united nations educational, scientific and cultural organization

international atomic energy agency the **abdus salam** international centre for theoretical physics

SMR.1320 - 21

SUMMER SCHOOL on LOW-DIMENSIONAL QUANTUM SYSTEMS: Theory and Experiment (16 - 27 JULY 2001)

PLUS

PRE-TUTORIAL SESSIONS (11 - 13 JULY 2001)

PLATEAUX IN MAGNETIZATION CURVES OF ONE-DIMENSIONAL QUANTUM ANTIFERROMAGNETS

A. HONECKER Technische Universitat Braunschweig Institut fur Theoretische Physik Mendelsohnstrasse 3 Postfach 3328 38106 Braunschweig GERMANY

These are preliminary lecture notes, intended only for distribution to participants

Plateaux in magnetization curves of

one-dimensional quantum antiferromagnets

abdus salam ictp, Trieste, 25.07.2001

Andreas Honecker

TU Braunschweig, Germany

Shiramura et al., J. Phys. Soc. Jpn. 67 (1998) 1548

Plateaux (spin gap) \leftrightarrow macroscopic quantum effects Analogy: Fractional quantum Hall effect

Short review: Cabra, Grynberg, A.H., Pujol, cond-mat/0010376

Quantization condition in 1D

Plateaux obey the quantization condition

$$VS(1 - \langle M \rangle) \in \mathbb{Z}.$$
 (*)

- V: Volume of translational unit cell in the groundstate. Translational invariance of the Hamiltonian can be broken spontaneously ! (Many frustrated systems: Period ≥ 2).
- S: Local spin, e.g. S = 1/2.
- $\langle M \rangle$: Magnetization (normalized to ± 1).

... and a generalized Lieb-Schultz-Mattis theorem

Oshikawa, Yamanaka, Affleck, Phys. Rev. Lett. 78 (1997) 1984

Either the condition (\star) is satisfied *or* the spectrum is gapless *or* the groundstate is degenerate.

Sketch of the proof:

Let

• $|\psi_0\rangle$ be the groundstate (wolg. unique),

•
$$U_k = e^{-ik\sum_{x=1}^{L} x \sum_{\vec{x} \in \mathcal{U}_x} S_{\vec{x}}^z}, (|\mathcal{U}_x| = V)$$

•
$$|\psi_k\rangle := U_k |\psi_0\rangle.$$

Step 1: Show $|\psi_k\rangle \perp |\psi_0\rangle$ for suitable k unless (*) is satisfied **Step 2:** Check that

$$\langle \psi_{\frac{2\pi}{L}} \left| \mathcal{H} \right| \psi_{\frac{2\pi}{L}} \rangle - \langle \psi_0 \left| \mathcal{H} \right| \psi_0 \rangle = \mathcal{O}\left(\frac{1}{L}\right)$$

Problems:

- Existence of a gap if (\star) is satisfied not shown.
- Excitation $|\psi_k\rangle$ is non-magnetic \Rightarrow Complementary arguments needed to link magnetic and non-magnetic excitations.

Spin ladders

(N = 3, open boundary conditions (OBC))

realized e.g. in $Sr_2Cu_3O_5$

(or periodic boundary conditions (PBC), N = 3)

Hamilton operator:

$$\mathcal{H}^{(N)} = J \sum_{i=1}^{N} \sum_{x=1}^{L} \left\{ \Delta S_{i,x}^{z} S_{i,x+1}^{z} + \frac{1}{2} \left(S_{i,x}^{+} S_{i,x+1}^{-} + S_{i,x}^{-} S_{i,x+1}^{+} \right) \right\}$$

+ $J' \sum_{i,j} \sum_{x=1}^{L} \vec{S}_{i,x} \vec{S}_{j,x}$
- $h \sum_{i,x} S_{i,x}^{z}$

Magnetization:

$$\left\langle M
ight
angle = rac{1}{SLN} \left\langle \sum_{i,x} S^z_{i,x}
ight
angle$$

