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Plateaux (spin gap) <B> macroscopic quantum effects

Analogy: Fractional quantum Hall effect

Short review: Cabra, Grynberg, A.H., Pujol, cond-mat/0010376



Quantization condition in ID

Plateaux obey the quantization condition

VS(l-{M))eZ. (*
V : Volume of translational unit cell in the groundstate.

Translational invariance of the Hamiltonian can be broken spon-
taneously ! (Many frustrated systems: Period > 2).

S : Local spin, e.g. S = 1/2.

(M): Magnetization (normalized to ±1).

... and a generalized Lieb-Schultz-Mattis theorem
Oshikawa, Yamanaka, Affleck, Phys. Rev. Lett. 78 (1997) 1984

Either the condition (*) is satisfied or the spectrum is gapless or
the groundstate is degenerate.

Sketch of the proof:
Let

) be the groundstate (wolg. unique),

-ik E x £ Si
Uk = e x=l ^ , i\Ux\ =

Step 1: Show | ijjk) -L | ^o) f°r suitable k unless (*) is satisfied

Step 2: Check that

Problems:

• Existence of a gap if (•*) is satisfied not shown.

• Excitation \iph) is non-magnetic
=> Complementary arguments needed to link magnetic and
non-magnetic excitations.



Spin ladders

(N = 3, open boundary conditions (OBC))
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realized e.g. in

Spin 5

h\

(or periodic boundary conditions (PBC), N = 3)

Hamilton operator:

n(N) =
N L

/ J

i=l x=l
L

/ J / J
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h

hX

Magnetization:
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Technical remark:
M conserved =̂>
Behaviour at h -=k 0 behaviour at /i = 0 and fixed (M)



Magnetization curves of S = 1/2, N — 2-leg ladder materials

a) J'/J ^ 5:
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Cl4, High-field magnetization curves.
Chaboussant et al, Phys. Rev. B55 (1997) 3046;

Eur. Phys. J. B6 (1998) 167

Recent inelastic neutron scattering measurements
=£• Cu2(l,4-diazacycloheptane)2Cl4 not a spin ladder

Stone et al, cond-mat/0103023

b) J'/J re 3.5:
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Structure of (C5Hi2N)2CuBr4, High-field magnetization curves.
Watson et al, Phys. Rev. Lett. 86 (2001) 5168



Strong-coupling limit

Consider the limit J'^> J -# •
J'

# •

In zeroth order (J = 0), rungs are decoupled:

N

N spin-1/2 spins =̂> only possible values of magnetization:

=>• plateaux with magnetization m/N !

(These are precisely the solutions of (*) with V = N, S = 1/2).

Example: N = 3

j ' > o, J = 0:
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Both OBC and PBC: Plateau with (M) = 1/3.



J\J > 0: Transitions soften, but plateaux survive:

Magnetization curve of the OBC N = 3-leg ladder
(J'/J = 3)

A

L = 8, L = 6, IJ = 4, extrapolation
Diamonds: 4th-order series results for boundaries of plateau

Remarks:

• First order in J: transitions between plateaux can be described
by effective Hamiltonians.
Quite often, one finds an XXZ chain.
Totsuka, Chaboussant et a/., Mila, Wessel & Haas, ...
Aeff. > 1 => Translational invariance spontaneously broken.

• The strong-coupling argument is essentially independent of the
model! One only needs a limit where the system decouples into
clusters of V spins.



Abelian bosonization

x=l

following Schulz, Affleck et al, Totsuka

(Convenient way to study the weak-coupling regime (J' <^ J) in
the thermodynamic limit)

Jf = 0: Spin-1/2 XXZ-Heisenberg chain in a magnetic field

L I 1 f + - ^ L

-tiXXZ ~=~ J / J i ^ ^ x a;4-1 ' r> V x a:4-1 ' ^

can be described by a c = 1 one-boson CFT:

w i t h II = -^dx(f), a n d cf) = (f)i + 4>R, 4> = 4>L — &R-

Woynarovich, Eckle, Truong, J. Phys. A: Math. Gen. 22 (1989) 4027
Bogoliubov, Izergin, Korepin, NucL Phys. B275 (1986) 687

Magnetic field h & XXZ-anisotropy A enter only through radius of
compactification R((M), A) - can be computed exactly from Bethe-
ansatz solution of the XXZ-chain:

h/J
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... for spin-1/2 ladders

Use:

• field theory Hamiltonian for single chain

• bosonized expressions for the spin operators:

&ix ~ ~7^=~ ^ const. : cos(2kl
Fx +

' X/ZTT

+ const. cos(2A:̂ x +

with Fermi momenta kl
F = TT(1 — (Mi))/2.

interaction terms (assume now complete symmetry, i.e. PBC):

• : cos [2x(kl
F + kp) -\

commensurate

• : cos [2x(kl
F - kJ

F) + V&r((/)i - (f)j)j : , : cos
relevant interactions; give a mass to relative degrees of freedom.

