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MASSIVE THIRRING MODEL

AMTM = dzx < ^f^du^ + - JnJ^ + M
J I ** 2 J

= .— . <— Dirac termion
V27T \WLJ

is a non-anomalous vector current

fiG2(N)
cc

x —) 4(0)} = i - — i Gxdxl), {feOz) 4(0)) = Ga(M)

• Multiplicative unambiguity

J

CFT normalization condition

AMTM = ATM + M / d2x

)4(0)>hxHo



CFT normalization : Gi(\x\)
\x\2d*

as \x —> 0

Anomaly dimension: dy = \ + 47r(^

Large distance: For g < 0 there are no bound states:

$

»oo

— oo

dp
(vac\tl>R(0)\p) |2 e

©

as kc oo

"Field-strength renormalization constant"

* - function of



Perturbation Expansion

+

= TTM 11+( J^)Z ( k>g(M2)+27jE;+6-21og2-y

is Euler's constant.



THE PROBLEM

• Form-factors of local field operator O(x)

(vac | O(x) | n — particle states)

allow one to generate exact large-distance expansions for
the correlation functions by inserting complete set of states
of asymptotic particles.

• It is usually convenient to fix normalizations of the field
operators in terms of the short-distance behavior of their
correlation functions. If the short-distance behaviour is
controlled by associated CFT, the two-point correlation
function of a spin-5 field O(x) has the asymptotic form

1 (ix + y)

X\

Find the specific normalization of form — factors

which corresponds to the "CFT normalization".



TOPOLOGICALLY CHARGED FIELDS IN SG

MTM = sine-Gordon QFT

= / <?* \ ^ i^f -

Global Z symmetry: <p(x) 2Trn//3 ==> Disorder fields

{/oca/ insertions}

Change of the variable:

if x outside the loop C
<p(x) + 2ixn/p if x inside the loop C

= Dip', cos(Pip) — cos(pip') .

du(fi' = du(f — 2irn/P Nu S^2\x — C)

where Nu is an external normal to the loop.

1

SNU + -^ I dzx
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Notice that

/ dlducp' Nu = I
c Jc

§c _ / . . \

(p = L xv is an ill-defined field in sG!

OQ are mutually local and they have zero Lorentz spin and
the topological charge n. They are not local w.r.t. ip(x).



More general topologically charged, "semi-local" fields

°a(x) = } l

Lorentz spin : an

Topological charge : n

Correlation functions

• multivalued function of the coordinates x\, • • •
• It acquires the phase factor (mutual locality index)

exp ( —

when the point Xj is brought around Xk counterclockwise
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Examples

( S.Mandelstam, 1975) MTM (£ = ^2 - 1) fermions

• "Spin-charge separation"

a; is a free bozon field: u = U>R(X + iy) — UJL(X — iy)

Qn(x\ —

where r\a — rj^ are Klein factors (77̂  = 77J = 1, 77177j_ = —77177

Each of the factors O and O is nonlocal (they each have
spin | ) , while

are local fermi fields of spin |
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DEFORMED 5f/(2)-THIRRING MODEL

AsG I d2x
16?r

d2x 2 flu.J+ J "

9\\ > 0? 9± - "running" coupling constants, go does not flow

RG (Kosterlitz-Thouless) flow

L = log (scale)

The theory depends on g\\ and go besides the mass scale
appearing through dimensional transmutation.

7T 7T
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FORM FACTORS

• Conservation of the topological charge:

{vac Vx • • 'P

Lorentz Transformation: E ± p —>> e±A (E ± p)

{vac p i • • • ) - . p i • • •>_...

• Factorizable Scattering
Up to overall normalization, all form-factors can be written
down in closed form, as certain TV-fold integrals. For N — 0:

n

m=l
\Em — pmJ H.

- ''minimal form factor" (s\2 — (pj* +P2) )

\
r —

^

\

• MTM fermions: Z* = Zi(/?/2)

• Deformed 5t/(2) TM fermions: = Zi(/?/4)
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Uq{sl(2)) WARD IDENTITIES

£/g(s/(2))-symmetry in sG (D.Bernard, A.LeClair, 1991)

J±(x) = (x),

(x), H±(x) = 7T
3

^_ Ax)
/3 P)

dj±{x) = dH± , dj±(x) =

The conserved charges

IT

2TT

•oo

— OO

:, y) dx

generate afRne quantum group Uq(sl(2)) of level zero, with

If

Q

r/2 / ; £(~\
L i / ^ i — U e l l

_g+ - q
2Q,

+ 0 sin(

1

>/0 ('

_ 9 2 H

vac .e*(

Q+Q- -
1 - q~2H
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Uq(sl(2)) action on asymptotic states

• One-particle states

Q±\p)± = Q± \p)± = o,

\P):

• Multy-particle states: Coproduct

A(Q±) = Q±, A(Q±) -

Uq(sl(2)) action on fields

For all integer n and m the fields

On
an

n m(5
with cwm = — +

are local w.r.t. the currents J± and H±, and

., - «* o:.,,



RESULT

n
exp

" r°° dt
.Jo 2t x

i sinhf isinh(tf)
-4d(a,n) e~2t\

Here

a, n) = 2a2 +

1-

>OO dt sinh(t) sinh(t(? - 1))
cosh2(£)
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CONCLUSION

• Example:

= / *Asu(2) = /

as |sc| —> 0

as x \ —> oo

4 A^ = 0.921862... .

• Subleading asymptotics

Short distances: Conformal Per turba t ion Theory

Large distances: Next form factors

• Exact asymptotics in lattice systems (XXZ, Hubbard, .
chains).
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Short distances x\ —> 0

\x

75 o 261
16" 512" 8192'

Here

Mix = 0,577216...)

Large distances |a?| —> +oo

2iri

5 1
= 0.921862

0 . 4 0 . 6 0 . 8
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