Technical remark:

 $\begin{array}{ll} M \text{ conserved} \Rightarrow \\ \text{Behaviour at } h \neq 0 \quad \Leftrightarrow \quad \text{behaviour at } h = 0 \text{ and fixed } \langle M \rangle \end{array}$

Magnetization curves of S = 1/2, N = 2-leg ladder materials

Structure of $Cu_2(C_5H_{12}N_2)_2Cl_4$, High-field magnetization curves. Chaboussant *et al.*, Phys. Rev. **B55** (1997) 3046; Eur. Phys. J. **B6** (1998) 167

Recent inelastic neutron scattering measurements $\Rightarrow Cu_2(1,4\text{-diazacycloheptane})_2Cl_4 \text{ not a spin ladder}$ Stone *et al.*, cond-mat/0103023

Structure of $(C_5H_{12}N)_2CuBr_4$, High-field magnetization curves. Watson *et al.*, Phys. Rev. Lett. **86** (2001) 5168

Strong-coupling limit

Consider the limit $J' \gg J$

$$\begin{array}{c} & & & \\ \bullet & - & - & \\ \bullet & - & - & \\ \bullet & - & - & \\ \end{array} \begin{array}{c} J' \\ J \rightarrow 0 \end{array}$$

In zeroth order (J = 0), rungs are decoupled:

$$\mathcal{H}_{\text{eff.}} = J' \sum_{i=1}^{N(-1)} \vec{S}_i \vec{S}_{i+1} - h \sum_{i=1}^N S_i^z$$
.

N spin-1/2 spins \Rightarrow only possible values of magnetization:

$$\langle M \rangle \in \left\{-1, -1 + \frac{2}{N}, \dots, 1 - \frac{2}{N}, 1\right\}$$

 \Rightarrow plateaux with magnetization m/N !

(These are precisely the solutions of (\star) with V = N, S = 1/2).

Example:
$$N = 3$$

J' > 0, J = 0:

Both OBC and PBC: Plateau with $\langle M \rangle = 1/3$.

J', J > 0: Transitions soften, but plateaux survive:

Magnetization curve of the OBC N = 3-leg ladder (J'/J = 3)

L = 8, L = 6, L = 4, extrapolation Diamonds: 4th-order series results for boundaries of plateau

Remarks:

- First order in J: transitions between plateaux can be described by effective Hamiltonians. Quite often, one finds an XXZ chain. Totsuka, Chaboussant et al., Mila, Wessel & Haas, ... Δ_{eff.} > 1 ⇒ Translational invariance spontaneously broken.
- The strong-coupling argument is essentially independent of the model ! One only needs a limit where the system decouples into clusters of V spins.

Abelian bosonization

following Schulz, Affleck et al., Totsuka

(Convenient way to study the weak-coupling regime $(J' \ll J)$ in the thermodynamic limit)

J' = 0: Spin-1/2 XXZ-Heisenberg chain in a magnetic field

$$H_{XXZ} = J \sum_{x=1}^{L} \left\{ \Delta S_x^z S_{x+1}^z + \frac{1}{2} \left(S_x^+ S_{x+1}^- + S_x^- S_{x+1}^+ \right) \right\} - h \sum_{x=1}^{L} S_x^z$$

can be described by a c = 1 one-boson CFT:

$$\bar{H}_{XXZ} \sim \int \mathrm{d}x \frac{\pi}{2} \left\{ \frac{1}{\left(4R(\langle M \rangle, \Delta)\right)^2} \Pi^2(x) + R^2(\langle M \rangle, \Delta) \left(\partial_x \phi(x)\right)^2 \right\}$$

with $\Pi = \frac{1}{\pi} \partial_x \tilde{\phi}$, and $\phi = \phi_L + \phi_R$, $\tilde{\phi} = \phi_L - \phi_R$.