1 ^
a single bosonic field ^D = —/= ̂ 2 & remains massless so far.

plateau ^—^ 'I/JD acquires a mass

radiatively, we can generate the following interaction term
AT ( N N \ AT ( N

J f N c o s \ 2 x Yl kl
F + \ / 4 T T E <\>i = / c o s \ 2 x ^ k l

z = l i = l

1. is commensurate only if

(l - (M» € Z2. provides a mass for ^ if it is relevant, i.e. its zero-loop scaling
dimension

dim (cos

should be less than 2.



Magnetic phase diagram for N — 3 (PBC)

Lanczos: L = 8, L = 6, L.

h/J

Schematic:

-first order (?)

non-magnetic
excitations

Gap !
(c.f. Kawano, Takahashi, J. Phys. Soc. Jpn. 66 (1997) 4001)



... and for ]>merized spin-1/2 chains

Cabra, Grynberg, Phys. Rev. B59 (1999) 119

modulated coupling constants
j/ \ _ J Jf if x a multiple of p

J I X J — s

IJ otherwise

S = J — J1 small

=> perturbing operator cos \2pkpx +
1. is commensurate if

- ( 1 - (M» G Z
2. scaling dimension

dim (cos ( v47r^J ) =

R > —-= for A > 0 => dim (cos f \f^K(p\ J < 1

relevant =^ plateau always present for J1 ̂  J

Quadrumerized chain (J1 = J/2)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

h/J
L = 24, L = 20, -L = 16, extrapolation
Diamonds: 2nd-order series results for boundaries of plateaux

to



Models with local conservation laws

with Mila, Troyer

V

.

Jx = J =$> Total spin on each rung
N ->

is conserved

=> Diagonalize family of Hamiltonians H({TX})
L -> - L 1 / - o

a;=l x=l A V

with f,2 = TX(TX + 1), T, - JV/2, iV/2 - 1,...

J7 appears only linearly in front of a constant !

Only a few combinations {Tx} appear as groundstates in a magnetic
field - e.g.

7V = 3:

1. Spin-3/2 states on all rungs <$ S = 3/2 chain

2. Alternating spin-1/2 and -3/2 on the rungs <^ S = 3/2-1/2
ferrimagnetic chain

3. Spin-1/2 on each rung <̂> S = 1/2 chain

These chains can be diagonalized by White's DMRG (or Bethe
ansatz)

it



Magnetization curves for N — 2

h/J

Groundstate phase diagram for N = 2
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J' > 2 J: First-order strong-coupling picture is exact
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Magnetization curves for N = 3

6

h/J

Groundstate phase diagram for N = 3

h/J

0

polarized <M>=1

S=3/2 ]s=
gapless

S=l/2
gapless
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J7J

1.9

<M>=l/3

2.1

Bold lines: First order transitions
Thin lines: Second order transitions

J' > 2 J: First-order strong-coupling picture is exact

J'< 1.557J: S = 3/2 chain

Plateaux have a simple picture in this model

/3



A model with (infinitely) many plateaux
Schulenburg, Richter, cond-mat/0107137

r

Fragment of length k

=>• Plateau with magnetization
k

2k+ 2

Magnetization curve (J1/ J — 0.7)
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Is rationality of the magnetization fundamental ?

1. Break translational invariance completely

Hierarchical lattice
=> selfsimilar magnetization curve

V
0.5-

0.0-
j |

/

1 /

discrete bond disorder
=>• disorder-dependent (M) on plateau

1

0 .0 0 . 5 1 .0
h

1.5 0 0.5 1 1.5

Tokihiro, Phys. Rev. B41 (1990) 7334
Cabra et al, Phys. Rev. Lett. 85 (2000) 4791

2. Several magnetic species whose total density is fixed

=>• plateaux can appear in the magnetization curve for irrational
(M) if one species becomes commensurate and acquires a gap

doped p-merized Hubbard chains

with Cabra, De Martino, Pujol, Simon
Hamilton-Operator:

L

x=l
L

+U Yi
x=l

h L

,*Cx,a + 4,aCx+l,a)

X=l



>>>x,(j — c
x,a

cx,a

m = nX}-f — nx^
U > 0 '
jJL

h
t(x)

electron creation and annihilation operators
number operator

I magnetization
onsite repulsion
chemical potential
dimensionless magnetic field
hopping parameter (t(x) = t1 for x a multiple of p,

t(x) = t otherwise)

Doping-dependent magnetization plateaux (at fixed n)

m = 1 — n plateau for p = 2

-n

= jLi- h/2 in band gap

h changes a little => /^ changes but remains in band gap
=> n must be readjusted to keep /i; = fi + h/2 fixed because n
is fixed
=>> magnetic gap = plateau

