

(⇔ international atomic energy agency

 abdus salam the

international centre for theoretical physics

SMR.1320 - 2

SUMMER SCHOOL on LOW-DIMENSIONAL QUANTUM SYSTEMS: Theory and Experiment (16 - 27 JULY 2001)

PLUS

PRE-TUTORIAL SESSIONS (11 - 13 JULY 2001)

BOSONIZATION AND TWO-DIMENSIONAL ISING MODEL

A. NERSESYAN

the Abdus Salam International Centre for Theoretical Physics Condensed Matter Section Strada Costiera 11 34014 Trieste Italy

and

Georgian Academy of Sciences Institute of Physics Tamarashvili Str. 6 380077 Tbilisi Georgia

These are preliminary lecture notes, intended only for distribution to participants

BOSONIZATION AND TWO-DIMENSIONAL ISING MODEL

Alexander NERSESYAN

 \mathcal{L}

I.C.T.P. & Institute of Physics, Tbilisi, Georgia

PLAN OF THE LECTURES

- 1. Two-dimensional Ising model
	- TRANSFER MATRIX AND REDUCTION TO QUANTUM ISING CHAIN
	- MAPPING ONTO MAJORANA FERMIONS. CONTINUUM LIMIT
	- CRITICALITY: Z_2 CFT WITH $C = 1/2$. OPERATOR CONTENT
- 2. Abelian bosonization of two Ising models
	- \bullet FREE MASSLESS DIRAC FERMION = TWO MASSLESS MAJORANAS
	- ABELIAN BOSONIZATION OF THE DIRAC FERMION \Rightarrow BOSONIZATION OF TWO ISING COPIES
	- BOSONIZATION OF ALL ISING-MODEL OPERATORS
- 3. Applications
	- HEISENBERG CHAIN IN THE CONTINUUM LIMIT. ABELIAN BOSONIZA-TION OF $SU(2)_1$ WZNW MODEL

∙ / –

• TWO-CHAIN ANTIFERROMAGNETIC $S=1/2$ LADDER: $SO(3)\times Z_2$ MODEL OF FOUR NONCRITICAL ISING SYSTEMS

1 Two-Dimensional Ising Model

STRONGLY ANISOTROPIC 2D ISING MODEL

Transfer matrix, r-continuum limit

₩

QUANTUM ISING CHAIN

Jordan- Wigner transformation

 \downarrow

REAL (MAJORANA) FERMIONS ON ID LATTICE

 $|T - T_c|/T_c \ll 1$: *continuum limit*

 \downarrow

QFT MODEL IN 1+1 DIMENSIONS: MASSIVE MAJORANA FERMION

Criticality: massless limit

⇓

Z_2 CFT WITH CENTRAL CHARGE $C = 1/2$

1.1 τ -continuum limit and reduction to quantum Ising chain

Ising model on a square lattice with anisotropic n.n. couplings.

 $n = 1, 2, ..., N;$ $m = 1, 2, ..., M$ (+ periodic boundary conditions)

Ising variables: $\sigma_{nm} = \pm 1$.

Euclidean action = E_{max}

$$
= \frac{\text{energy}}{\text{Temperature}}
$$

 (1)

$$
A = -\sum_{nm} (K_{\tau}\sigma_{nm}\sigma_{n,m+1} + K_{x}\sigma_{nm}\sigma_{n+1,m})
$$

$$
Z = \sum_{\{\sigma_{nm}\}} \exp(-A[\sigma_{nm}])
$$

Global Z_2 symmetry: $\sigma_{nm} \rightarrow -\sigma_{nm}$.

Kramers-Wannier duality determines the critical curve:

 $\sinh 2K_x \sinh 2K_\tau = 1.$

Transition point in the isotropic case:

$$
K_c = J/T_c = \frac{1}{2} \ln \left(\sqrt{2} + 1 \right).
$$

We will be dealing with a strongly anisotropic case:

$$
K_{\tau} \gg 1, \quad K_x \ll 1.
$$

Close to criticality

$$
K_x \sim e^{-2K_{\tau}}.
$$

Suppose that *T* is close to T_c , so that the correlation length ξ_c is macroscopically large: $\xi_c/a \gg 1$. Consider the correlation function $\langle \sigma(\mathbf{r})\sigma(\mathbf{0})\rangle$ at distances $r \sim \xi_c$. In the isotropic case, $K_\tau = K_x$, the correlations are almost circular, whereas in the anisotropic case, $K_{\tau} \gg K_{x}$, they are ellipsoidal, strongly elongated in the τ -direction.

To map (B) onto (A), squeeze the lattice in the τ -direction. This defines the so-called τ -continuum limit in which the coupling constants scale as follows:

$$
K_x \propto \tau, \quad e^{-2K_{\tau}} \propto \tau.
$$

 $(2^N \times 2^N)$: TRANSFER MATRIX

 $\{s_j\} = \{\sigma_{j,m+1}\}, \quad \{\sigma_j\} = \{\sigma_{j,m}\}$

$$
T_{m,m+1} = T(\{\sigma\}, \{s\}) = \exp\left[-\frac{1}{2}K_{\tau}\sum_{n}(\sigma_{n}-s_{n})^{2} + \frac{1}{2}K_{x}\sum_{n}(\sigma_{n}\sigma_{n+1} + s_{n}s_{n+1})\right]
$$

$$
Z = \text{const } Tr \hat{T}^{M}.
$$

Expected:

$$
\hat{T} = 1 - \tau \hat{H} + O(\tau^2) = e^{-\tau \hat{H} + O(\tau^2)}
$$

$$
\hat{H} - 1D \text{ quantum Hamiltonian}
$$

Two-row configurations:

 $++ - + - - + +$ $+$ + - + - - + + $\{\sigma_n\} \equiv \{s_n\}:$ $K_x \sim \tau$ + + - + - - + + **- - - - +** $1 \text{ spin flip}: \qquad e^{-K_{\tau}} \sim \tau$ **A - + - - +** 2 spin flips : $e^{-2K_{\tau}} \sim \tau$ \triangle \triangle (drop) *etc*

Parametrization:

$$
K_x = \tau, \quad e^{-2K_{\tau}} = \lambda \tau
$$

QUANTUM ISING CHAIN = *Ising Chain in a Transverse Magnetic Field:*

$$
\hat{H} = -J\sum_{n=1}^{N} \left(\sigma_n^z \sigma_{n+1}^z + \lambda \sigma_n^x\right)
$$

1.2 Quantum Ising chain

Qualitative picture:

• $\lambda = 0$: classical 1D Ising chain. Long-range order (T=0), spontaneously broken Z_2 :

$$
\lim_{|n-m|\to\infty} \langle 0|\sigma_n^z \sigma_m^z|0\rangle = Q^2 = 1, \quad \langle 0|\sigma_n^z|0\rangle = \pm 1
$$

 $|\lambda| \ll 1$ – qualitatively the same result but with $Q^2 < 1$ (zero-point motion).

Small $\lambda \rightarrow \text{LRO}$ (spontaneously broken Z₂).

