i the
cducaions sen abdus salam -
rgion international centre for theoretical physics

(&)
N
international atomic
energy agency

SMR.1320 - 25

SUMMER SCHOOL
on

LOW-DIMENSIONAL QUANTUM SYSTEMS:
Theory and Experiment
(16 - 27 JULY 2001)

PLUS

PRE-TUTORIAL SESSIONS
(11 - 13 JULY 2001)

CONDUCTIVITY OF A LONG CLEAN WIRE

N. ANDREI
Rutgers State University
136 Frelinghuysen Ave.
NJ 08854-8019 Piscataway
U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

strada costiera, | | - 34014 trieste italy - tel. +39 04022401 | | fax +39 040224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it






Conductivity of a clean 1-d wire

e Transport and weakly violated conservation laws

e Interacting electrons (RG, Luttinger liquids,
bosonization and all that)

e Interacting electrons in the presence of a periodic
potentail

e Transport and the Memory Functional Formalism
e Computation of the conductivity

e Complex dependence on Filling and Temperature

Achim Rosch - Karlsruhe University
Natan Andrei - Rutgers University



. carbon nanotube

An ideal 1d wire

rolled up graphite sheets

nanotubes:

Atomic resolution on the nanotubes

Various types of nanotubes
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mK experiments on an individual nanotube

Vbias

comact resistance ~ 500 k2

Tens, Davoret. Thess, Smaliey, Gesrligs. Dekker, Nature 386, 474 {1997}



Weakly coupled 1d wires: Bechgaard salts

oy 5 T ? L el S 3 T T ¥ T T

(TMTTF),PF,

stacked molecules

JOSIO EUR S S

100 - |
- M-Hi M

LA

TMTSF

g -—_——
P(GPa)

Correlation gap and dimensional cross-over

HHy
S 2a,
Tik)
-
FEKY = ~
N
! /
i
! 1
i
1) 2} i (143 #rik
CEREUCEY X . CEARFEI, K
N 2 .
H * )
N B =<3 e =

open Fermi surface:

two Fermi-sheets

>3



Historical remarks

most papers:

neglect Umklapp away from 1/2 filling - (irrelevant
operator)

— O'(T > 0) = O'bulk =

— G = Geontact = “‘ (conductance)

Giamarchi (91), (4kF — @) -Umklapp

- perturbation theory (memory functional)

—o(T >0) < o0

- Luther-Emery transformation

— 0 = 00

many papers: using PT result of Giamarchi or same
result with different P'T

Giamarchi, Millis (92) (band structure effects)
o>0(T>0>T"

‘Castella, Zotos et al. (95-97): integrable systems
- infinite number of conserved quantities.

Select Q1...Qn, ((Qan) = (snm(Q?z))
then:

o(T >0,w) = 27TD(T)5( )+

D(T)
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Gedankenexperiment 1

e P exactly conserved:

tat <I>
prepare state [J,H]#:O

with current J -~
Pconserved [P,H]=0

How large is (P)? <P> \
(P) _ Xpy ' ~
<J> XJjJ | | -

How much lim;_e0(J) is induced by (F)?

(J(t —00)) _ Xyp N (J(t = 00)) _ X5p |
(P) Xpp (JE=0))  XppXss

infinite conductivity at T > 0
Reo(w) = 27 Dé(w) + ofeg (w)

2

Xip

Drude weight D
XJ

N =

ol
=

(exact if only P conserved (Suzuki 71))



Gedankenexperiment 11

e P slowly decaying:

<J>

/fast short—time decay




From the lattice to the continuum

o A general Hamiltonian on a lattice

H = HO + He—-e + Hlat

Hy, = Z ekczck
He—e = Z Vkl,k2CLlckzcltka4dg(k1 — ko + kg — k4
keBZ
H;,+ = some periodic lattice potential

with d (k) = Y 6(k — G)

e How do we study low-energy, long-distance behaviour?