For U > 0 (small): Perturbative corrections, but picture re-
mains valid



Abelian bosonization for the Hubbard chain

1. Zero field (h = 0)

Hubbard chain (t(x) = t) with general filling (n or /i) can be written
in terms of two bosonic fields

HHubbard = y / d x [{dx(f)c)
2 + (dx(j)c) } + y Idx {{dx(j)s)

2 + (dx<j>8) }

W
w i t h </>c = j (</>t + <t>i) a n d <f>8 = -^ (<f)t -

Parameters vc, vs and ^ can be determined exactly from Bethe-
ansatz for any given U and \i (or n)

Frahm, Korepin, Phys. Rev. B42 (1990) 10553;
Phys. Rev. B43 (1991) 5653

Perturb with 6 = t' - t

=̂> interaction

with

h k f^4 1 cos$(#) = sin ( h pk+x —
\ ^

<£> (#j = cos f k+ + 2pk+x —

and A, Ar ~ (̂  and fc+ = kp^ + ^F,^ = ^^

• pn G Z =4> $7 commensurate =̂> charge gap

• pn G 2Z =^ $ also commensurate =̂> spin (& charge) gap

2, With magnetic field (h + 0)

Hamiltonian (•) remains valid for Hubbard chain (t(x) = £), but
representation of (f>c and 0S more complicated

Penc, Solyom, Phys. Rev. B47 (1993) 6273

((t)c\= 1 /Zss Zss - Zcs\ f(j)^\
\4>s) det Z \ Zsc Zsc — Zcc J \4>iJ

Z: 'dressed charge matrix5 - can be computed from Bethe-ansatz
for given /i, U and fi



Switch on 5 = t' — t

=>• interaction

HI = \Jdx$ + \t fdx&
with

= sin f —- + pk+x - ypii; (Zcc(f)c - Zcs(f)s) J

(k-
x cos f — +pk-x - y/7r((Zcc - 2Zsc)(f)c - (Zcs - 2Zss)(j)s)

= cos(A;+ + 2pk+x — v 4TT(ZCC^C — Zcs(j)s))

where now k- = kp^ — kp,± = ftm

A) - (n + m) G Z and - (n - m) G Z

=^ $ and $7 commensurate =̂> spin and charge gap

B) only - (n + m) = / G Z
z

switch back to <̂ f, |

after treatment of marginal terms, Hamiltonian can be written

as

relevant perturbation for </>| => </>| massive
integrate out ^ => apparently free Hamiltonian for 0; (with
effective velocity ?; and compactification radius R)

constraint: n fixed => (j>± in topological sector -7^(f>i\o = Q
=> susceptibility x — 0 =^

Plateau in magnetization curve with magnetization m

m depends on doping n through m = 2//p — n



Lanczos diagonalization for the dimerized Hubbard chain

Groundstate phase diagram in the n-h plane
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What is the model for NH4CuCL ?

Structure of KCuCl3, TlCuCl3 and
NH4CUCI3 at room temperature:
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Shiramura et.al, J. Phys. Soc. Jpn. 66 (1997) 1999;
J. Phys. Soc. Jpn. 67 (1998) 1548

KCuCla:
Just a spin gap, as expected from the ID model.
But KCUCI3 is actually a 3D network of weakly coupled dimers.

(Cavadini etal, Eur. Phys. J. B7 (1999) 519)

NH4CUCI3:
No spin gap, but (M) = 1/4, 3/4 plateaux
=> Need V = 8(S= 1/2)

• Why V = 8 ? (structural phase transition at about 70K)

• With V = 8 also plateaux with (M) = 0, 1/2 would be per-
mitted. Why are those absent ?



Transition to saturation

Dispersion of magnons usually quadratic close to minimum:
e = h

k

magnons = ^-function bosons
=> mapping to low-density Bose gas

Filling: Uniform & independent of type of quasiparticles

e = h
i

\
\
\

\

k
\

\
k
k

I
t

1
1

f
i

i

k

^ k = Mc-(M)
=$- transitions at plateau-boundaries: DN-PT universality class

Mc - (M) ~ ^\hc - h\

(Dzhaparidze, Nersesyan, JETP Lett. 27 (1978) 334,
Pokrovsky, Talapov, Phys. Rev. Lett. 42 (1979) 65)

Very general in D = 1 !

Exceptions:

• Dispersion not quadratic (=4* special parameters)

• First-order tansition/formation of bound states



Conclusions

magnetization plateaux at rational fractions of satura-
tion magnetization

quantization condition

VS(l - (M» € Z

no upper limit on period of spontaneous breaking of
translational symmetry

also irrational magnetization values possible:
• charge carriers (Hubbard model: n £ Q)
• discrete bond disorder

transition at plateau-boundaries: universal (Bose con-
densation; D = l: DN-PT)

some experimental systems (NH4C11CI3) remain a chal-
lenge for theory