• $|\lambda| \to \infty$: decoupling – uncorrelated spins 1/2 in a magnetic field along x-axis.

$$
\langle \tilde{0} | \sigma_n^z \sigma_m^z | \tilde{0} \rangle = 0.
$$

At a large but finite λ

$$
\lim_{|n-m|\to\infty} \langle \tilde{0} | \sigma_n^z \sigma_m^z | \tilde{0} \rangle \sim e^{-|n-m|/\xi|}
$$

Large $\lambda \rightarrow$ DISORDERED phase.

The passage from $|\lambda| \ll 1$ to $|\lambda| \gg 1$ requires a *quantum phase transition* at some $\lambda = \lambda_c$.

DUALITY TRANSFORMATION

$$
\begin{array}{cccc}\nn & n+1 \\
\bullet & \star & \bullet & \star \\
n-1/2 & n+1/2 & \n\end{array}
$$
 (2)

 $\mu_{n+1/2}^{\alpha} \ (\alpha=x,y,z).$ Dual spins: Duality transformation:

$$
\mu_{n+1/2}^z = \prod_{j=1}^n \sigma_j^x, \qquad \mu_{n+1/2}^x = \sigma_n^z \sigma_{n+1}^z
$$

Inverse duality transformation:

$$
\sigma_n^z = \prod_{j=0}^{n-1} \mu_{j+1/2}^x, \qquad \sigma_n^x = \mu_{n-1/2}^z \mu_{n+1/2}^z
$$

$$
\mu_{n+1/2}^z |+++++++++\rangle = |----+++++\rangle
$$

$$
\triangle
$$

 $(n+1/2)$

 $\mu^z_{n+1/2}$ creates a kink; hence - disorder operator.

Under duality transformation

$$
\hat{H}[\sigma] \rightarrow \hat{H}[\mu] = -J \sum_{n} \left(\mu_{n+1/2}^{x} + \lambda \mu_{n-1/2}^{z} \mu_{n+1/2}^{z} \right).
$$
\n
$$
\hat{H} [\{\sigma\}; \lambda] = \lambda \hat{H} [\{\mu\}; 1/\lambda]
$$

This is a quantum analog of Kramers-Wannier duality.

For each eigenvalue of *H*

$$
E(\lambda) = \lambda E(1/\lambda).
$$

In particular, the mass gap satisfies

$$
M(\lambda)=\lambda M(1/\lambda).
$$

So if $M(\lambda) = 0$ at $\lambda = \lambda_c$, then $M(\lambda) = 0$ also at $\lambda = 1/\lambda_c$. Assuming that there exists only one critical point (this is know to be the case),

> SELF-DUALITY = CRITICALITY: $\lambda_c = 1$

Close to criticality

$$
M(\lambda) \propto |\lambda - 1| \sim \frac{|T - T_c|}{T_c}.
$$

1.3 Mapping onto Majorana fermions

Jordan-Wigner transformation for spinless *complex* fermions:

$$
\sigma_n^x = 2a_n^{\dagger} a_n - 1
$$

$$
\sigma_n^z = (-1)^n \exp[\pm i\pi \sum_{j=1}^{n-1} a_j^{\dagger} a_j] (a_n^{\dagger} + a_n)
$$

 ${a_n, a_m^{\dagger}} = \delta_{nm}, \quad {a_n, a_m} = 0.$

Tight-binding model:

$$
\hat{H} = -\sum_{n} \left(J \sigma_n^z \sigma_{n+1}^z + \Delta \sigma_n^x \right) \qquad (\Delta = \lambda J)
$$

$$
\rightarrow \sum_{n} \left[J \underbrace{(a_n^{\dagger} - a_n)}_{n} \underbrace{(a_{n+1}^{\dagger} + a_{n+1})}_{n} - \Delta \underbrace{(a_n^{\dagger} - a_n)}_{n} \underbrace{(a_n^{\dagger} + a_n)}_{n} \right]
$$

Since only combinations $a_n^{\dagger} \pm a_n$ are present, introduce real, i.e. *Majorana* fermions:

$$
\zeta_n = a_n^{\dagger} + a_n, \qquad \eta_n = -i(a_n^{\dagger} + a_n)
$$

$$
\{\zeta_n, \zeta_m\} = \{\eta_n, \eta_m\} = 2\delta_{nm}, \{\zeta_n, \eta_m\} = 0
$$

$$
\zeta_n^{\dagger} = \zeta_n \quad \Rightarrow \quad \zeta_n = \frac{1}{\sqrt{N}} \sum_{k>0} \left(\zeta_k e^{\mathbf{i}kn} + \zeta_k^{\dagger} e^{-\mathbf{i}kn} \right)
$$

 ζ_k and $\zeta_k^{\dagger} = \zeta_{-k}$ represent independent modes only on the semiaxis $k > 0$.

Tight-binding Majorana model:

$$
\hat{H} = \mathrm{i} \sum_{n} \left[J \eta_n (\zeta_{n+1} - \zeta_n) - (\Delta - J) \eta_n \zeta_n \right]
$$

 $|T-T_c|/T_c \ll 1 \qquad \Rightarrow \qquad |\Delta-J| \ll J \qquad \Rightarrow \qquad$ continuum limit:

$$
a \to 0, \quad J, \Delta \to \infty, \qquad 2Ja = v, \quad 2(\Delta - J) = m
$$

$$
\zeta_n \to \sqrt{2a} \zeta(x), \qquad \eta_n \to \sqrt{2a} \eta(x)
$$

$$
\{\zeta(x), \zeta(x')\} = \{\eta(x), \eta(x')\} = \delta(x - x'), \quad \{\zeta(x), \eta(x')\} = 0
$$

$$
\hat{H} = \int \mathrm{d}x \left[\text{ iv } \eta(x) \partial_x \zeta(x) - \text{ im } \eta(x) \zeta(x) \right]
$$

Chiral rotation: $\xi_R = (\eta - \zeta)/\sqrt{2}$, $\xi_L = (\eta + \zeta)/\sqrt{2}$ \rightarrow formally relativistic QFT of a massive Majorana fermion in 1+1 dimesions:

$$
\mathcal{H}_M(x) = \frac{iv}{2} (\xi_L \partial_x \xi_L - \xi_R \partial_x \xi_R) - im \xi_R \xi_L
$$

$$
m \sim (T - T_c)/T_c
$$

- Global Z₂ invariance: $\xi_R \to -\xi_R$, $\xi_L \to -\xi_L$.
- Duality transformation: $\xi_R \to -\xi_R$, $\xi_L \to \xi_L$ (or vice versa). Effectively $m \rightarrow -m.$

$$
H_M = \sum_{k>0} \xi^{\dagger}(k) \left(kv\hat{\tau}_3 + m\hat{\tau}_2\right) \xi(k), \qquad \xi(k) = \begin{pmatrix} \xi_R(k) \\ \xi_L(k) \end{pmatrix}
$$

Green function 2x2 matrix:

$$
\hat{G}(k,\varepsilon) = -\frac{\mathrm{i}\varepsilon + kv\hat{\tau}_3 + m\hat{\tau}_2}{\varepsilon^2 + k^2v^2 + m^2}
$$

Spectrum (i $\varepsilon \to \omega + i\delta$):

$$
\omega^2 = k^2 v^2 + m^2
$$

Immediate consequences:

• CORRELATION LENGTH:

$$
\xi_c \sim \frac{v}{|m|} \sim \frac{T_c}{|T - T_c|}
$$

SPECIFIC HEAT: The mass dependence of the ground state energy (cf. condensation energy in a BCS superconductor):

$$
\frac{1}{L} \left[\mathcal{E}_{\text{vac}}(m) - \mathcal{E}_{\text{vac}}(0) \right] \sim -\frac{m^2}{\Lambda} \ln \frac{\Lambda}{|m|}
$$

 $(x - \text{energy} \text{ around})$. Hence, the free energy density of a slightly noncritical 2D Ising model

$$
\mathcal{F}(T) - \mathcal{F}(T_c) \sim -\frac{(T - T_c)^2}{T_c} \ln \frac{T_c}{|T - T_c|},
$$

implying that

$$
C = -T \frac{\partial^2 \mathcal{F}}{\partial T^2} \propto \ln \frac{T_c}{|T - T_c|}
$$

14

Criticality 1.4

 $T \to T_c$, $m \to 0$

Theory of a massless Majorana fermion in $1+1$ (or 2 Euclidean) dimensions: Minimal CFT with central charge $C = 1/2$.

 $\mathcal{R}^2_{x,\tau}\to \mathcal{C}_{z,\bar{z}}$:

$$
z = \tau + ix, \quad \bar{z} = \tau - ix \quad (v = 1)
$$

$$
\partial = \partial/\partial z, \quad \bar{\partial} = \partial/\partial \bar{z}
$$

Identify: $\xi \equiv \xi_L$, $\bar{\xi} \equiv \xi_R$. Euclidean action:

$$
\mathcal{A} = \int d^2 z \left(\xi \bar{\partial} \xi + \bar{\xi} \partial \bar{\xi} \right)
$$

 $\delta A = 0: \quad \bar{\partial} \xi = 0 \Rightarrow \xi = \xi(z)$ (holomorphic) $\partial \bar{\xi} = 0 \Rightarrow \bar{\xi} = \bar{\xi}(\bar{z})$ (antiholomorphic)

i.e. in $1 + 1$ dimensions

$$
\xi_L = \xi_L(x+t) \text{ (left moving)}
$$

$$
\xi_R = \xi_R(x-t) \text{ (right moving)}
$$

Primary fields in CFT

For a primary field $f(z, \bar{z})$ with conformal dimensions h and \bar{h} the two-point correlation function

$$
\langle f(z_1, \bar{z}_1) f(z_2, \bar{z}_2) \rangle_{CFT} = \frac{\text{const}}{(z_1 - z_2)^{2h} (\bar{z}_1 - \bar{z}_2)^{2\bar{h}}}
$$

$$
d = h + \bar{h} \qquad S = h - \bar{h}
$$

(scaling dimension) (conformal spin)

• CHIRAL FERMION FIELDS $\xi,\bar{\xi}$:

$$
\langle \xi(z_1)\xi(z_2)\rangle = \frac{1}{2\pi(z_1 - z_2)}, \qquad \left(\frac{1}{2}, 0\right)
$$

$$
\langle \bar{\xi}(\bar{z}_1)\bar{\xi}(\bar{z}_2)\rangle = \frac{1}{2\pi(\bar{z}_1 - \bar{z}_2)}, \qquad \left(0, \frac{1}{2}\right)
$$

$$
\underline{d = S = 1/2}
$$

\n- ENERGY DENSITY
$$
\varepsilon(z, \bar{z}) = i\xi(z)\bar{\xi}(\bar{z})
$$
\n- At $|T - T_c| \ll T_c$ $(|m| \ll \Lambda)$
\n

$$
\mathcal{A} = \mathcal{A}_{CFT} + m \int d^2 z \; \varepsilon(z, \bar{z})
$$

$$
\langle \varepsilon(z_1, \bar{z}_1) \varepsilon(z_2, \bar{z}_2) \rangle \sim \frac{1}{|z_1 - z_2|^2} \qquad \left(\frac{1}{2}, \frac{1}{2}\right)
$$

$$
\underline{d = 1, \quad S = 0} \quad \text{(conformal scalar)}
$$

• ORDER/DISORDER OPERATORS $\sigma(z, \bar{z}), \mu(z, \bar{z})$

 σ and μ are mutually nonlocal and each of these two fields is nonlocal in $\xi.$ On the lattice

$$
\sigma_n^z = \eta_n \prod_{j=1}^{n-1} (\mathrm{i} \zeta_j \eta_j), \quad \mu_{n+1/2}^z = \prod_{j=1}^n (\mathrm{i} \zeta_j \eta_j)
$$

$$
\zeta_n = \sigma_n \mu_{n-1/2} = \mu_{n-1/2} \sigma_n
$$

$$
\eta_n = \mathrm{i} \sigma_n \mu_{n+1/2} = -\mathrm{i} \mu_{n+1/2} \sigma_n
$$

 \Downarrow

FERMION = [ORDER PARAMETER]

\n
$$
\times
$$
 [DISORDER PARAMETER]

CFT proves (will be also shown below):

$$
\sigma(z, \bar{z}), \ \mu(z, \bar{z}) : \qquad \left(\frac{1}{16}, \frac{1}{16}\right) \qquad d = 1/8, \quad S = 0.
$$

$$
\langle \sigma(z_1,\bar{z}_1)\sigma(z_2,\bar{z}_2)\rangle = \langle \mu(z_1,\bar{z}_1)\mu(z_2,\bar{z}_2)\rangle \sim \frac{1}{|z_1-z_2|^{1/4}}
$$

2 Abelian bosonization of two Ising models

• Step 1: Start with a free massless Dirac fermion (no internal symmetry group):

$$
\mathcal{L}_D(x) = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi,
$$

\n
$$
\mathcal{H}_D(x) = -iv \left[R^{\dagger}(x)\partial_{x}R(x) - L^{\dagger}(x)\partial_{x}L(x) \right], \quad \psi(x) = \left(\begin{array}{c} R(x) \\ L(x) \end{array} \right)
$$

Global U(1) symmetry \rightarrow conserved current:

$$
j^{\mu} = \bar{\psi}\gamma^{\mu}\psi, \quad \partial_{\mu}j^{\mu} = 0.
$$

Criticality with central charge $C_D = 1$.

Critical Ising model: $C_{\text{Ising}} = 1/2$, discrete (Z_2) symmetry \rightarrow no Noether current (real fermions do not couple to electromagnetic field!).

For two identical Ising copies:

(i)
$$
C = 1/2 + 1/2 = 1
$$
,

(ii) $U(1)$ symmetry is realized as $O(2)$ rotations of the Majorana doublet.