- Do RG to obtain low-energy effective hamiltonian
- Alternatively, build effective hamiltonian ”by hand”



From the lattice to the continuum

left mover right mover

e keep modes: k= +kr+q, g <A
-— Zk Ck’aeikna ~ eika¢R,a(x) 4 e—ikp:ch,a(x)

with:
i w}%(x) =2 e_iqxcchFJrq

- (z) = Y ewwet,

e low - energy effective Hamiltonian:
Fixed point Hamiltonian + correction terms

- Fixed point Hamiltonian:

H* = Hpp (Luttinger liguid)

- Correction Terms:

H(;torrections — Hirr 4 Humklapp‘

&



. From the lattice to the continuum
E T'he_' Luttinger liquid

separate in  slowly varymg
left- and right
moving electrons:

Vi(e) = Wigy(e)e™*
-
right mover +Wri(z)e™

left mover

e lowest energies: linearize around Fermi energy
fixed point: Luttinger liquid

Hy, = o / (wgaiawa,_ w“Laz'aa,\ULa) +g / p(z)?

_ / Z vy (Ky<axey)2+-§-;(ax¢u)2)

u—a P
o bosonization: W g/ (x) o e~ ®Prran ()

e spin-charge separation, non-Fermi liquid: power-laws
o deviation from Hpj irrelevant: perturba- \\X\\\
tion theory convergent, effects small at

low temperature (exception: half-filling) ////}

e dangerously irrelevant for conductivity



From the lattice to the continuum
Classify deviations from LL-Hamiltonian

(o @]
H=Hy + Hew+ Y HY,

Luttinger liquid 4 irrelevant terms + Umklapp
with:

NSRS

3 / do (W10, + W0, w1,

Nr—Np=)_ / dz (w}‘%w Ro — \u}mea)

o Hy = up / (WhiteWr, - Wh,i00W10) + g / o(z)?
o [Hir, Pr] = [Hirr, Jo] = 0

e Umklapp: Hg,m

n fermions from L to R
- -+ lattice momentum

left mover

Akypm = n2kp — mG

H%],m o~ ggj’m Z/e"m“'m”‘\lf‘;?a\llwp_a + h.c.
ag
HY, =~ g5n / ettt Wl W Wi+ he.
HY, ~ ¢5. / et Wl wh W Wawir 4 he.

[0



From the lattice to the continuum
The continuum Hamiltonian
| o0
H=H;, +Hirr+ZH7lz],m
' n,m

e The fixed point Hamiltonian

HLL = VF / (‘PEO{?@T\I}RQ — \IJTLaiax\I]La> + 9 //)2
1 [dx 5 1 \2
- 5 / % yga:p v (KV(8$9V> i I(,/ (ax(ﬁlf) >

e H;., - band strcture terms etc. (need not be specified.)

e Umklapp terms Hf{, m

- transfer n fermions from L to R (and vice versa)

2

and lattice momentum mG = m=r

- dangerously irrelevant

//



From the lattice to the continuum

Umklapp terms are of they'fbrm:

Hy,n = g(l){m/emk“'m"r(ﬂll + pr)* + h.c.

H{{m ~ gEmZ/eMkl-'”‘”\IﬁRa VU;op_o + h.c
o
Hé{m > ggm /eiAkQ-""x\I'}{T\If%¢\IIL¢\IlLT + h.c.
U ~ U JAN k72 n,1m
H2n,m ~ g2n,m/ez e
A NG YA A5 SRYGA 2

X H '/aJ) + h.c.

