panel C compares the zero-field $\kappa_{xx} \equiv \kappa_a$ in the BZO-grown crystal (solid circles) with a detwinned non-BZO grown crystal (open).

P.A.Lee + Sinaon '97

 $\mathcal{Z}_{H} = T^2 F(\frac{H}{T}) \sim T \cdot \sqrt{H}$ No quantization, as ef today...

Conclusions

- The observed linear temperature dependence of the inverse qp lifetime in the superconducting state of the high-Tc cuprates suggests a possible quantum-critical behavior;
- Insights from relativistic theories allow one to identify the nature of the relevant QCP and its properties;
- The qp interactions specific for this QCP do not necessarily alter the (de)localization scenarios proposed for the non-interacting random Dirac fermions;

3

• Experimental signatures of the conjectured QCP and associated effects of disorder can, in principle, be found in ARPES, tunneling, specific heat, and thermal/spin transport.