=> Represent the Dirac fermion as two Majorana fermions.

$$
\psi(x) = \Re e \ \psi(x) + i \Im m \ \psi(x) = \frac{\xi^1(x) + i\xi^2(x)}{\sqrt{2}}
$$

$$
\mathcal{H}_D = \mathcal{H}_M^1 + \mathcal{H}_M^2 = - (iv/2) \left(\bar{\xi}_R \partial_x \bar{\xi}_R - \bar{\xi}_L \partial_x \bar{\xi}_L \right), \quad \bar{\xi} = (\xi^1, \xi^2)
$$

$$
\psi(x) \to e^{i\alpha} \psi(x) \implies \xi^1(x) \to \xi^1(x) \cos \alpha - \xi^2(x) \sin \alpha
$$

$$
\xi^2(x) \to \xi^1(x) \sin \alpha + \xi^2(x) \cos \alpha
$$

• Step 2: Abelian bosonization of the Dirac field $=$ bosonization of the two Majorana fields.

$$
\left[\xi^1(x) + \mathrm{i}\xi^2(x)\right]_{R,L} = \frac{1}{\sqrt{\pi\alpha}}\exp\left[\pm\mathrm{i}\Phi_{R,L}(x)\right]
$$

(i) $\alpha = \text{short-distance cutoff of the bosonic theory.}$

(ii) $[\Phi_R, \Phi_L] = i/4$ - to ensure anticommutation between the right and left components of the Fermi field.

$$
j^{\mu} = (j^{0}, j^{1})
$$

$$
j^{0} = J_{R} + J_{L}, \qquad j^{1} = J_{R} - J_{L}
$$

Bosonization of chiral $U(1)$ currents:

$$
J_R = :R^{\dagger}R: = \mathrm{i}\xi_R^1\xi_R^2 = \frac{1}{\sqrt{\pi}}\partial_x\Phi_R
$$

$$
J_L = :L^{\dagger}L: = \mathrm{i}\xi_L^1\xi_L^2 = \frac{1}{\sqrt{\pi}}\partial_x\Phi_L
$$

$$
\Phi = \Phi_R + \Phi_L, \qquad \Theta = -\Phi_R + \Phi_L
$$

(original field) (dual field)

$$
j^0 = \frac{1}{\sqrt{\pi}} \partial_x \Phi, \qquad j^1 = -\frac{1}{\sqrt{\pi}} \partial_x \Theta
$$

$$
\partial_x \Phi = i \sqrt{\pi} \left(\xi_R^1 \xi_R^2 + \xi_L^1 \xi_L^2 \right), \quad \partial_x \Theta = i \sqrt{\pi} \left(-\xi_R^1 \xi_R^2 + \xi_L^1 \xi_L^2 \right)
$$

 \bullet Step 3: Bosonization of fermionic mass bilinears.

$$
R^{\dagger}L = -\frac{1}{2\pi\alpha}e^{-i\sqrt{4\pi}\Phi}, \quad R^{\dagger}L^{\dagger} = \frac{1}{2\pi\alpha}e^{i\sqrt{4\pi}\Theta}
$$

$$
\begin{aligned}\n\text{i}\pi\alpha \left(\xi_R^1 \xi_L^1 + \xi_R^2 \xi_L^2\right) &= \cos\sqrt{4\pi}\Phi, \\
\text{i}\pi\alpha \left(\xi_R^1 \xi_L^2 + \xi_L^1 \xi_R^2\right) &= -\sin\sqrt{4\pi}\Phi, \\
\text{i}\pi\alpha \left(\xi_R^1 \xi_L^1 - \xi_R^2 \xi_L^2\right) &= -\cos\sqrt{4\pi}\Theta, \\
\text{i}\pi\alpha \left(\xi_R^1 \xi_L^2 - \xi_L^1 \xi_R^2\right) &= \sin\sqrt{4\pi}\Theta\n\end{aligned}
$$

TWO COPIES OF NONCRITICAL ISING MODELS

- FREE MASSIVE DIRAC FERMION \equiv
- SINE-GORDON MODEL WITH $\beta^2 = 4\pi$ (DECOUPLING POINT) \Rightarrow

$$
\mathcal{H}_{M}[\vec{\xi}] = -(\mathrm{i}v/2) \left(\vec{\xi}_{R} \partial_{R} \vec{\xi}_{R} - \vec{\xi}_{L} \partial_{R} \vec{\xi}_{L} \right) - \mathrm{i}m \vec{\xi}_{R} \vec{\xi}_{L}
$$

$$
\mathcal{H}_{SG} = \frac{v}{2} \left[(\partial_{x} \Theta)^{2} + (\partial_{x} \Phi)^{2} \right] - \frac{m}{\pi \alpha} \cos \sqrt{4 \pi} \Phi
$$

$$
\partial_x \Theta(x) = \Pi(x), \quad [\Phi(x), \Pi(x')] = \mathrm{i}\delta(x - x').
$$

• An example demonstrating the importance of the Ising model: bosonic Hamiltonian:

$$
\mathcal{H}_B = \frac{v}{2} \left[(\partial_x \Theta)^2 + (\partial_x \Phi)^2 \right] - \frac{m_1}{\pi \alpha} \cos \sqrt{4\pi} \Phi - \frac{m_2}{\pi \alpha} \cos \sqrt{4\pi} \Theta
$$

Both vertex perturbation to the Gaussian model have scaling dimension 1 and, hence, are strongly relevant \rightarrow massive regime. Is it always true? $m_1 = \pm m_2$ - self-duality points. Criticality? Mapping onto two Majorana fields immediately solves the problem:

$$
\mathcal{H}_B \rightarrow \sum_{j=1,2} \left[-\frac{\mathrm{i} v}{2} \left(\xi_R^j \partial_x \xi_R^j - \xi_L^j \partial_x \xi_L^j \right) - \mathrm{i} M_j \xi_R^j \xi_L^j \right] \nM_1 = m_1 - m_2, \quad M_2 = m_1 + m_2
$$

The spectrum consists of two *decoupled (!)* Majorana fermions with *different* masses. Ising criticality: $M_1 = 0$ or $M_2 = 0$.

Comment: equivalent representation - CDW and BCS-like pairings

$$
\mathcal{H}_B \to -\mathrm{i}v\left(R^\dagger\partial_x R - L^\dagger\partial_x L\right) - \mathrm{i}m_1(R^\dagger L - h.c.) + \mathrm{i}m_2(R^\dagger L^\dagger - h.c.)
$$

Chiral $U(1)_R \times U(1)_L$ symmetry fully broken: neither the particle number not the current conserved. Only $Z_2 \times Z_2$ left:

$$
R \to -R
$$
, $L \to -L$
 $R \to R^{\dagger}$, $L \to L^{\dagger}$ (particle – hole symmetry)

Hence Majorana fermions.

• Step 4: Bosonization of products of two Ising operators.

Consider two degenerate Ising models. At criticality 4 products

$$
\sigma_1\sigma_2, \ \mu_1\mu_2, \ \sigma_1\mu_2, \ \mu_1\sigma_2
$$

have the same scaling dimension $d = 1/8 + 1/8 = 1/4$. On the other hand, in the zero mass limit of the $\beta^2 = 4\pi$ sine-Gordon model, there are 4 vertex operators with the same dimension:

$$
\cos\sqrt{\pi}\Phi
$$
, $\sin\sqrt{\pi}\Phi$, $\cos\sqrt{\pi}\Theta$, $\sin\sqrt{\pi}\Theta$.

There must be some correspondence between the two groups of 4 operators which should also hold at small deviations from criticality.