Momentum transfer:
Akn/jfrn) — T?/QZCF - m/G

Bosonized Umklapp term

U
HU _ gn,m,ns eiAk,n,ma;ei\/i(ngbp—f—nsqﬁa)
n,m,ng (271’0()"’
Transfers:
- n electrons with ng total spin

- mG momentum absorbed by lattice

/2



Weakly violated conservation laws

Operators:
Pr = —i Z / dx (\I/EOBQS\I'RG + \IITLG&E\I!LG)
J() = NR—NL:Z/CZQZ' (‘I’TRU‘I’RU—\I’EG\PLU)

- conserved on the Fermi-surface. Note P ~ krJy + Pr
- weakly violated away from it:

- violation leads to degrading of electric current

e terms in H;,, commute with both,
[Hirr) PT] = [Hirry JO] =0

e terms in HY
- do not commute with either Pr or Jy
- dangerously irrelevant

Observation: [H{

2n,m>

Aky o Jo + 2nPr]
- single Umklapp does not degrade the current completely

- need at least two Umklapps to have finite conductivity

/3



From the lattice to the continuum

Define pseudo-momentum P, ,
With Akpm = n - 2kp — mG

(without Umklapp: P, o =usual momentum)

e Hamiltonian with single type of Umklapp conserves
pseudo-momentum = oo conductivity

° intetrplay of two independent Umklapps Hf{,m,H,,Z,m,
renders o finite

e second strongest Umklapp determines
o(w=0)



How to calculate o(w) perturbatively?

e Problem: o and 1/¢ singular function of perturba-
tions for w — 0

e full quantum-transport equations?
= difficult (highly non-linear interaction of LL bosons)

e approximate conservation laws known
= "hydrodynamic” description possible

e use Memory Matrix Formalism in space of slow modes
(Mori (65), Zwanzig (61))

— combined short-time and perturbative
expansion for slow decay rates

— short-time dynamics of slowest modes = long time
behavior

— weights of low-frequency peak exactly reproduced
if time-scales well separated



Transport and the Memory Function Formalism I

- Memory Functional Formalism: study tranSport in the
presence of approximate conserved quantities.

Mori (65), Zwanzig (61), Gotze Wolfle (72), Giamarchi (91)

e Scalar product in operator space

(A()IB) = 3/ AN (A() B(iN)
“J0 :

e Static susceptibility
XAB:_.S(,Ai ) t=20

¢ Dynamic Correlation function

Capls) = / U (A)|B) di
, J0 '

e Conductivity

.
o(w, T) = pC;;(w) = 3(J|— |])

w

(©
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Transport and the Memory Function Formalism II

Transport in the presence of several ”slow” variables:
jl — Jaj?& R 7.].]\"’

e The conductivity
o(w,T) = [(M(w,T) —iw) "' X(T)]11
e The susceptibility matrix
Xpq = 3(Jpliq)
e The memory maitfix

-58% (&jq 0

2

w— QLA

Q

e The projection away from slow modes

' —1“Z|/q (x) fm(]pl

rqd

Philosophy:
M non-singular in P.T.

- P.T. valid for short-time behavior

- P.T. also valid for long-time behavior of slowest modes

(provided slow modes dynamics projected out - @.)

(7

atjr) (>A(,_1>rp'



Intermezzo - conserved quantities

- If there are linear combination of {j,} that are conserved:

~

— expect oo dc - conductivity.

Indeed, carry out matrix inversion, project out zero -
modes etc.

| T
o(w— 0, > 0) = § "Xe M

where:

d )A(c_l — PC(PC)A(PC)_lp(:

P. - projection on space of conserved variables

) a;eg (w, T') regular as long as all conserved currents are
included.

Thus
e Reo(w —0)=27D(T)d(w) = m(XX; *X)1.16(w)

Determined by the overlaps of the current J with
conserved quantities, \1

(&
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The generic case

e All variables ji, ..., jn decay slowly

e Restrict to two dimensional space

j] — . ~ ?'}v"o]()

Jjo = Pr

- commute with all scattering processes on
Fermi-surface

- longest decay rate, exponential in 7', dominate
transport
- can neglect other slow quantities at low - T,

decay as powers of T’

(unless model is integrable e.g. Hry + HY
relevant at 1/2 filling)