Woynarovich, Eckle, Truong, J. Phys. A: Math. Gen. 22 (1989) 4027

Bogoliubov, Izergin, Korepin, Nucl. Phys. **B275** (1986) 687 Magnetic field h & XXZ-anisotropy Δ enter only through radius of compactification $R(\langle M \rangle, \Delta)$ – can be computed exactly from Betheansatz solution of the XXZ-chain:

http://www.tu-bs.de/~honecker/roc.html

Use:

- field theory Hamiltonian for single chain
- bosonized expressions for the spin operators:

$$\begin{split} S_{i,x}^{z} &\approx \frac{1}{\sqrt{2\pi}} \frac{\partial \phi_{i}}{\partial x} + const. : \cos(2k_{F}^{i}x + \sqrt{4\pi}\phi_{i}) : + \frac{\langle M_{i} \rangle}{2} \\ S_{i,x}^{\pm} &\approx : e^{\pm i\sqrt{\pi}\tilde{\phi}_{i}}(1 + const. \cos(2k_{F}^{i}x + \sqrt{4\pi}\phi_{i})) : \\ \text{with Fermi momenta } k_{F}^{i} &= \pi(1 - \langle M_{i} \rangle)/2. \end{split}$$

 \Rightarrow interaction terms (assume now complete symmetry, *i.e.* PBC):

- : $\cos\left(2x(k_F^i+k_F^j)+\sqrt{4\pi}(\phi_i+\phi_j)\right)$: commensurate only for $\langle M \rangle = 0, \pm 1$
- : $\cos\left(2x(k_F^i k_F^j) + \sqrt{4\pi}(\phi_i \phi_j)\right)$: , : $\cos\left(\sqrt{\pi}(\tilde{\phi}_i \tilde{\phi}_j)\right)$: relevant interactions; give a mass to relative degrees of freedom.

$$\Rightarrow$$
 a single bosonic field $\psi_D = \frac{1}{\sqrt{N}} \sum_{i=1}^N \phi_i$ remains massless so far.

plateau $\longleftrightarrow \psi_D$ acquires a mass

radiatively, we can generate the following interaction term

$$J'^{N} \cos\left(2x \sum_{i=1}^{N} k_{F}^{i} + \sqrt{4\pi} \sum_{i=1}^{N} \phi_{i}\right) = J'^{N} \cos\left(2x \sum_{i=1}^{N} k_{F}^{i} + \sqrt{4\pi N} \psi_{D}\right) \,.$$

1. is commensurate only if

$$\frac{N}{2}(1-\langle M\rangle)\in\mathbb{Z}$$

2. provides a mass for ψ_D if it is relevant, *i.e.* its zero-loop scaling dimension

$$\dim\left(\cos\left(\sqrt{4\pi N}\psi_D\right)\right) = \frac{N}{4\left(\pi R^2 + \frac{N-1}{\pi}\frac{J'}{J}\right)}$$

should be less than 2.

(c.f. Kawano, Takahashi, J. Phys. Soc. Jpn. 66 (1997) 4001)

... and for *p*-merized spin-1/2 chains

Cabra, Grynberg, Phys. Rev. **B59** (1999) 119

modulated coupling constants

$$J(x) = \begin{cases} J' & \text{if } x \text{ a multiple of } p \\ J & \text{otherwise} \end{cases}$$

- $\delta = J J'$ small
- \Rightarrow perturbing operator

$$\cos\left(2pk_Fx + \sqrt{4\pi}\phi\right)$$

1. is commensurate if

$$\frac{p}{2}(1-\langle M\rangle)\in\mathbb{Z}$$

2. scaling dimension

$$\dim\left(\cos\left(\sqrt{4\pi}\phi\right)\right) = \frac{1}{4\pi R^2}$$
$$R \ge \frac{1}{2\sqrt{\pi}} \text{ for } \Delta \ge 0 \quad \Rightarrow \quad \dim\left(\cos\left(\sqrt{4\pi}\phi\right)\right) \le 1$$