Heuristic derivation

 $\beta^2 = 4\pi$ sine-Gordon model: At $m > 0$ (disordered Ising phase) the cosine potential has a degenerate set of minima at $(\Phi)_n = \sqrt{\pi}n$ ($n \in Z$) implying that

$$
\langle \cos \sqrt{\pi} \Phi \rangle \neq 0, \quad \langle \sin \sqrt{\pi} \Phi \rangle = 0,
$$

and at the same time

$$
\langle \sigma_1 \rangle = \langle \sigma_2 \rangle = 0, \quad \langle \mu_1 \rangle = \langle \mu_2 \rangle \neq 0.
$$

At $m < 0$ (ordered Ising phase) $(\Phi)_n = \sqrt{\pi}(n + 1/2)$ implying that

$$
\langle \cos \sqrt{\pi} \Phi \rangle = 0, \quad \langle \sin \sqrt{\pi} \Phi \rangle \neq 0,
$$

with

$$
\langle \sigma_1 \rangle = \langle \sigma_2 \rangle \neq 0 \quad \langle \mu_1 \rangle = \langle \mu_2 \rangle = 0.
$$

Conclusion:

$$
\sigma_1 \sigma_2 \sim \sin \sqrt{\pi} \Phi, \quad \mu_1 \mu_2 \sim \cos \sqrt{\pi} \Phi
$$

Make a duality transformation in the sine-Gordon model:

$$
\Phi \to \Theta : \quad \mathcal{H}_{SG} \to \frac{v}{2} \left[(\partial_x \Theta)^2 + (\partial_x \Phi)^2 \right] - \frac{m}{\pi \alpha} \cos \sqrt{4 \pi} \Theta
$$

This corresponds to the duality transformation of the first Ising copy only:

$$
\xi_R^1 \to -\xi_R^1, \quad \xi_L^1 \to \xi_L^j, \quad \xi_{R,L}^2 \to \xi_{R,L}^2
$$

implying that $\sigma_1 \leftrightarrow \mu_1.$ So

$$
\int \mu_1 \sigma_2 \sim \sin \sqrt{\pi} \Theta, \quad \sigma_1 \mu_2 \sim \cos \sqrt{\pi} \Theta
$$

 $\bar{\mathcal{L}}$

• CRITICAL ISING CORRELATORS FROM BOSONIZATION *(Zuber & Itzykson, 1977)*

$$
\Gamma(\mathbf{r}) = \langle \sigma(\mathbf{r})\sigma(\mathbf{0}) \rangle_c
$$

$$
K_{12}(\mathbf{r}) = \langle \sigma_1(\mathbf{r})\sigma_2(\mathbf{r})\sigma_1(\mathbf{0})\sigma_2(\mathbf{0}) \rangle_c = \Gamma_1(\mathbf{r})\Gamma_2(\mathbf{r}) = \Gamma^2(\mathbf{r})
$$

According to bosonization rules

$$
\sigma_1(\mathbf{r})\sigma_2(\mathbf{r}) \sim \sin\sqrt{\pi}\Phi(\mathbf{r})
$$

^ is a *Gaussian* field:

$$
\hat{H} = \frac{v}{2} \int \mathrm{d}x \, \cdot \left[\Pi^2(x) + (\partial_x \Phi(x))^2 \right] \quad \text{or} \quad \mathcal{A} = \frac{1}{2} \int \mathrm{d}^2 \mathbf{r} \left(\vec{\nabla} \Phi(\mathbf{r}) \right)^2
$$

2-point correlation function:

$$
\langle \langle \Phi(\mathbf{r}) \Phi(\mathbf{0}) \rangle \rangle \equiv \langle \Phi(\mathbf{r}) \Phi(\mathbf{0}) \rangle - \langle \Phi \rangle^2 = -\frac{1}{2\pi} \ln \frac{|\mathbf{r}|}{\alpha}, \qquad (|\mathbf{r}| \gg \alpha)
$$

Therefore, using the Baker-Hausdorff formula (Wick theorem for the Gaussian model)

$$
\langle e^F \rangle = e^{\frac{1}{2} \langle F \rangle^2},
$$

we obtain

$$
K_{12}(\mathbf{r}) = \langle \sin \sqrt{\pi} \Phi(\mathbf{r}) \sin \sqrt{\pi} \Phi(0) \rangle
$$

\n
$$
= \frac{1}{2} \left[\langle \cos \sqrt{\pi} [\Phi(\mathbf{r}) - \Phi(0)] \rangle - \langle \cos \sqrt{\pi} [\Phi(\mathbf{r}) + \Phi(0)] \rangle \right]
$$

\n
$$
= \frac{1}{2} \Re e \langle e^{i\sqrt{\pi} [\Phi(\mathbf{r}) - \Phi(0)]} \rangle = \frac{1}{2} \exp \left[-\frac{1}{2} \ln \frac{|\mathbf{r}|}{\alpha} \right]
$$

\n
$$
= \frac{1}{2} \left(\frac{\alpha}{|\mathbf{r}|} \right)^{1/2}
$$
(3)

Consequently, for a single critical Ising model

$$
\langle \sigma(\mathbf{r})\sigma(\mathbf{0})\rangle_c \sim \frac{1}{|\mathbf{r}|^{1/4}}, \Rightarrow d_{\sigma} = 1/8
$$

Similarly, $d_{\mu} = 1/8$

3 Applications

3.1 Background: Heisenberg spin-1/2 chain in the continuum limit

Isotropic $[SU(2)$ -symmetric $S=1/2$ antiferromagnetic Heisenberg chain:

$$
H = J \sum_{n} \mathbf{S}_{n} \cdot \mathbf{S}_{n+1}, \quad J > 0, \ S = 1/2
$$

Exactly solved by H. Bethe (1931). Known facts:

- no long-range order; $SU(2)_1$ criticality;
- elementary excitations - *spinons-* carry spin-1/2 and, in the long-wavelength $\text{limit, have a linear spectrum: } \omega_s(k) = v_s|k|;$
- spin-spin correlation functions follow power laws with *universal* critical exponents.

Anisotropic (XXZ) $S=1/2$ chain:

$$
H_{\rm XXZ} = J \sum_{n} \left[\left(S_n^x S_{n+1}^x + S_n^y S_{n+1}^y \right) + \Delta S_n^z S_{n+1}^z \right]
$$

 \bullet $-1 < \Delta \leq 1 \rightarrow$ no LRO, U(1) criticality, gapless spectrum, Δ -dependent critical exponents (Tomonaga-Luttinger liquid).

DECONFINED SPINONS IN A HEISENBERG CHAIN:

 $\ddot{}$

 $\bar{\gamma}$

 $\hat{\mathcal{A}}$

 $\ddot{}$

CONTINUUM LIMIT - TWO ALTERNATIVE ROUTES

• *Luther and Peshel:*

XXZ model *ty* (Jordan — Wigner transformation) Spinless interacting fermions on a ID lattice *ty* (continuum limit) Spinless Tomonaga — Luttinger liquid + Umklapp *fy* (Abelian bosonization) Sine — Gordon model

$$
\mathcal{H} = \frac{v}{2} \left[K (\partial_x \Theta)^2 + \frac{1}{K} (\partial_x \Phi)^2 \right] - \frac{m_0}{\pi \alpha} \cos \sqrt{8\pi K} \Phi
$$

$$
1/K = 1 - (1/\pi) \arccos \Delta, \qquad m_0 \sim J\Delta
$$

 $|\Delta|$ < 1: cosine perturbation irrelevant \Rightarrow Gaussian model.

