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Conductivity of a clean 1-d wire

Transport and weakly violated conservation laws

Interacting electrons (RG, Luttinger liquids,
bosonization and all that)

Interacting electrons in the presence of a periodic
potentail

Transport and the Memory Functional Formalism

Computation of the conductivity

Complex dependence on Filling and Temperature
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An ideal Id wire: carbon nanotube

nanotubes: rolled up graphite sheets

Atomic resolution on the nanotubes
Various types of nanotubes

•armchair-

mK experiments on an individual nanotube

3pm

[

contact resistance - 500 kQ

Tart*, Oevorat. ThMW, ******, O»i»i9i. t**km. Mature 3*ft, 474 (1997)



Weakly coupled Id wires: Bechgaard salts

stacked molecules

TMTSF

<TMTSF)2X
fty /). Jerome

open Fermi surface:

two Fermi-sheets

trI'M*JTT!..")_, X „



Historical remarks

most papers:

neglect Umklapp away from 1/2 filling - (irrelevant
operator)

-> a(T > 0) = crbuik = 00

-> G — ^contact = ^fr (conductance)

Giamarchi (91), {Akp — G) -Umklapp
- perturbation theory (memory functional)
-» a(T > 0) < 00
- Luther-Emery transformation
—» cr = 00

many papers: using PT result of Giamarchi or same
result with different PT

Giamarchi, Millis (92) (band structure effects)
00 > a(T > 0) > T~n

Castella, Zotos et al. (95-97): integrable systems
- infinite number of conserved quantities.
Select Qr...QN, ((QnQm) = Snm(Q2

n))
then:

cr(T>0,u;) = 2TTD(T)6(<J)-+...

D(T) > i
N ' N2

2 ^ XQnQ



Gedankenexperiment I

P exactly conserved:

prepare state
with current J

How large is (P)7

XJJ

U,H]*0

Pconserved[P,H]=0

How much limt-+oo(Jr) i s induced by (P)?

(J(t -* oo)) =

App

(J(t ->oo)) = XJp
{Jit = 0)> XppXjj

infinite conductivity at T > 0

Recr(u;) =

Drude weight D = 5

(exact if only P conserved (Suzuki 71))



Gedankenexperiment II

P slowly decaying:

fast short-time decay

3

slow long-time decay

weight D

t

peak in <T(W}, decay-rate of P determines <r(0)



From the lattice to the continuum

A general Hamiltonian on a lattice

H = Ho + He-e -f Hiat

Ho =

He-e =
k£BZ

t = some periodic lattice potential

How do we study low-energy, long-distance behaviour?

- Do RG to obtain low-energy effective hamiltonian
- Alternatively, build effective hamiltonian "by hand"



From the lattice to the continuum

left mover right mover

keep modes: k •= ±kp + g, g < A

with:

low - energy effective Hamiltonian:
Fixed point Hamiltonian -f correction terms

- Fixed point Hamiltonian:

H* = HLL (Luttinger liquid)

- Correction Terms:
TJcorrections _ TJ \ TJ

12 — -"irr i •n umklapp



From the lattice to the continuum

The Luttinger liquid

separate in slowly varying
left- and right
moving electrons:

left mover right mover

lowest energies: linearize around Fermi energy
fixed point: Luttinger liquid

HLL vF
p(x):

dx
2^

• bosonization:

spin-charge separation, non-Fermi liquid: power-laws

• deviation from HLL irrelevant: perturba-
tion theory convergent, effects small at
low temperature (exception: half-filling)

• dangerously irrelevant for conductivity



From the lattice to the continuum
Classify deviations from LL-Hamiltonian

Luttinger liquid + irrelevant terms + Umklapp

with:

• HLL =

[H,rr, Pr] = [H,rr, Jo] = 0

Umklapp:
n,m

n fermions from L to R
+ lattice momentum
A/cn>rn = mG

left mover right mover

rn f
H

m
h.c.

ID



From the lattice to the continuum

The continuum Hamiltonian
CO

TT

n,ra

The fixed point Hamiltonian

7T

- 6and strcture terms etc. (need not be specified.)

Umklapp terms

- transfer n fermions from L to R (and vice versa)

and lattice momentum mG = m—
a

- dangerously irrelevant

If



From the lattice to the continuum

Umklapp terms are of the form:

Km

~

U / iAk
/ eU ^ U / iAk2 . m x ^ t xl/t \TfT.\[fT.jLhr

2,m ~ 92,m / e ^jRt ^ L ^ L ^ +

TT?7 ^ U
rL2n,m

X I I ! . , , .. . h Al.

Momentum transfer:

AknAn — ri2kp — mG

Bosonized Umklapp term

nu r
TJU _ yn,m,ns / iAkn,mx

n m n { 2 ) J
Transfers:

- n electrons with ns total spin
- mG momentum absorbed by lattice



Weakly violated conservation laws

Operators:

PT = -i

Jo =

- conserved on the Fermi-surface. Note P « kpJo 4- PT

- weakly violated away from it:

- violation leads to degrading of electric current

• terms in i?irr commute with both,

[ifirr, P T ] = [-HiTD Jo] = 0

• terms in if17

- do not commute with either PT or Jo
- dangerously irrelevant

Observation: [#2 n r n , Afcn<m Jo -j-

-single Umklapp does not degrade the current completely

- need at least two Umklapps to have finite conductivity

/ 3



From the lattice to the continuum

Define pseudo-momentum Pn,m
With Aknym = n - 2kF - mG

(without Umklapp: Pn,o =usual momentum)

• Hamiltonian with single type of Umklapp conserves
pseudo-momentum => oo conductivity

Hnm , Pn,m] — 0

interplay of two independent Umklapps
renders a finite

second strongest Umklapp determines
a(uj = 0)



How to calculate <T(U>) perturbatively?

