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BOSONIZATION AND
TWO-DIMENSIONAL ISING MODEL

Alexander NERSESYAN

I.C.T.P. & Institute of Physics, Tbilisi, Georgia



PLAN OF THE LECTURES

1. Two-dimensional Ising model

• TRANSFER MATRIX AND REDUCTION TO QUANTUM ISING CHAIN

• MAPPING ONTO MAJORANA FERMIONS. CONTINUUM LIMIT

• CRITICALITY: Z2 CFT WITH C = 1/2. OPERATOR CONTENT

2. Abelian bosonization of two Ising models

• FREE MASSLESS DIRAC FERMION = TWO MASSLESS MAJORANAS

• ABELIAN BOSONIZATION OF THE DIRAC FERMION =$> BOSONIZATION

OF TWO ISING COPIES

• BOSONIZATION OF ALL ISING-MODEL OPERATORS

3. Applications

• HEISENBERG CHAIN IN THE CONTINUUM LIMIT. ABELIAN BOSONIZA-

TION OF SU(2)i WZNW MODEL

• TWO-CHAIN ANTIFERROMAGNETIC S = l / 2 LADDER: S O ( 3 ) X Z 2 MODEL

OF FOUR NONCRITICAL ISING SYSTEMS



1 Two-Dimensional Ising Model

STRONGLY ANISOTROPIC 2D ISING MODEL

Transfer matrix, r-continuum limit

QUANTUM ISING CHAIN

Jordan- Wigner transformation

REAL (MAJORANA) FERMIONS ON ID LATTICE

\T - Tc\/Tc < 1: continuum limit

QFT MODEL IN 1+1 DIMENSIONS: MASSIVE MAJORANA FERMION

Criticality: massless limit

Z2 CFT WITH CENTRAL CHARGE C = 1/2



1*1 r-continuum limit and reduction to quantum Ising

chain

Ising model on a square lattice with anisotropic n.n. couplings.

n

m

m

n = 1, 2,..., iV; rn = 1,2,..., M (+ periodic boundary conditions)

Ising variables: anm = ±1 .

Euclidean action =
Energy

Temperature

Global Z2 symmetry: anm —> —
nrn-



Kramers-Wannier duality determines the critical curve:

sinh 27^^ sinh 2iTx = 1.

K, KT =

order

critical

disorder

K

Transition point in the isotropic case:

We will be dealing with a strongly anisotropic ̂ case:

KT

Close to criticality



Suppose that T is close to Tc, so that the correlation length £c is macroscopi-

cally large: £c/a ^> 1. Consider the correlation function (<7(r)cr(O)) at distances

r ~ £c. In the isotropic case, KT = KXi the correlations are almost circular,

whereas in the anisotropic case, KT ^> Kx, they are ellipsoidal, strongly elon-

gated in the r-direction.

\

7

(A) (B)

To map (B) onto (A), squeeze the lattice in the r-direction. This defines the

so-called r-continuum limit in which the coupling constants scale as follows:

Kx e 2KT OC T.



TRANSFER MATRIX (2* x

S1 S2 'n
i

i i i

i ( i (

\ i

> <

)

GN

(m+1)

(m)

= T

Z - const Tr fM.
n n

Expected:

= 1 - TH + 0(r2) = e - ^ + o ^ 2

— ID quantum Hamiltonian



Two-row configurations:

{an} = {sn}

- - - - +
A

1 spin flip : e Kr ~ r

- + - - +

A A

etc

Parametrization:

2 spin flips : e~lKr ~ r

(drop)

QUANTUM ISING CHAIN = Ising Chain in a Transverse Magnetic Field:



1.2 Quantum Ising chain

Qualitative picture:

• A = 0: classical ID Ising chain. Long-range order (T=0), spontaneously-

broken Z2:

lim <<K<|0> = Q2 = 1, <0|<|0> =
|n—m\—>oc

|A| <C 1 - qualftatively the same result but with Q2 < 1 (zero-point motion).

Small A —> LRO (spontaneously broken Z2).

• |A| -» oo: decoupling - uncorrelated spins 1/2 in a magnetic field along

x-axis.

(6|«J6> = o.

At a large but finite A

lim
\n—m

Large A -> DISORDERED phase.

The passage from |A| <C 1 to |A| ^> 1 requires a quantum phase transition at

some A = Ac.