Models with local conservation laws

with Mila, Troyer

 $J_{\times}=J$ \Rightarrow Total spin on each rung $\vec{T_x}=\sum_{i=1}^N \vec{S}_{i,x}$

is conserved

 $\Rightarrow \text{Diagonalize family of Hamiltonians } H(\{T_x\}) \\ H(\{T_x\}) = J \sum_{x=1}^{L} \vec{T_x} \cdot \vec{T_{x+1}} + J' \sum_{x=1}^{L} \frac{1}{2} \left(\vec{T_x}^2 - \frac{3N}{4}\right) - h \sum_{x=1}^{L} T_x^z \,. \\ \text{with } \vec{T_x}^2 = T_x(T_x+1), \, T_x = N/2, N/2 - 1, \dots$

J' appears only linearly in front of a constant !

Only a few combinations $\{T_x\}$ appear as groundstates in a magnetic field – e.g.

 $\underline{N=3:}$

- 1. Spin-3/2 states on all rungs $\Leftrightarrow S = 3/2$ chain
- 2. Alternating spin-1/2 and -3/2 on the rungs $\Leftrightarrow S = 3/2$ -1/2 ferrimagnetic chain
- 3. Spin-1/2 on each rung $\Leftrightarrow S = 1/2$ chain

These chains can be diagonalized by White's DMRG (or Bethe ansatz)

 $\underline{J' > 2J}$: First-order strong-coupling picture is exact $\underline{J' \le 1.381J}$: S = 1 chain

Groundstate phase diagram for N = 3

Bold lines: First order transitions Thin lines: Second order transitions

 $\underline{J' > 2J}$: First-order strong-coupling picture is exact

<u> $J' \leq 1.557J$ </u>: S = 3/2 chain

Plateaux have a simple picture in this model

Schulenburg, Richter, cond-mat/0107137

14

Is rationality of the magnetization fundamental?

2. Several magnetic species whose total density is fixed

 \Rightarrow plateaux can appear in the magnetization curve for irrational $\langle M \rangle$ if one species becomes commensurate and acquires a gap

doped *p*-merized Hubbard chains

with Cabra, De Martino, Pujol, Simon

Hamilton-Operator:

$$H = -\sum_{x=1}^{L} t(x) \sum_{\sigma} \left(c_{x+1,\sigma}^{\dagger} c_{x,\sigma} + c_{x,\sigma}^{\dagger} c_{x+1,\sigma} \right)$$
$$+ U \sum_{x=1}^{L} n_{x,\uparrow} n_{x,\downarrow} + \mu \sum_{x=1}^{L} \left(n_{x,\uparrow} + n_{x,\downarrow} \right)$$
$$- \frac{h}{2} \sum_{x=1}^{L} \left(n_{x,\uparrow} - n_{x,\downarrow} \right)$$

15

c^{\dagger},c	electron creation and annihilation operators
$n_{x,\sigma}=c^{\dagger}_{x,\sigma}c_{x,\sigma}$	number operator
$m = n_{x,\uparrow} - n_{x,\downarrow}$	magnetization
U > 0	onsite repulsion
μ	chemical potential
h	dimensionless magnetic field
t(x)	hopping parameter $(t(x) = t' \text{ for } x \text{ a multiple of } p,$
	t(x) = t otherwise)

 \Rightarrow Doping-dependent magnetization plateaux (at fixed n)

 $\underline{m=1-n}$ plateau for $\underline{p=2}$

- $\mu_{\uparrow} = \mu h/2$ in band gap $\Rightarrow n_{\uparrow} = 1/2 \iff m = 1 - n$
- h changes a little $\Rightarrow \mu_{\uparrow}$ changes but remains in band gap $\Rightarrow \mu$ must be readjusted to keep $\mu_{\downarrow} = \mu + h/2$ fixed because n is fixed