 $\Delta = 1$, $K = 1$ (isotropic case): the model occurs at the SU(2)-symmetric weak-coupling separatrix of the Kosterlitz-Thouless phase diagram where the perturbation is *marginally* irrelevant.

Affleck; Haldane - Symmetry preserving fermionization:

$$
\mathbf{S}_{\boldsymbol{n}}=\frac{1}{2}\psi_{\boldsymbol{n}\alpha}^{\dagger}\vec{\sigma}_{\alpha\beta}\psi_{\boldsymbol{n}\beta}
$$

$$
\psi \to \hat{U}\psi, \qquad \hat{U} \in SU(2)
$$

$$
\mathbf{S} \to \frac{1}{2} \psi^{\dagger} \hat{U}^{\dagger} \vec{\sigma} \hat{U} \psi = \mathcal{R} \mathbf{S}, \qquad \mathcal{R} \in SO(3)
$$

$$
\psi \to e^{\mathbf{i}\gamma}\psi, \quad e^{\mathbf{i}\gamma} \in U(1)
$$

$$
\mathbf{S} \to \mathbf{S}: \quad \text{charge } U(1) \text{ redundant}
$$

To kill unwanted charge excitations - *constraint:* exactly one particle per site.

 \Rightarrow large-U Hubbard model at 1/2 filling: mapping onto AF Heisenberg chain with $J \propto t^2/U$.

But - no *Mott transition in ID Hubbard model:* the charge gap is generated at any $U > 0$.

$$
U \ll t, \qquad m_c \propto \sqrt{Ut} \exp(-2\pi t/U)
$$

 $|E| \ll m_c$: only spin dynamics remains \Rightarrow universal properties of the S=1/2 Heisenberg chain.

$$
H = -t \sum_{i\sigma} (\psi_{i\sigma}^{\dagger} \psi_{i+1,\sigma} + h.c.) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}, \quad 0 < U \ll t, \quad \sum_{\sigma} n_{is} = 1
$$
\n
$$
\Downarrow \qquad \text{(non-Abelian bosonization)}
$$
\n
$$
\mathcal{H}(x) = \mathcal{H}_c(x) + \mathcal{H}_s(x) \quad - \quad \text{Charge - spin separation}
$$
\n
$$
\text{Umklapp locks the charge and makes}
$$
\n
$$
\mathcal{H}_c \text{ massive (Mott insulator)}.
$$
\n
$$
\Downarrow \qquad \text{At low energies} |\omega| \ll m_{\text{charge}}
$$

CRITICAL $\mathrm{SU}(2)_1$ WESS-ZUMINO-NOVIKOV-WITTEN (WZNW) MODEL with a marginally irrelevant perturbation (backscattering):

$$
\mathcal{H}_s = \frac{2\pi v_s}{3}(:\mathbf{J}_R \cdot \mathbf{J}_R : + : \mathbf{J}_L \cdot \mathbf{J}_L :) - \gamma \mathbf{J}_R \cdot \mathbf{J}_L \quad (\gamma > 0)
$$

$$
C_{SU(2)_1}^{WZNW} = 1
$$

Chiral vector currents $J_{R,L}$ - generators of $SU(2)_{R,L}$

$$
J_{R,L}^a = \frac{1}{2} : \psi_{R,L;\alpha}^{\dagger} \sigma_{\alpha\beta}^a \psi_{R,L;\beta} : \quad (a = x, y, z)
$$

satisfy the Kac-Moody algebra:

$$
[J_R^a(x), J_R^b(x')] = i\epsilon^{abc} J_R^c(x)\delta(x - x') + \frac{k}{4\pi i} \delta^{ab}\delta'(x - x')]
$$

$$
[J_L^a(x), J_L^b(x')] = i\epsilon^{abc} J_L^c(x)\delta(x - x') - \frac{k}{4\pi i} \delta^{ab}\delta'(x - x')]
$$

$$
[J_R^a(x), J_L^b(x')] = 0
$$

with the level $k = 1$.

Smooth fields $(q \sim 0)$: $R^{\dagger}_{\alpha} \vec{\sigma}_{\alpha\beta} R_{\beta}$, $L^{\dagger}_{\alpha} \vec{\sigma}_{\alpha\beta} L_{\beta}$

LOCAL SPIN DENSITY AND SPIN CURRENT:

$$
\mathbf{J}=\mathbf{J}_R+\mathbf{J}_L,\quad \mathbf{j}=v_s\left(\mathbf{J}_R-\mathbf{J}_L\right)
$$

 $Staggered \,\, \text{fields} \,\, (q\sim\pi) \colon \qquad \langle R^\dagger_\alpha\vec{\sigma}_{\alpha\beta}L_\beta\rangle_{\rm charge}, \quad \langle L^\dagger_\alpha\vec{\sigma}_{\alpha\beta}R_\beta\rangle_{\rm charge}$ WZNW 2 \times 2 matrix field:

$$
\hat{g}(x) = \epsilon(x) + i \sum_{a=1,2,3} n^a(x)\sigma^a \in SU(2)
$$

$$
\epsilon^2 + n^2 = \text{const}
$$

$$
(h, \bar{h}) = (1/4, 1/4), \qquad d = 1/2, \ S = 0
$$

DlMERIZATION OPERATOR AND STAGGERED MAGNETIZATION:

$$
\epsilon(x) \sim Tr \hat{g}(x) \Leftarrow (-1)^n \mathbf{S}_n \cdot \mathbf{S}_{n+1},
$$

$$
n^a(x) \sim Tr \left[\sigma^a \hat{g}(x)\right] \Leftarrow (-1)^n \mathbf{S}_n
$$

Local spin density of the $S=1/2$ Heisenberg chain:

 $S(x) = J(x) + (-1)^n n(x)$

ABELIAN BOSONIZATION OF $SU(2)_1$ WZNW MODEL

• Bosonize the Hubbard model using scalar fields $\varphi_{R,L;\alpha}$:

$$
[R,L]_{\alpha} \simeq (2\pi\alpha)^{-1/2} \exp\left(\pm i \sqrt{4\pi} \varphi_{R,L;\alpha}\right)
$$

Charge and spin fields: \bullet

$$
\Phi_c = \frac{\Phi_{\uparrow} + \Phi_{\downarrow}}{\sqrt{2}}, \qquad \Theta_c = \frac{\Theta_{\uparrow} + \Theta_{\downarrow}}{\sqrt{2}}
$$

$$
\Phi_s = \frac{\Phi_{\uparrow} - \Phi_{\downarrow}}{\sqrt{2}}, \qquad \Theta_s = \frac{\Theta_{\uparrow} - \Theta_{\downarrow}}{\sqrt{2}}
$$