DUALITY TRANSFORMATION

n

* •

n - 1 / 2

ra +

* •

n + 1/2

Dual spins: A*2+i/2 ( a = x> 2/>
Duality transformation:

(2)

Inverse duality transformation:

A

(n + 1/2)

crea-tes a iciziic; hence - disorder operator.

(0



Under duality transformation

H[a) -» H[ti] = ~
n

This is a quantum analog of Kramers-Wannier duality.

For each eigenvalue of H

E(X)=XE(1/X).

In particular, the mass gap satisfies

M(A) = AM (I/A).

So if M(A) = 0 at A = Ac, then M(A) = 0 also at A = 1/AC. Assuming that

there exists only one critical point (this is know to be the case),

SELF-DUALITY = CRITICALITY: Xr = 1

Ordered phase

T <Tr: A < 1

Disordered phase

T > Tr : A > 1

Close to criticality

M(A) oc
\T-TC



1.3 Mapping onto Majorana fermions

Jordan-Wigner transformation for spinless complex fermions:

ax
n = 2a{an -

n - 1

< = (-l)n exP[±i7r £ a]aj] ( 4 +
3=1

{an, 4 J = £nm, {an, am} = 0.

Tight-binding model:

H
n

J (al - On) (al+1 + an+i) - A (aj - an) (a* + an)

Since only combinations a\ ± an are present, introduce real, i.e. Majorana

fermions:

{Cn, Cm} = fe, Im} =

and y! = £_& represent independent modes only on the semiaxis k > 0.



Tight-binding Majorana model:

" C») ~ (A " J)VnCn

|T-TC |/TC<I | A - J | < J continuum limit:

a - > 0,

C n "

; M I - <

J,A —)• (X),

J CW>

2J

= S(i

, 2 ( A -

2^r,(x)

), (C(^

J) = m

H = / dx [ iv 7j(x)dx((x) — im r}(x)(,(x)]

Chiral rotation: £R = (r) — Q/y/2, & — 07 + OA/2 -> formally relativistic

QFT of a massive Majorana fermion in 1+1 dimesions:

m - (T - Tc)/T

• Global Z2 invariance: £# —>• - ^ , fx, -> —^x.

• Duality transformation: £R -> — £R, ^ -> x̂, (or vice versa). Effectively

771 —•> —77i.

/3



= £ £+
mf2

Green function 2x2 matrix:

Spectrum (ie —>• a; 4- iJ):

IS + kVTs + 772T2

+ A:2^2 + m2

a;2 = k2v2 + m2

Immediate consequences:

• CORRELATION LENGTH:

SPECIFIC HEAT: The mass dependence of the ground state energy (cf.

condensation energy in a BCS superconductor):

1 re t \ c /HM m " i A

— I r I YYl I —— r I I • I ! r^j —— i \T\ ————

L A |ra|
(A = energy cutoff). Hence, the free energy density of a slightly noncritical

2D Ising model

T- HTc) - - Tc " \T-TC\'

implying that



1.4 Criticality

m -» 0

7?2
7^x

Theory of a massless Majorana fermion

in 1+1 (or 2 Euclidean) dimensions:

Minimal CFT with central charge C — 1/2.

Z = T

d =

Identify: £ = = ^ . Euclidean action:

i.e. in 1 + 1 dimensions

= 0

(holomorphic)

= f(z) (antiholomorphic)

+ *) (left moving)

- t) (right moving)

15



Primary fields in CFT

For a primary field f(z,z) with conformal dimensions h and h the two-point
correlation function

const

d = h + h

(scaling dimension)

S = h-h

(conformal spin)

• CHIRAL FERMION FIELDS £, £:

- z2)
d = S = 1/2

• ENERGY DENSITY e(z, z) — \

At | r - Tc\ < Tc (\m\ < A)

A — ACFT /

= 1, 5 =

~ , z 12

(conformal scalar)



ORDER/DISORDER OPERATORS a(z,z),fi(z,z)

a and /i are mutually nonlocal and each of these two fields is nonlocal in

On the lattice

ra-1

3=1

n

j=l

Cn = CTnMn-1/2 = Pn-

FERMION = [ORDER PARAMETER]

X [DISORDER PARAMETER]

CFT proves (will be also shown below):

, z2))
\zi-Z2\V*



2 Abelian bosonization of two Ising models

• Step 1: Start with a free massless Dirac fermion (no internal symmetry group):

CD(x) = i^

%D{x) = -iv[R\x)dxR(x)-lJ{x)dxL(x)\, ^W = ( ]

Global U(l) symmetry —> conserved current:

1 —~ ih^y if) CJ 7 •—" 0

Criticality with central charge CD — 1-

Critical Ising model: Cising = 1/2, discrete (Z2) symmetry —> no Noether

current (real fermions do not couple to electromagnetic field!).