 \Rightarrow magnetic gap = plateau

• For U > 0 (small): Perturbative corrections, but picture remains valid

Abelian bosonization for the Hubbard chain

1. Zero field (h = 0)

Hubbard chain (t(x) = t) with general filling $(n \text{ or } \mu)$ can be written in terms of two bosonic fields

$$\bar{H}_{Hubbard} = \frac{v_c}{2} \int dx \left\{ \left(\partial_x \phi_c\right)^2 + \left(\partial_x \tilde{\phi}_c\right)^2 \right\} + \frac{v_s}{2} \int dx \left\{ \left(\partial_x \phi_s\right)^2 + \left(\partial_x \tilde{\phi}_s\right)^2 \right\}$$
(*)
with $\phi_c = \frac{1}{\xi} \left(\phi_{\uparrow} + \phi_{\downarrow}\right)$ and $\phi_s = \frac{1}{\sqrt{2}} \left(\phi_{\uparrow} - \phi_{\downarrow}\right)$

Parameters v_c , v_s and ξ can be determined exactly from Betheansatz for any given U and μ (or n)

> Frahm, Korepin, Phys. Rev. **B42** (1990) 10553; Phys. Rev. **B43** (1991) 5653

Perturb with $\delta = t' - t$

 \Rightarrow interaction

$$H_I = \lambda \int \mathrm{d}x \Phi + \lambda' \int \mathrm{d}x \Phi'$$

with

$$\Phi(x) = \sin\left(\frac{k_{+}}{2} + pk_{+}x - \sqrt{\pi}\xi\phi_{c}\right)\cos\left(\sqrt{2\pi}\phi_{s}\right)$$

$$\Phi'(x) = \cos\left(k_{+} + 2pk_{+}x - \sqrt{4\pi}\xi\phi_{c}\right)$$

and $\lambda,\,\lambda'\sim\delta\,\, ext{and}\,\,k_+=k_{F,\uparrow}+k_{F,\downarrow}=\pi n$

- $pn \in \mathbb{Z} \implies \Phi'$ commensurate \implies charge gap
- $pn \in 2\mathbb{Z} \Rightarrow \Phi$ also commensurate \Rightarrow spin (& charge) gap

2. With magnetic field $(h \neq 0)$

Hamiltonian (*) remains valid for Hubbard chain (t(x) = t), but representation of ϕ_c and ϕ_s more complicated

Penc, Sólyom, Phys. Rev. **B47** (1993) 6273

$$\begin{pmatrix} \phi_c \\ \phi_s \end{pmatrix} = \frac{1}{\det Z} \begin{pmatrix} Z_{ss} & Z_{ss} - Z_{cs} \\ Z_{sc} & Z_{sc} - Z_{cc} \end{pmatrix} \begin{pmatrix} \phi_{\uparrow} \\ \phi_{\downarrow} \end{pmatrix}$$

Z: 'dressed charge matrix' – can be computed from Bethe-ansatz for given $h,\,U$ and μ

Switch on $\delta = t' - t$

 \Rightarrow interaction

$$H_I = \lambda \int \mathrm{d}x \Phi + \lambda' \int \mathrm{d}x \Phi'$$

with

$$\begin{split} \Phi(x) &= \sin\left(\frac{k_{+}}{2} + pk_{+}x - \sqrt{\pi}\left(Z_{cc}\phi_{c} - Z_{cs}\phi_{s}\right)\right) \\ &\times \cos\left(\frac{k_{-}}{2} + pk_{-}x - \sqrt{\pi}\left((Z_{cc} - 2Z_{sc})\phi_{c} - (Z_{cs} - 2Z_{ss})\phi_{s}\right)\right) \\ \Phi'(x) &= \cos(k_{+} + 2pk_{+}x - \sqrt{4\pi}(Z_{cc}\phi_{c} - Z_{cs}\phi_{s})) \\ \text{where now } k_{-} &= k_{F,\uparrow} - k_{F,\downarrow} = \pi m \end{split}$$