• Problem: a and I/a singular function of perturba-
tions for <jj -> 0

• full quantum-transport equations?
=> difficult (highly non-linear interaction of LL bosons)

• approximate conservation laws known
"hydrodynamic" description possible

use Memory Matrix Formalism in space of slow modes
(Mori (65), Zwanzig (61))

— combined short-time and perturbative
expansion for slow decay rates

— short-time dynamics of slowest modes = long time
behavior

— weights of low-frequency peak exactly reproduced
if time-scales well separated



Transport and the Memory Function Formalism I

- Memory Functional Formalism: study transport in the
presence of approximate conserved quantities.

Mori (65), Zwanzig (61), Gotze Wolfle (72), Giamarchi (91)

• Scalar product in operator space

(A(t)\
.1

0

Static susceptibility

XAB = d(A\B) t = 0

Dynamic Correlation function
•OG

CAB(Z) = / etzt (A(t)\B) dt
Jo

A
z-'L

B , LA =

o z J 0

[H,A]

(A\B)
? y

Conductivity

UJ — UL



Transport and the Memory Function Formalism II

Transport in the presence of several "slow" variables:

h = J, J21 - • • , JN

The conductivity

The susceptibility matrix

Xpq=PUp\Jq)

The memory matrix

Q uo — QLQQ 9tjr

The projection away from slow modes

p

pq

Philosophy:
>N

M non-singular in P.T.

- P.T. valid for short-time behavior

- P.T. also valid for long-time behavior of slowest modes
(provided slow modes dynamics projected out - Q.)



Intermezzo - conserved quantities

- If there are linear combination of {jp} that are conserved:

J1 1 ' ' • 5 *' S

—̂  expect oo dc - conductivity.

Indeed, carry out matrix inversion, project out zero -
modes etc.

0,T > 0) - i(XXc X j l 1 + areg(a;,T)

where:

Vc - projection on space of conserved variables

areg(ujT) regular as long as all conserved currents are
included.

Thus

Re a(oo -> 0) = 2irD(T)6{v) = i

Determined by the overlaps of the current J with
conserved quantities, xi,s



The generic case

All variables j \ , . . . , JN decay slowly

Restrict to two dimensional space

3\ - 3

- commute with all scattering processes on
Fermi-surface

- longest decay rate, exponential in T, dominate
transport

- can neglect other slow quantities at low - T,

decay as powers of T

(unless model is integrable e.g. HLL +
relevant at 1/2 filling)



The calculation I

We can approximate:

- ] .

Thus

nrn

where

o and dtPT linear in g^m

0, so no contribution from Q

v2
F(2n)

\ nm

-2nvFAknrn
\

X

X

nm —

0 irT'

0

— 4- —
V3 V3

\

I
_ {F; F)Z - {F;

IUJ

=0

with

• (F: F)(l - retarded correlation function of F
with respect to HLL>

SiO



The calculation II

For n arbitrary and ns = 0, (M2, Giamarchi 91)

Mn(Ak,uj)
2 sin 2TTA £

7T a vp

2naT

. VP _

1
X

-B{Kn
o

- 2Kn
p)B{Kn

p -

- 2Kn
p)B{K*n ,1-21^)]

where

- S± =

Approximate forms:

a
2-2n

TT2T2(2K^)VPT V 2

(aT/tv)"2*'-1 («Afc):

,-vpAk/(2T)

—2

n



One Umklapp, two Umklapps..

One Umklapp term (insufficient to degrade current)

-- finite Drude peak, infinite dc - conductivity

1
D(T)

7T 2TV2TI2KP

3(vpAknrny 1 +
• ( 1 )

£

Two Umklapp terms £

finite dc - conductivity

<J[1 , 6J = UJ =
(Afcn/m/)2/Af;

nm

- riAknrn)2

Conductivity for two Umklapp tor ins H!n and

Afc2i = -1.5Afc20, Kp = 0.7, Ka = 1.3, p2o = £21 = 1,
= 0.18,0.20.

(2)



Commensurate filling

- Commensurate filling:

filling = 77 -^ Aknm = 0. Recall kF = (filling)*

- Does dominant scattering process H\xm relax the current?

- Depends on the overlap \.//y

• Identity XJPT

Ap = 2An/a - electron density deviation from
commensurate filling.

• 3d array of wires -

Ap is T - independent, determined by charge neutrality

• single wire -

Ap(T) - T2/(mv3)

PH sym breaking ~ k2/(2m)

• Replace

Afe by (TT



The conductivity

Which of the scattering processes will dominate?

-. intermediate T : small n (low order) - Pauli

- lower T : exponential factor prevails, smallest Akrnt,

• Close to commensurate filling A/ ^ G
" o

d o m i n a n t p r o c e s s e s //\, ,;, . H
 l
n} ni] w h e r e

AA\,n..m,, ^ 0. Aktllmfni = ±Gjn{)

—> (rtimo = ± 1 mod no )

—> n\ = 7no, 7 ~

We find: The conductivity close to commensurability:

a{kF « Gmo/(2no)) - (An(r)) 2 exp[/3^

a(kF = GmO/(2nO)) - .T-n2
0Kp-(n0 mod

At typical incommensurate filling

Do saddle-point approximation with respect to n of:

->3vG/(2N) +

We find: Typical conductivity

^typical ~



Filling dependence of the conductivity

100

o
50

0 L

1/10 1/6 1/5
n

Enhancement at commensurate filling n

Dip at commensurate point: overlap of cur-
rent J and approx. conserved current Jc =

given by \JJC = ^-^commensurate

a(n ~ M/N) w max