For two identical Ising copies:

(1)07 = 1/2 + 1/2 = 1,

(ii) U(l) symmetry is realized as 0(2) rotations of the Majorana doublet.

=> Represent the Dirac fermion as two Majorana fermions.

) =>• ^ w -

f2 (x) ~

->• ^ (a;) cos a — £2

> £1(a;)siiia + £2(

(or) sin

a;) cos

a

a



• Step 2: Abelian bosonization of the Dirac field = bosonization of the two

Majorana fields.

(i) a = short-distance cutoff of the bosonic theory.

(ii) [$#, $/,] = i/4 - to ensure anticommutation between the right and left

components of the Fermi field.

Bosonization of chiral U(l) currents:

(original field)

i"° — 3f l *
J —

(dual field)
1 «



Step 3: Bosonization of fermionic mass bilinears.

i t ±J &* otrt _
j I t I-/

ma

ma

ma

ma

(Ul +
(zkl +
{(Ul -
(44-

sRSLy —

eiel) =
ek£) =
tlt2\ —

cos

— sin

— cos

sin^

V^TTB,

/

TWO COPIES OF NONCRITICAL ISING MODELS

= FREE MASSIVE DIRAC FERMION

=> SINE-GORDON MODEL WITH j32 = 4?r (DECOUPLING POINT)

dxQ(x) = - x').



• An example demonstrating the importance of the Ising model:

bosonic Hamiltonian:

nB = I Udxe)
2 L

Both vertex perturbation to the Gaussian model have scaling dimension 1 and,

hence, are strongly relevant -> massive regime.

Is it always true? mi = ±m2 - self-duality points. Criticality?

Mapping onto two Majorana fields immediately solves the problem:

The spectrum consists of two decoupled (!) Majorana fermions with different

masses. Ising criticality: Mi = 0 or M2 = 0.

Comment: equivalent representation - CDW and BCS-like pairings

UB -> -iv - h.c.) + i - h.c.)

Chiral U(l)# x U(1)L symmetry fully broken: neither the particle number not

the current conserved. Only Z2 x Z2 left:

R -> -R, L-¥-L

R -> R^, L -¥ L^ (particle — hole symmetry)

Hence Majorana fermions.

sa



• Step 4: Bosonization of products of two Ising operators.

Consider two degenerate Ising models. At criticality 4 products

have the same scaling dimension d = 1/8 +1 /8 = 1/4. On the other hand, in the

zero mass limit of the /?2 = 4TT sine-Gordon model, there are 4 vertex operators

with the same dimension:

s iny^^ , cos

There must be some correspondence between the two groups of 4 operators which

should also hold at small deviations from criticality.

Heuristic derivation

P2 = 4?r sine-Gordon model: At m > 0 (disordered Ising phase) the cosine

potential has a degenerate set of minima at ($)n = y/^n (n € Z) implying that

(COS y/ft®) 7̂  0, (sin y/ft$) — 0,

and at the same time

= 0, 0.

At m < 0 (ordered Ising phase) ($)n = y/%(n + 1/2) implying that

with

Conclusion:

(cos v ^ ) = 05 (sin y

0

05

= 0.



Make a duality transformation in the sine-Gordon model:

$ -> 6 : USG -> I - — cos

This corresponds to the duality transformation of the first Ising copy only:

implying that <JI -H- fii. So



• CRITICAL ISING CORRELATORS FROM BOSONIZATION

(Zuber & Itzykson, 1977)

= {v(r)a(O))

Kl2(r) =

According to bosonization rules

= T2(r)

^ is a Gaussian field:

H=lJdx *[ll2(x) + (dx$ (x))2] or A = i / d2r (v$(r))

2-point correlation function:

= -~ In M, a)

Therefore, using the Baker-Hausdorff formula (Wick theorem for the Gaussian

model)