 $\bullet\,$ Hamiltonian density: charge-spin separation:

$$
\mathcal{H} = \mathcal{H}_c + \mathcal{H}_s
$$
\n
$$
\mathcal{H}_c = \frac{v_c}{2} \left[(\partial_x \Theta_c)^2 + (\partial_x \Phi_c)^2 \right]
$$
\n
$$
+ \text{ const } g \left[\partial_x \Phi_{cR} \partial_x \Phi_{cL} - \frac{1}{(2\pi\alpha)^2} \cos \sqrt{8\pi} \Phi_c \right]
$$
\n(Umklapp: marginally relevant perturbation)\n
$$
\mathcal{H}_s = \frac{v_s}{2} \left[(\partial_x \Theta_s)^2 + (\partial_x \Phi_s)^2 \right]
$$
\n
$$
+ \text{ const } g \left[\partial_x \Phi_{sR} \partial_x \Phi_{sL} - \frac{1}{(2\pi\alpha)^2} \cos \sqrt{8\pi} \Phi_s \right]
$$
\n(Backscattering: marginally irrelevant perturbation)

 $\bullet\,$ Spin currents are expressed in terms of the spin fields only:

$$
J_R^z = \frac{1}{\sqrt{2\pi}} \partial_x \Phi_{s,R}, \qquad J_L^z = \frac{1}{\sqrt{2\pi}} \partial_x \Phi_{s,L}
$$

$$
J_R^+ = \frac{1}{2\pi\alpha} \exp(-i\sqrt{8\pi}\Phi_{s,R}), \qquad J_L^+ = \frac{1}{2\pi\alpha} \exp(i\sqrt{8\pi}\Phi_{s,L})
$$

 \bullet Staggered fields ${\bf n}$ and ϵ – charge needs to be locked:

$$
n^{z} = -\frac{\lambda}{\pi \alpha} : \sin \sqrt{2\pi} \Phi_s : , \quad n^{\pm} = \frac{\lambda}{\pi \alpha} : \exp \left(\pm i \sqrt{2\pi} \Theta_s \right) :
$$

\n
$$
\epsilon = \frac{\lambda}{\pi \alpha} : \cos \sqrt{2\pi} \Phi_s : \lambda = \langle \cos \sqrt{2\pi} \Phi_c \rangle \neq 0 \qquad \text{(nonuniversal constant)}
$$

3.2 Two-chain S=l/2 Heisenberg ladder

$$
H = J \sum_{a=1,2} \sum_{n} \mathbf{S}_a(n) \cdot \mathbf{S}_a(n+1) + J' \sum_{n} \mathbf{S}_1(n) \cdot \mathbf{S}_2(n), \quad (J > 0)
$$

 $|J'| \ll J \Rightarrow$ continuum limit: $H \to \int dx \mathcal{H}(x)$

$$
\mathcal{H} = \frac{v_s}{2} \sum_{a=1,2} \left[(\partial_x \Theta_a)^2 + (\partial_x \Phi_a)^2 \right] + \mathcal{H}_{12}
$$

$$
\mathcal{H}_{12} = J' a_0 \left[\underbrace{\mathbf{J}_1 \cdot \mathbf{J}_2}_{\text{marginal}} + \underbrace{\mathbf{n}_1 \cdot \mathbf{n}_2}_{\text{relevant}} \right] \right]
$$

33

$$
\Phi_{\pm} = \frac{\Phi_1 \pm \Phi_2}{\sqrt{2}}, \quad \Theta_{\pm} = \frac{\Theta_1 \pm \Theta_2}{\sqrt{2}}
$$

$$
\mathcal{H} = \mathcal{H}_+ + \mathcal{H}_-
$$

$$
\mathcal{H}_+ = \frac{v_s}{2} \left[(\partial_x \Theta_+) ^2 + (\partial_x \Phi_+) ^2 \right] - \frac{m}{\pi \alpha} \cos \sqrt{4\pi} \Phi_+
$$

$$
\mathcal{H}_- = \frac{v_s}{2} \left[(\partial_x \Theta_-)^2 + (\partial_x \Phi_-)^2 \right] + \frac{m}{\pi \alpha} \cos \sqrt{4\pi} \Phi_- + \frac{2m}{\pi \alpha} \cos \sqrt{4\pi} \Theta_-
$$

$$
(m = J' \lambda^2 / 2\pi) \qquad \text{H.J. Schulz (1986)}
$$

$$
\Phi_+ \Rightarrow (\xi^1, \xi^2), \quad \Phi_- \Rightarrow (\xi^3, \xi^4)
$$

$$
\mathcal{H} = \mathcal{H}_t[\vec{\xi}] + \mathcal{H}_s[\xi^4] + \mathcal{H}_{\text{marg}}
$$

\n
$$
\mathcal{H}_t[\vec{\xi}] = \sum_{a=1,2,3} \left[-\frac{iv_s}{2} \left(\xi_R^a \partial_x \xi_R^a - \xi_L^a \partial_x \xi_L^a \right) - im_t \xi_R^a \xi_L^a \right]
$$

\n
$$
\mathcal{H}_s[\xi^4] = -\frac{iv_s}{2} \left(\xi_R^4 \partial_x \xi_R^4 - \xi_L^4 \partial_x \xi_L^4 \right) - im_s \xi_R^4 \xi_L^4
$$

\n
$$
m_t = m, \quad m_s = -3m \quad SO(3) \times Z_2
$$

D. Shelton, A.M. Tsvelik & A.A. Nersesyan (1996)

MARGINAL 4-FERMION INTERACTION

$$
\mathcal{H}_{\rm marg} = \frac{1}{2} \sum_{i \neq j} g_{ij} \left(\xi_R^i \xi_L^i \right) \left(\xi_R^j \xi_L^j \right),
$$

$$
g_{ii} = 0
$$
, $g_{ij} = g_{ji}$,
\n $g_{12} = g_{23} = g_{31} = \frac{1}{2}J'a_0$, $g_{14} = g_{24} = g_{34} = -\frac{1}{2}J'a_0$.

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\bar{\mathcal{A}}$

 \Rightarrow

$$
\tilde{m}_i = m_i + \sum_{j(\neq i)} \frac{g_{ij}}{2\pi v_s} m_j \ln \frac{\Lambda}{|m_j|}
$$

 $\ddot{}$

STAGGERED FIELDS OF THE SPIN LADDER

$$
\mathbf{n}^+ = \mathbf{n}_1 \pm \mathbf{n}_2, \quad \epsilon^{\pm} = \epsilon_1 \pm \epsilon_2
$$

Abelian bosonization:

$$
n_x^+ \sim \cos\sqrt{\pi}\Theta_+ \cos\sqrt{\pi}\Theta_-, \qquad n_x^- \sim \sin\sqrt{\pi}\Theta_+ \sin\sqrt{\pi}\Theta_-
$$

\n
$$
n_y^+ \sim \sin\sqrt{\pi}\Theta_+ \cos\sqrt{\pi}\Theta_-, \qquad n_y^- \sim \cos\sqrt{\pi}\Theta_+ \sin\sqrt{\pi}\Theta_-
$$

\n
$$
n_z^+ \sim \sin\sqrt{\pi}\Phi_+ \cos\sqrt{\pi}\Phi_-, \qquad n_z^- \sim \cos\sqrt{\pi}\Theta_+ \sin\sqrt{\pi}\Phi_-
$$