(7



The calculation I

We can approximate:

e ;] =|Hy;..]. Oywrpdy and Oy Pr linear in gn m
e L; . Pr=1L;..Jy=0,s0no contribution from
Thus
. v2.(2n)2 -2 Ak,m
MY Moy [ PR -
— —2nvp Ak, (Akpm)?
where
) 2up /m 0
X = |
F:F\o — (F: F)0 _
Mpym = (g2 )M, (Aky pm,w) = (Fi F)y = (F; >°"“O.

with
e [ = ]” Hnm)/(‘) )

o (F: )" - retarded correlation function of F
with respect to Hry,. |



The calculation II

For n arbitrary and ng = 0, (M3, Giamarchi 91)

2sin 2r K" [2raT 1457 72 1
Mn(Ak7w) — 4 .2n—2 2 l: = j| — X
Y ’Up Up w
x[B(K} —1iS4,1—2K})B(K} —iS5,,1—2K})
~B(K} —iS0,1-2K))B(K} —i5],1—2K})]
where

LR = (02K,
- Sy =(w L v, AR) /(47T
Approximate forms:
o™ AR\ T2 ke
222K 7 )0, T < 2 ) ©
(aT/v,)" " (@BR)" 5 oy
I?(n?K,/2)v2a?n—3 c

TnzKp—{-nch,—B

Q

S
\
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One Umklaﬁp, two Umklapps..

"

e One Umklapp term (insufficient to degrade current)

— finite Drude peak, infinite dc - conductivity

N v,K, 1
D(T) ™~ T 9 2m2n?K w3\’
L+ I s Az (L 35

e Two Umklapp terms (H,’{ my HY, 1)

n’,m/

— finite dc - conductivity

2 ‘ 2/

T2 (nAkpm — n' Dknm)?

Conductivity for two Umklapp terms H., and Hg()

Akzl - —-1.5Ak20,Kp = 07, Ka = 1.3,920 = g21 = 1,
T = 0.18,0.20. |

22

()
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Commensurate filling

- Commensurate filling:

filling = 2+ — Ak,,, = 0. Recall kp = (filling)Z

n

U

- Does dominant scattering process H, , relax the current?

- Depends on the overlap \ ;.
o Identity \, p, = Ap -+ o(c ")
Ap = 2An/a - electron density deviation from
commensurate filling. |
e 3d array of wires -
ApisT - independent, determined by charge neutrality
e single wire -
Ap(T) ~ T?/(mv?)
PH sym breaking ~ k2/(2m)

e Replace
Ak by (wAp).

A D



The conductivity

Which of the scattering processes will dominate?

- intermediate T : small n (low order) - Pauli

- lower T : exponential factor prevails, smallest A4,

1o

e Close to commensurate filling A, ~

1o

dominant processes /1! , . H'! = where

RIS 1y

Akn“.m“ ~ 0 Al"‘nl.ml == :EL“C;I//I')()
— (n1me = £1 mod ny)

— Ny =Yng, Y~ 1

We find: The conductivity close to commensurability:

o(kr ~ Gmg/(2n0)) ~ (An(T))? exp[BvG/(2no)]

o(kp = Gmo/(2ny)) ~ T~ "oKe(no mod 2)°Ko+3

e At typical incommensurate filling

Do saddle-point approximation with respect to n of:
— G N) + (AN Tog [T

We find: Typical conductivity:

Otypical ™ exp[c(/va)Q/B]

At



Filling dependence of the conductivity

¥ 1 \ v 1 T
| \ 20 \n=1/3+0.01]

100

log[o]

50

O 1 ] ] 1 t
1110 1/6 1/5 1/4 1/3 2/5
| n

e Enhancement at commensurate filling n

e Dip at commensurate point: overlap of cur-
rent J and approx. conserved current J. =

AknmJo+PT given by x jj, = n—Ncommensurate

o(n ~ M/N) =~ max [(An)zeﬁ”G/N,T—NQKP}

MAS