[eF) = e ^ \

we obtain

s= i [(cos V?F[$(r) - $(0)]) - (cos VSF

1,- I n
2

a
1/2

Consequently, for a single critical Ising model

(3)

Similarly, dM = 1/8



3 Applications

3.1 Background: Heisenberg spin-1/2 chain in the con-

tinuum limit

Isotropic [SU(2)-symmetric] S=l/2 antiferromagnetic Heisenberg chain:

Exactly solved by H. Bethe (1931). Known facts:

• no long-range order; SU(2)i criticality;

• elementary excitations - spinons- carry spin-1/2 and, in the long-wavelength

limit, have a linear spectrum: us(k) = vs\k\]

• spin-spin correlation functions follow power laws with universal critical ex-

ponents.

Anisotropic (XXZ) S=l /2 chain:

—1 < A < 1 -» no LRO, U(l) criticality, gapless spectrum, A-dependent

critical exponents (Tomonaga-Luttinger liquid).

25



DECONFINED SPINONS IN A HEISENBERG CHAIN:



CONTINUUM LIMIT - TWO ALTERNATIVE ROUTES

• Luther and Peshel:

XXZ model

ty (Jordan — Wigner transformation)

Spinless interacting fermions on a ID lattice

ty (continuum limit)

Spinless Tomonaga — Luttinger liquid + Umklapp

fy (Abelian bosonization)

Sine — Gordon model

1/K = 1 — (l/7r) arccos A,

|A| < 1: cosine perturbation irrelevant => Gaussian model.

A = 1, K — 1 (isotropic case): the model occurs at the SU(2)-symmetric

weak-coupling separatrix of the Kosterlitz-Thouless phase diagram where

the perturbation is marginally irrelevant.



Affleck; Haldane - Symmetry preserving fermionization:

1 W = ns,
ue
ne

SU{2)

SO(Z)

S -> S : charge U(l) redundant

To kill unwanted charge excitations - constraint: exactly one particle per
site.

=£> large-£7 Hubbard model at 1/2 filling: mapping onto AF Heisenberg

chain with J oc t2/U.

But - no Mott transition in ID Hubbard model: the charge gap is generated

at any U > 0.

U < t, mc oc VUt exp(-27rt/*7)

C mc: only spin dynamics remains =>• universal properties of the S=l/2
Heisenberg chain.



H = -* 53 WJrV't+i.o- + h.c.) + UJ2 nitnih 0 < U < t,
icr i

§ (non — Abelian bosonization)

%(x) — /Hc(x) + Hsix) — Charge - spin separation

Umklapp locks the charge and makes

'He massive (Mott insulator).

^ At low energies\u | <C

CRITICAL S U ( 2 ) I WESS-ZUMINO-NOVIKOV-WITTEN (WZNW) MODEL

with a marginally irrelevant perturbation (backscattering):

^ (: JR • JR : + : 3L • JL :) - 7 J * J L (7 > 0)

Chiral vector currents JR,L - generators o

satisfy the Kac-Moody algebra:

? JL\Jy ) \ — 1C °L\Jj)u\tL x )

[JR(x),Jb
L(x')] = O

with the level k = 1.

\J"R(x), Jb
R(x')} = ie^JfaMx -x') + -^:fbS{x - x')}



Smooth fields (q ~ 0):

LOCAL SPIN DENSITY AND SPIN CURRENT:

J = JR + 3L, j = vs (JR - JL)

Staggered Reids (q ~ n):

WZNW 2 x 2 matrix field:

charge

t2-

(ft,

o-
+ B

ft)

— CI X J I 1 s

a=l,2,3

t2 = const

= (1/4,1/4),

na(x)aa i

d=l/2

E 517(2)

!, 5 = 0

DlMERIZATION OPERATOR AND STAGGERED MAGNETIZATION:

e(x) ~ Tr g(x) *= (-l)nS ra • Sn+1,

na(a;) - Tr [aag(x)} «= ( - l ) n S n

Local spin density of the S=l/2 Heisenberg chain:

3o



ABELIAN BOSONIZATION OF SU(2)I WZNW MODEL

• Bosonize the Hubbard model using scalar fields

• Charge and spin fields:

Hamiltonian density: charge-spin separation:

"H. — 'He

+ const cos,-<«-»-«, (2^)2

(Umklapp : marginally relevant perturbation)

us = |

const cos

(Backscattering : marginally irrelevant perturbation)

3/



Spin currents are expressed in terms of the spin fields only:

• Staggered fields n and e - charge needs to be locked:

n

e

A

*

z : sinV^Ti

— : cos \/27r$s

= (cos -v/27r$c) 7̂ 0

\
/n — • P Y T \ i —4— i -\ / jfrC~*l 1 •

(nonuniversal constant)

3X



3.2 Two-chain S=l/2 Heisenberg ladder

r

| J'| *C J =^ continuum limit: H -> J dx V,(x)

Ji • J2 + " ni • n2

marginal (rf = 2) relevant (d = 1)

33



n =

(m = J'A2/2JT) H.J. Schulz (1986)

''inarg

a=l,2,3

mt = m, ms = —3m 50(3) x

D. Shelton, A.M. Tsvelik k A.A. Nersesyan (1996)



MARGINAL 4-FERMION INTERACTION

1
2fr?

1 T/

= 023 = 031 = X

weak mass renormalization:

A
\rrin

a

L

a

R

a

L



STAGGERED FIELDS OF THE SPIN LADDER

n + = n i ± n 2 , e ± — e x ± e2

Abelian bosonization:

n^ ~ cos yfirQjr

nj~ ~ sin \^rrQ+

n* ~ sin A/TT$+

6 + ~ COS y/7T$+

cos V

cos V

cosy

cos v% _ , e"" -

-̂  sinv^

-̂  cos v^i

^ cos V î

^ s i n y ^

6 + sin A/TFG-

-0 + sin y^©-

-O+sinv^^-

$+ sin v ^ ^ -

Local representation in terms of the Ising order/disorder operators:

CRUCIAL:

For a standard ladder ra^m^ < 0

Jj. > 0 : mt > 0, Ising triplet (1,2,3) disordered -> T > T,

ms < 0, Ising singlet (4) ordered -> T < T

JI < 0 : mce versa

c

c



CORRELATION FUNCTIONS

Correlation functions in a noncritical Ising model (T > Tc):

X — I / • JL J • L

(cr(r)<7(0)) ~

</i(r)MO)> -

; = 1

-K"o(lm

- 1 + C

r)
e

2|m|r)

Wu

5

m r

et al

(\m

(1976)

|r> 1)

T < Tc: (cr(r)cr(O)) and (fj,(r)fj,(O)) interchanged.

-(2mt+|rns|)r p

(n+(r) • n+(0)> a _ • , <n"(r) • n"(0)> oc
mt\J\ms\r

3/2

e-|m,|r

oc (e-(r)e-(O)) oc

q2 + m2



continuum of
excitations

well defined
quasiparticie pole

Fig. 213. The area of (oo, q) plane where the imaginary part of the djnaamical
magnetic susceptibiKty is finite.



HALDANE SPIN-LIQUID STATE

• J' = 0: Gapless S=l /2 spinons of two decoupled Heisenberg chains

broad continuum seen in x"(?r — q,

J' ^ 0: Spinons confine to produce massive coherent triplet excitations

S-peak in X"(K — Q,

Susceptihflity of
iT spinladder

0

Sn5c^>tibOJty of
spin 111 chain

At energies |a>| < 2|m4| + \ms\

chain with a small Haldane gap.

effective spin-1 Heisenberg

J' > 0: N 5 = i = n"



SPIN-1 HEISENBERG CHAIN WITH BIQUADRATIC EXCHANGE

HS=I(P) = J£ [S» • Sn+1 - (3 (Sn • Sn+1)2], (J > 0, 5 = 1)
n

• /? = 0: standard S=l Heisenberg chain.

• p = 1/3: Valence Bond Solid {A&eck, Kennedy, Lieb, Tasaki, 1988)

• (3 = 1: Exactly integrable point (Takhtajan; Babujan, 1982)

H{(3 = 1) - continuum limit level k = 2 SU(2) WZNW model:

CSuiSr = 3/2 = 3 x 1/2 -»
1 -abceb tc ra *

9 JL-'
* o=l,2,3

triplet of critical Ising models

Zamilodchikov k Fattev (1986)

—• —•

CFT: the mass term ira£# • £& is the only relevant perturbation to
allowed by all symmetries. 0(3) model of massive Majorana fermions

universal description of the S=l Chain with a small Haldane mass.

fWZNW
)2

at 1 — (3 <C 1 continuum limit

N5=i = n-

Tsvelik (1990)