A)
$$\frac{p}{2}(n+m) \in \mathbb{Z}$$
 and $\frac{p}{2}(n-m) \in \mathbb{Z}$

 $\Rightarrow \Phi \text{ and } \Phi' \text{ commensurate } \Rightarrow \text{ spin and charge gap}$

B) only
$$\frac{p}{2}(n+m) = l \in \mathbb{Z}$$

 $\Rightarrow \quad \text{switch back to } \phi_{\uparrow}, \, \phi_{\downarrow}$

 \Rightarrow after treatment of marginal terms, Hamiltonian can be written as

$$H = \int \mathrm{d}x \frac{v_{\uparrow}}{2} \left[\left(\partial_x \phi_{\uparrow} \right)^2 + \left(\partial_x \tilde{\phi}_{\uparrow} \right)^2 \right] + \frac{v_{\downarrow}}{2} \left[\left(\partial_x \phi_{\downarrow} \right)^2 + \left(\partial_x \tilde{\phi}_{\downarrow} \right)^2 \right] + \lambda \sin 2\sqrt{\pi} \phi_{\uparrow}$$

relevant perturbation for $\phi_{\uparrow} \quad \Rightarrow \quad \phi_{\uparrow}$ massive

integrate out $\phi_{\uparrow} \Rightarrow$ apparently free Hamiltonian for ϕ_{\downarrow} (with effective velocity v and compactification radius R)

Plateau in magnetization curve with magnetization m

m depends on doping n through m = 2l/p - n

Lanczos diagonalization for the dimerized Hubbard chain

schematic

Groundstate phase diagram in the μ -h plane

μ

19

What is the model for NH_4CuCl_3 ?

Structure of KCuCl₃, TlCuCl₃ and $\rm NH_4CuCl_3$ at room temperature:

Shiramura *et.al.*, J. Phys. Soc. Jpn. **66** (1997) 1999; J. Phys. Soc. Jpn. **67** (1998) 1548

KCuCl₃:

Just a spin gap, as expected from the 1D model. But KCuCl₃ is actually a 3D network of weakly coupled dimers. (Cavadini *et.al.*, Eur. Phys. J. **B7** (1999) 519)

<u>NH4CuCl3:</u>

No spin gap, but $\underline{\langle M \rangle} = 1/4, 3/4$ plateaux \Rightarrow Need $V = 8 \ (S = 1/2)$

- Why V = 8 ? (structural phase transition at about 70K)
- With V = 8 also plateaux with $\langle M \rangle = 0$, 1/2 would be permitted. Why are those absent ?

Transition to saturation

Dispersion of magnons usually <u>quadratic</u> close to minimum:

 $\begin{array}{ll} \text{magnons} \equiv \delta \text{-function bosons} \\ \Rightarrow & \text{mapping to low-density Bose gas} \end{array}$

 $\underline{D=1}$: Filling: Uniform & independent of type of quasiparticles

 $\Rightarrow \quad k \equiv M_c - \langle M \rangle$

 $\Rightarrow \quad \text{transitions at plateau-boundaries: DN-PT universality class} \\ M_c - \langle M \rangle \sim \sqrt{|h_c - h|}$

(Dzhaparidze, Nersesyan, JETP Lett. **27** (1978) 334, Pokrovsky, Talapov, Phys. Rev. Lett. **42** (1979) 65)

Very general in D = 1 !

Exceptions:

- Dispersion not quadratic (\Rightarrow special parameters)
- First-order tansition/formation of bound states

Conclusions

- magnetization plateaux at rational fractions of saturation magnetization
- quantization condition

$$VS(1 - \langle M \rangle) \in \mathbb{Z}$$

- no upper limit on period of spontaneous breaking of translational symmetry
- D also irrational magnetization values possible:
 - charge carriers (Hubbard model: $n \notin \mathbb{Q}$)
 - discrete bond disorder
- D transition at plateau-boundaries: universal (Bose condensation; D = 1: DN-PT)
- some experimental systems (NH_4CuCl_3) remain a challenge for theory