\n
$$
\epsilon^+ \sim \cos\sqrt{\pi}\Phi_+ \cos\sqrt{\pi}\Phi_-, \qquad \epsilon^- \sim \sin\sqrt{\pi}\Phi_+ \sin\sqrt{\pi}\Phi_-
$$

Local representation in terms of the Ising order/disorder operators:

$$
\mathbf{n}^+ \sim (\sigma_1 \mu_2 \sigma_3 \mu_4, \quad \mu_1 \sigma_2 \sigma_3 \mu_4, \quad \sigma_1 \sigma_2 \mu_3 \mu_4)
$$

\n
$$
\mathbf{n}^- \sim (\mu_1 \sigma_2 \mu_3 \sigma_4, \quad \sigma_1 \mu_2 \mu_3 \sigma_4, \quad \mu_1 \mu_2 \sigma_3 \sigma_4)
$$

\n
$$
\epsilon^+ \sim \mu_1 \mu_2 \mu_3 \mu_4, \qquad \epsilon^- \sim \sigma_1 \sigma_2 \sigma_2 \sigma_3
$$

CRUCIAL:

For a standard ladder $m_t m_s < 0$ $J_{\perp} > 0:$ $m_t > 0$, Ising triplet $(1, 2, 3)$ disordered \rightarrow T $>$ T_c $m_s < 0$, Ising singlet (4) ordered \rightarrow T < T J_{\perp} < 0 : vice versa \rightarrow T < T_c

CORRELATION FUNCTIONS

Correlation functions in a noncritical Ising model $(T > T_c)$:

$$
\mathbf{r} = (\tau, x), \quad v \equiv 1 \quad \text{Wu et al (1976)}
$$
\n
$$
\langle \sigma(\mathbf{r})\sigma(\mathbf{0}) \rangle \sim K_0(|m|r) \propto \frac{e^{-|m|r}}{\sqrt{|m|r}}, \quad (|m|r \gg 1)
$$
\n
$$
\langle \mu(\mathbf{r})\mu(\mathbf{0}) \rangle \sim 1 + O(e^{-2|m|r})
$$

 $T < T_c$: $\langle \sigma(\mathbf{r})\sigma(\mathbf{0}) \rangle$ and $\langle \mu(\mathbf{r})\mu(\mathbf{0}) \rangle$ interchanged.

$$
\langle \mathbf{n}^+(\mathbf{r}) \cdot \mathbf{n}^+(\mathbf{0}) \rangle \propto \frac{e^{-(2m_t + |m_s|)r}}{m_t \sqrt{|m_s|r^{3/2}}}, \qquad \langle \mathbf{n}^-(\mathbf{r}) \cdot \mathbf{n}^-(\mathbf{0}) \rangle \propto \frac{e^{-m_t r}}{\sqrt{m_t r}}
$$

$$
\langle \epsilon^+(\mathbf{r})\epsilon^+(\mathbf{0}) \rangle \propto \frac{e^{-|m_s|r}}{\sqrt{|m_s|r}}, \qquad \langle \epsilon^-(\mathbf{r})\epsilon^-(\mathbf{0}) \rangle \propto \frac{e^{-3m_t r}}{(m_t r)^{3/2}}
$$

$$
K_0(mr) \Leftrightarrow \frac{1}{\omega^2 + q^2 + m^2}
$$

$$
\chi''(\pi - q, \omega) = \underbrace{Z\delta(\omega^2 - q^2 - m_t^2)}_{\text{massive S = 1 magnon}} + \underbrace{\chi''_{\text{reg}}(\pi - q, \omega)}_{\text{incoherent background}: \omega \geq 3m_t}
$$

Fig. 21.3. The area of (ω, q) plane where the imaginary part of the dynamical magnetic susceptibility is finite.

HALDANE SPIN-LIQUID STATE

- $J' = 0$: Gapless S=1/2 spinons of two decoupled Heisenberg chains \Rightarrow broad continuum seen in $\chi''(\pi - q, \omega)$.
- $J' \neq 0$: Spinons confine to produce massive coherent triplet excitations δ -peak in $\chi''(\pi - q, \omega)$.

effective *spin-1* Heisenberg $\left| \Delta t \right. \text{ energies } |\omega| < 2 \lvert m_t \rvert + \lvert m_s \rvert$ \Rightarrow chain with a small Haldane gap.

39

SPIN-1 HEISENBERG CHAIN WITH BIQUADRATIC EXCHANGE

$$
H_{S=1}(\beta) = J \sum_{n} \left[S_n \cdot S_{n+1} - \beta (S_n \cdot S_{n+1})^2 \right], \quad (J > 0, S = 1)
$$

- $\beta = 0$: standard S=1 Heisenberg chain.
- $\beta = 1/3$: Valence Bond Solid (Affleck, Kennedy, Lieb, Tasaki, 1988)
- $\beta = 1$: Exactly integrable point *(Takhtajan; Babujan, 1982)*

 $H(\beta = 1)$ – continuum limit \Rightarrow <u>level k = 2</u> SU(2) WZNW model:

$$
\mathcal{H}_{SU(2)_2}^{WZNW} = \frac{\pi v}{2} \left(: \mathbf{I}_R \cdot \mathbf{I}_R : + : \mathbf{I}_L \cdot \mathbf{I}_L : \right) \iff H_M^0[\vec{\xi}] = -\frac{\mathrm{i}v}{2} \sum_{a=1,2,3} \left(\xi_R^a \partial_x \xi_R^a - \xi_L^a \partial_x \xi_L^a \right)
$$

\n
$$
C_{SU(2)_2}^{WZNW} = 3/2 = 3 \times 1/2 \qquad \to \qquad \text{triplet of critical Ising models}
$$

\n
$$
I_R^a = -\frac{\mathrm{i}}{2} \epsilon^{abc} \xi_R^b \xi_R^c, \qquad I_L^a = -\frac{\mathrm{i}}{2} \epsilon^{abc} \xi_L^b \xi_L^c \qquad \text{Zamilodchikov & Fatter (1986)}
$$

CFT: the mass term $im \vec{\xi}_R \cdot \vec{\xi}_L$ is the only relevant perturbation to $\mathcal{H}_{SU(2)_2}^{WZNW}$ allowed by all symmetries. 0(3) model of massive Majorana fermions \Rightarrow universal description of the $S=1$ Chain with a small Haldane mass.

> $H_{S=1}(\beta)$ at $1 - \beta \ll 1$ continuum limit \Rightarrow
 $\mathcal{H}_M[\vec{\xi}] = -\frac{iv}{2} (\vec{\xi}_R \cdot \partial_x \vec{\xi}_R - \vec{\xi}_L \cdot \partial_x \vec{\xi}_L) - im \vec{\xi}_R \cdot \vec{\xi}_L$ $N_{S=1} = n^{-} |_{m_{s}| \to \infty} = (\mu_{1} \sigma_{2} \mu_{3}, \ \sigma_{1} \mu_{2} \mu_{3}, \ \mu_{1} \mu_{2} \sigma_{3})$ Tsvelik (1990)